ORDER EMBEDDING OF A MATRIX ORDERED SPACE

ANIL K. KARN

(Received 16 January 2010)

Abstract

We characterize certain properties in a matrix ordered space in order to embed it in a C^* -algebra. Let such spaces be called C^* -ordered operator spaces. We show that for every self-adjoint operator space there exists a matrix order (on it) to make it a C^* -ordered operator space. However, the operator space dual of a (nontrivial) C^* -ordered operator space cannot be embedded in any C^* -algebra.

2010 Mathematics subject classification: primary 46L07.

Keywords and phrases: matrix ordered space, operator space, operator system, L^{∞} -matricially Riesz normed space, C^* -ordered operator space, C^* -matricially Riesz normed space.

1. The characterization theorem

In this short communication, we determine a set of necessary and sufficient conditions on a matrix ordered space so that it can be order embedded in some C^* -algebra. (Some related results can be found in [6, 12].) Let us call such spaces C^* -ordered operator spaces. We have been able to show that on any self-adjoint operator space there exists a matrix order (which may be trivial) such that the space turns out to be a C^* -ordered operator space. Interestingly, however, we have proved that the operator space dual of a (nontrivial) C^* -ordered operator space is not a C^* -ordered operator space. In particular, the operator space dual of an operator system cannot be order embedded in a C^* -algebra. This improves a result due to Blecher and Neal [1]. At the end of this paper, we discuss a class of examples of C^* -ordered operator spaces.

We begin by recalling some definitions. Let V be a complex vector space. For $m, n \in \mathbb{N}, M_{m,n}(V)$ denotes the set of all $m \times n$ matrices with entries from V. For m = n, we write, $M_{m,n}(V) = M_n(V)$. When $V = \mathbb{C}$, we write $M_{m,n}(V) = M_{m,n}$.

DEFINITION 1.1. An L^{∞} -matricially normed space (that is, an abstract operator space [10]), denoted by $(V, \{ \| \|_n \})$, is a complex vector space V together with a sequence of norms $\| \|_n$ (called a matrix norm on V) such that:

(i) $(M_n(V), || ||_n)$ is a normed linear space for all *n*;

(ii) $||v \oplus w||_{n+m} = \max\{||v||_n, ||w||_m\};$ and

(iii) $\|\alpha v\beta\|_n \le \|\alpha\| \|v\|_n \|\beta\|$ for all $v \in M_n(V)$, $w \in M_m(V)$, $\alpha, \beta \in M_n$ and $n \in \mathbb{N}$.

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

DEFINITION 1.2. A *-vector space is complex vector space V together with an involution *. A matrix ordered space is a *-vector space V together with a cone $M_n(V)^+$ in $M_n(V)_{sa}$ for all $n \in \mathbb{N}$ and with the following property: if $v \in M_n(V)^+$ and $\gamma \in M_{n,m}$ then $\gamma^* v \gamma \in M_m(V)^+$ for any $n, m \in \mathbb{N}$. It is denoted by $(V, \{M_n(V)^+\})$.

DEFINITION 1.3. An L^{∞} -matricially *-normed space is an L^{∞} -matricially normed space $(V, \{\| \|_n\})$, such that *V* is a *-vector space and that for all $v \in M_n(V)$ we have $\|v^*\|_n = \|v\|_n$.

DEFINITION 1.4. Let *V* and *W* be complex vector spaces. Every linear map ϕ : $V \to W$ induces a sequence $\{\phi_n\}$ where $\phi_n([v_{ij}]) = [\phi(v_{ij})]$. Let $(V, \{\| \|_n\})$ and $(W, \{\| \|_n\})$ be L^{∞} -matricially normed spaces. Then a linear map $\phi : V \to W$ is called completely bounded if $\|\phi\|_{cb} = \sup\{\|\phi_n\| : n \in \mathbb{N}\} < \infty$ and ϕ is called a complete isometry if ϕ_n is an isometry for all *n*. Let $(V, \{M_n(V)^+\})$ and $(W, \{M_n(W)^+\})$ be matrix ordered spaces and let $\phi : V \to W$ be a self-adjoint linear map. We say that ϕ is completely positive if ϕ_n is positive for all *n*, and that ϕ is a complete order isomorphism if it is a linear isomorphism and both ϕ and ϕ^{-1} are completely positive on their domains.

DEFINITION 1.5. Let $(V, \{M_n(V)^+\})$ be a matrix ordered space. We say that V^+ is *proper* if $V^+ \cap (-V^+) = \{0\}$.

It is shown in [2] that if V^+ is proper, then so is $M_n(V)^+$ for all *n*. In the first result we extract some necessary conditions on a matrix ordered space so that it may be embedded in a C^* -algebra. We also prove that these conditions are sufficient.

PROPOSITION 1.6. Let $(V, \{M_n(V)^+\})$ be a matrix ordered space. Assume that $\phi: V \to A$ is a linear complete order isomorphism for some C^* -algebra A. For each $n \in \mathbb{N}$ define

$$||v||_n = ||\phi_n(v)||$$

for all $v \in M_n(V)$. Then:

- (1) $(V, \{ \| \|_n \})$ is an (abstract) operator space;
- (2) $\|v^*\|_n = \|v\|_n$ for all $v \in M_n(V)$, $n \in \mathbb{N}$. (In other words, V is an L^{∞} -matricially *-normed space.)

Put $Q_n(V) = \{f : M_n(V) \to \mathbb{C} \mid f \ge 0 \text{ and } \|f\| \le 1\}$ for all $n \in \mathbb{N}$. Then:

- (3) $||v|| = \sup\{|f(v)| : f \in Q_n(V)\}$ for all $v \in M_n(V)_{sa}$, $n \in \mathbf{N}$;
- (4) for $n \in \mathbf{N}$ and $v \in M_n(V)_{sa}$ we have $v \in M_n(V)^+$ if and only if $f(v) \ge 0$ for all $f \in Q_n(V)$;
- (5) V^+ (and therefore $M_n(V)^+$, for all n) is proper.

PROOF. (1) By definition, ϕ becomes a complete isometry so that V may be treated as a subspace of A.

(2) For any $v \in M_n(V)$,

$$\|v^*\|_n = \|\phi_n(v^*)\| = \|\phi_n(v)^*\| = \|\phi_n(v)\| = \|v\|_n.$$

(3) We know that for all $a \in M_n(A)_{sa}$,

 $||a|| = \sup\{|g(a)| : g \in Q_n(A)\}.$

Also, for $g \in Q_n(A)$, we have $g \circ \phi_n \in Q_n(V)$. Thus

$$||v||_n = ||\phi_n(v)|| = \sup\{|g(\phi_n(v))| : g \in Q_n(A)\} \le \sup\{|f(v)| : f \in Q_n(V)\}.$$

The other part is obvious.

(4) First, let $v \in M_n(V)_{sa}$ be such that $f(v) \ge 0$ for all $f \in Q_n(V)$. Then as in (3) we have that $g \circ \phi_n(v) \ge 0$ for all $g \in Q_n(A)$. It follows that $\phi_n(v) \in M_n(A)^+$. Since ϕ is a complete order isomorphism, we may conclude that $v \in M_n(V)^+$. Now the converse is trivial. Finally, as ϕ is a (complete) order isomorphism, (5) also holds. \Box

We shall also prove the converse of this result. For this purpose, we shall require the following improvement on a result due to Effros and Ruan [3].

THEOREM 1.7. Let $(V, \{M_n(V)^+\})$ be a matrix ordered space. Assume that $\{\| \|_n\}$ is a matrix norm on V such that it is an L^{∞} -matricially *-normed space. Fix $n \in \mathbb{N}$ and let $f : M_n(V) \to \mathbb{C}$ be a linear self-adjoint contraction. Then there exist a linear, self-adjoint, complete contraction $\phi : V \to M_n$ and a norm-one $n^2 \times 1$ matrix δ such that

$$f(v) = \delta^* \phi_n \delta.$$

If in addition, f is positive, then ϕ is completely positive too.

PROOF. The techniques used in the proof are essentially adapted from [3]. However, for completeness, we include the main points of the proof. It is divided into several steps.

Step I. Consider the C*-algebra M_n and let S be its state space. Let C(S) denote the space of all real-valued, continuous functions on S. For $\alpha \in M_{m,n}$ and $v \in M_m(V)_{sa}$ with $||v||_m = 1$, we define $\psi_v^{\alpha} \in C(S)$ given by

$$\psi_v^{\alpha}(p) = p(\alpha^* \alpha) - f(\alpha^* v \alpha)$$

for all $p \in S$. Put

$$\Psi = \{\psi_v^{\alpha} : \alpha \in M_{m,n} \text{ and } v \in M_m(V)_{\text{sa}} \text{ with } \|v\|_m = 1\}$$

Then $\psi_v^{\alpha} + \psi_w^{\beta} = \psi_{v\oplus w}^{[\beta]}$ and $|\lambda|^2 \psi_v^{\alpha} = \psi_v^{\lambda\alpha}$ for all $\alpha \in M_{m,n}, \beta \in M_{p,n}, v \in M_m(V)_{\text{sa}}, w \in M_p(V)_{\text{sa}}$ with $||v||_m = 1$, $||w||_p = 1$ and $\lambda \in \mathbb{C}$. Since $\{|| \ ||_n\}$ satisfies the L^{∞} -condition, we see that $||v \oplus w||_{m+p} = 1$. Thus Ψ is a cone. Let Γ denote the cone of all strictly negative functions in C(S). Then $\operatorname{int}(\Gamma) \neq \emptyset$ and $\Psi \cap \Gamma = \emptyset$. Thus by the geometric form of the Hahn–Banach theorem, there exists a nonzero Radon measure μ on S such that $\mu | \Psi \geq 0$ and $\mu | \Gamma \leq 0$. It follows that μ is a positive measure

and we may assume that it is a probability measure. Then $p_0 = \int_S p \, d\mu(p) \in S$. Since $\mu | \Psi \ge 0$, for any $\alpha \in M_{m,n}$ and $v \in M_m(V)_{sa}$ with $||v||_m = 1$ we have

$$0 \leq \int_{S} \Psi_{v}^{\alpha}(p) d\mu(p) = \Psi_{v}^{\alpha}(p_{0}) = p_{0}(\alpha^{*}\alpha) - f(\alpha^{*}v\alpha).$$

In other words,

$$f(\alpha^* v \alpha) \le p(\alpha^* \alpha) \|v\|_m,$$

for all $\alpha \in M_{m,n}$ and $v \in M_m(V)_{sa}$. Now using standard techniques (see, for example, [3]), we may conclude that

$$f(\alpha^* v\beta) \le [p(\alpha^* \alpha) p(\beta^* \beta)]^{1/2} \|v\|_m$$

for all α , $\beta \in M_{m,n}$ and $v \in M_m(V)$.

Step II. Let $\{\varepsilon_{ij} : 1 \le i, j \le n\}$ be the matrix units of M_n . Put $p_0(\varepsilon_{ij}) = \alpha_{ji}$ and set $A_0 = [\alpha_{ij}] \in M_n$. It follows, from [5, Exercise 4.6.18], that:

(1)
$$A_0 \in M_n^+;$$

- (2) $tr(A_0) = 1$; and
- (3) $p_0(B) = \operatorname{tr}(A_0 B)$ for all $B \in M_n$.

Let *A* be the positive square root of A_0 . Consider the closed subspace $K = A(\mathbb{C}^n)$ of \mathbb{C}^n . For a fixed $v \in V$, define $\hat{v} : K \times K \to \mathbb{C}$ given by

$$\hat{v}(A(\alpha), A(\beta)) = f(\alpha v \beta^*)$$

for all $\alpha, \beta \in \mathbb{C}^n$ (identified with $M_{n,1}$). Then \hat{v} is a contractive sesquilinear form on K, for $||A(\alpha)||^2 = p_0(\alpha \alpha^*)$ by (3). Thus there exists a unique contractive linear map $T_v: K \to K$ such that

$$\langle T_v A(\alpha), A(\beta) \rangle = f(\alpha v \beta^*).$$

Let *P* be the range projection of *A*. Then $\phi(v) = T_v P$ may be identified in M_n and we may conclude that $v \mapsto \phi(v)$ defines a self-adjoint linear map $\phi: V \to M_n$. Let $\{\varepsilon_i : 1 \le i \le n\}$ be the matrix units of $M_{n,1}$. Set $\delta = (A(\varepsilon_i)) \in (\mathbb{C}^n)^n$ (identified with $M_{n^2,1}$). Then

$$\|\delta\|^{2} = \sum_{i=1}^{n} \|A(\varepsilon_{i})\|^{2} = \operatorname{tr}(A_{0}) = 1$$

using (2). Since for $v = [v_{ij}] \in M_n(V)$ we have $v = \sum_{i,j=1}^n \varepsilon_i v_{ij} \varepsilon_j^*$, we obtain that

$$f(v) = \sum_{i,j=1}^{n} \langle \phi(v_{ij}) A(\varepsilon_i), A(\varepsilon_j) \rangle = \delta^* \phi_n(v) \delta.$$

Now the rest of the proof is routine.

THEOREM 1.8. Let $(V, \{M_n(V)^+\})$ be a matrix ordered space. Assume that $\{\| \|_n\}$ is a matrix norm on V and that conditions (1)–(5) of Proposition 1.6 hold in V. Then there exist a C*-algebra A and a linear, completely isometric, complete order isomorphism $\Phi: V \to A$.

A. K. Karn

PROOF. Let us write $CQ_n(V)$ for the set of all completely contractive completely positive maps $\phi: V \to M_n$. Then $CQ_n(V)$ is nonempty. Write M_n^{ϕ} for M_n for all $\phi \in CQ_n(V)$ and put $A_n = \bigoplus M_n^{\phi}$ where ϕ runs over $CQ_n(V)$ for all n. Define $\Phi^{(n)}: V \to A_{2n}$ given by

$$\Phi^{(n)}(v) = (\phi(v))_{\phi \in CQ_{2n}(V)}$$

Then $\Phi^{(n)}$ is a well-defined completely contractive completely positive map. We show that $(\Phi^{(n)})_n$ is an order isomorphism (onto its range). Let $v \in M_n(V)_{sa}$ be such that $(\Phi^{(n)})_n(v) \ge 0$. Then $\phi_n(v) \in M_n(M_{2n})^+$ for all $\phi \in CQ_{2n}(V)$. Let $f \in Q_n(V)$. Then by Theorem 1.7, there exist $\phi \in CQ_n(V)(\subset CQ_{2n}(V))$ and $\delta \in M_{n^2,1}$ such that

$$f(v) = \delta^* \phi_n(v) \delta \ge 0.$$

Thus by condition (4), $v \in M_n(V)^+$. Next, let $v \in M_n(V)_{sa}$ be such that $(\Phi^{(n)})_n(v) = 0$. Then as above, $\pm v \in M_n(V)^+$ so that by condition (5), v = 0. Thus $(\Phi^{(n)})_n$ is an order isomorphism for all *n*. Now set

$$A = \bigoplus \{A_{2n} : n \in \mathbf{N}\} \quad \text{(the } C^*\text{-direct sum)}.$$

Define $\Phi: V \to A$ given by $\Phi(v) = (\Phi^{(n)}(v))$, for all $v \in V$. Then Φ is a linear completely contractive complete order isomorphism. We further show that Φ is a complete isometry. Let $v \in M_n(V)$. Then

$$\begin{bmatrix} 0 & v \\ v^* & 0 \end{bmatrix} \in M_{2n}(V)_{\mathrm{sa}}.$$

Thus by condition (4) for given $\epsilon > 0$, there is an $f \in Q_{2n}$ such that

$$\|v\|_n - \epsilon = \left\| \begin{bmatrix} 0 & v \\ v^* & 0 \end{bmatrix} \right\|_{2n} - \epsilon < \left\langle f, \begin{bmatrix} 0 & v \\ v^* & 0 \end{bmatrix} \right\rangle.$$

By Theorem 1.7 there exist $\phi \in CQ_{2n}(V)$ and $\delta \in M_{(2n)^2,1}$ such that

$$\left| \left\langle f, \begin{bmatrix} 0 & v \\ v^* & 0 \end{bmatrix} \right\rangle \right| = \delta^* \phi_{2n} \left(\begin{bmatrix} 0 & v \\ v^* & 0 \end{bmatrix} \right) \delta.$$

Since

$$\left|\delta^*\phi_{2n}\left(\begin{bmatrix}0&v\\v^*&0\end{bmatrix}\right)\delta\right| \le \left\|\phi_{2n}\left(\begin{bmatrix}0&v\\v^*&0\end{bmatrix}\right)\right\| = \|\phi_n(v)\| \le \|v\|_n$$

and since $\epsilon > 0$ is arbitrary, we conclude that $(\phi)_n$ is an isometry for all *n*. Now the result is immediate.

DEFINITION 1.9. An operator space considered in Theorem 1.8 will be called a C^* -ordered operator space.

Now we shall take another approach to examine C^* -ordered operator spaces. To begin with, we state the following improvement on a characterization theorem due to Effros and Ruan [3]. A proof may be extracted from the proofs of Theorems 1.7 and 1.8.

PROPOSITION 1.10. Let V be an L^{∞} -matricially *-normed space. Then there exist a C^* -algebra A and a completely isometric, self-adjoint, linear isomorphism $\phi : V \rightarrow A$.

THEOREM 1.11. Let V be an L^{∞} -matricially *-normed space. Then there exists a matrix order structure $\{M_n(V)^+\}$ on it so that it is a C*-ordered operator space.

PROOF. By Proposition 1.10, there exist a C^* -algebra A and a completely isometric, self-adjoint, linear isomorphism $\phi : V \to A$. For each natural number n, set

$$M_n(V)^+ = \{ v \in M_n(V)_{\text{sa}} : f \circ \phi_n(v) \ge 0 \text{ for all } f \in Q_n(A) \}.$$

It is routine to check that $\{M_n(V)^+\}$ is a matrix order on V and that V^+ is proper. Moreover, since A is a C^* -algebra, we also have

$$||v||_n = ||\phi_n(v)|| = \sup\{|f \circ \phi_n(v)| : f \in Q_n(A)\}.$$

Now, by construction, $f \circ \phi_n \in Q_n(V)$ for all $f \in Q_n(A)$ so that ϕ has the required properties to complete the proof.

2. Order embedding and operator space duality

In this section we show that, in general, operator space duality is not suitable for C^* -ordered operator spaces. At the end, we describe a class of examples of C^* -operator spaces.

PROPOSITION 2.1. Let V be a C^{*}-ordered operator space. Then for any $n \in \mathbb{N}$ and $u, v, w \in M_n(V)_{sa}$, with $u \leq v \leq w$,

 $||v||_n \le \max\{||u||_n, ||w||_n\}.$

In particular, given $n \in \mathbb{N}$ and $\begin{bmatrix} u_1 & v \\ v^* & u_2 \end{bmatrix} \in M_{2n}(V)^+$ for some $v \in M_n(V)$ and $u_1, u_2 \in M_n(V)^+$ we have

$$||v||_n \le \max\{||u_1||_n, ||u_2||_n\}.$$

PROOF. Let $u, v, w \in M_n(V)_{sa}$, with $u \le v \le w$ for some $n \in \mathbb{N}$. Then given $f \in Q_n(V)$ we have $f(u) \le f(v) \le f(w)$. Thus by the definition, $-||u||_n \le |f(v)| \le ||w||_n$ for all $f \in Q_n(V)$. Now it follows that

$$||v||_n \le \max\{||u||_n, ||w||_n\}.$$

Next, let $\begin{bmatrix} u_1 & v \\ v^* & u_2 \end{bmatrix} \in M_{2n}(V)^+$ for some $v \in M_n(V)$ and $u_1, u_2 \in M_n(V)^+$. Then

$$-\begin{bmatrix} u_1 & 0\\ 0 & u_2 \end{bmatrix} \leq \begin{bmatrix} 0 & v\\ v^* & 0 \end{bmatrix} \leq \begin{bmatrix} u_1 & 0\\ 0 & u_2 \end{bmatrix} \in M_{2n}(V)^+$$

Now by the first part, the result is immediate, for V is an operator space.

A. K. Karn

THEOREM 2.2. Let V be a nonzero C*-ordered operator space. If the operator space dual V' of V is also a C*-ordered operator space, then $V \cong \mathbb{C}$.

PROOF. Let f be a bounded self-adjoint linear functional on V. Since V is C^* -ordered, by Proposition 2.1 above and [4, Theorem 3.6.2], there are bounded positive linear functionals g_1 and g_2 on V such that $f = g_1 - g_2$ with $||g_1|| + ||g_2|| \le ||f||$. Then $-g_2 \le f \le g_1$. Thus as V' is also C^* -ordered, by Proposition 2.1, we get that $||f|| \le \max\{||g_1||, ||g_2||\}$. Therefore, $||g_1|| + ||g_2|| \le \max\{||g_1||, ||g_2||\}$. It follows that either $g_1 = 0$ or $g_2 = 0$. In other words, $(V')_{sa} = (V')^+ \cup (-(V')^+)$. Thus for any $f, g \in (V')_{sa}$, either $f \le g$ or $g \le f$. Consider

$$Q(V) = \{ f \in (V')^+ : \|f\| \le 1 \}.$$

Then Q(V) is nonempty, weak*-compact and convex. Let e_1 and e_2 be any two nonzero extreme points of Q(V). Then as above, these are comparable in $(V')_{sa}$. For definiteness, we may assume that $e_1 \le e_2$. If $e_1 \ne e_2$, then

$$e_2 = \frac{1}{2}(e_2 - e_1) + \frac{1}{2}(e_2 + e_1)$$

is a proper convex combination in Q(V). Since e_2 is an extreme point of **C**, we have either $\frac{1}{2}(e_2 - e_1) = 0$ or $\frac{1}{2}(e_2 + e_1) = 0$. Since e_1 and e_2 are nonzero, we must have $e_1 = e_2$. In other words, Q(V) has a unique nonzero extreme point, say e_0 . Since 0 is also an extreme point of Q(V), for any $f \in Q(V)$ we get, by the Krien–Milman theorem, that $f = ke_0$ for some $k \in [0, 1]$. Then $||e_0|| = 1$. Now it is immediate that $V \cong \mathbf{C}$.

The following result due to Blecher and Neal [1] is a special case of the above result.

COROLLARY 2.3. The operator space dual of a nonscalar C^* -algebra cannot be order embedded in any C^* -algebra.

REMARK 2.4. It will not be hard to show that the operator space dual of an L^{∞} -matricially *-normed space is again an L^{∞} -matricially *-normed space. Thus the operator space duality seems to have a problem with the relation with the matrix norm and the matrix order. However, we are not in a position to comment on this at this moment.

At the end we record that matrix order unit spaces (operator systems) are C^* -ordered operator spaces. More generally, every approximate matrix order unit space is a C^* -ordered operator space. The latter class includes the class of operator systems and that of C^* -algebras (unital or nonunital). These classes possess a structure richer than that of C^* -ordered operator spaces. We explain this as follows.

DEFINITION 2.5. We say that V^+ is generating if given $v \in V$ there exist $v_0, v_1, v_2, v_3 \in V^+$ such that $v = \sum_{k=0}^{3} i^k v_k$, where $i^2 = -1$.

17

It is proved in [7, Proposition 1.8] that V^+ is generating if and only if given $v \in V$ there are $u_1, u_2 \in V^+$ such that $\begin{bmatrix} u_1 & v \\ v^* & u_2 \end{bmatrix} \in M_2(V)^+$ and that in this case $M_n(V)^+$ is generating for all *n*. In this case, we say that $(V, \{M_n(V)^+\})$ is a positively generated matrix ordered space.

DEFINITION 2.6. Let $(V, \{M_n(V)^+\})$ be a positively generated matrix ordered space. A norm || || on V will be called a Riesz norm if for all $v \in V$,

$$\|v\| = \left\{ \max(\|u_1\|, \|u_2\|) : u_1, u_2 \in V^+ \text{ and } \begin{bmatrix} u_1 & v \\ v^* & u_2 \end{bmatrix} \in M_2(V)^+ \right\}$$

DEFINITION 2.7. An L^{∞} -matricially Riesz normed space (matrix regular operator space [11]) is a positively generated matrix ordered space $(V, \{M_n(V)^+\})$ together with a matrix norm $\{\| \|_n\}$ such that $\| \|_n$ is a Riesz norm on $M_n(V)$ and $M_n(V)^+$ is norm closed for all *n* and that $(V, \{\| \|_n\})$ is an L^{∞} -matricially normed space. It is denoted by $(V, \{\| \|_n\}, \{M_n(V)^+\})$. An L^{∞} -matricially Riesz normed space is called a C^* -matricially Riesz normed space if it is also a C^* -ordered operator space.

It follows, from Proposition 1.6 and Theorem 1.8, that an L^{∞} -matricially Riesz normed space can be order embedded in a C^* -algebra if and only if it is a C^* matricially Riesz normed space. Schreiner [11] proved that the operator space dual of an L^{∞} -matricially Riesz normed space is again an L^{∞} -matricially Riesz normed space. It follows, from Theorem 2.2, that, every L^{∞} -matricially Riesz normed space is not a C^* -matricially Riesz normed space. However, the spaces we define below are C^* -ordered operator spaces.

DEFINITION 2.8. Let $(V, \{M_n(V)^+\})$ be a matrix ordered space. An increasing net $\{e_{\lambda}\}$ in V^+ is called an *approximate order unit* for V if for each $v \in V$ there is a k > 0 such that

$$\begin{bmatrix} ke_{\lambda} & v \\ v^* & ke_{\lambda} \end{bmatrix} \in M_2(V)^+ \text{ for some } \lambda.$$

In this case $\{e_{\lambda}^{n}\}$ acts as an approximate order unit for $M_{n}(V)$ for all *n*, where $e_{\lambda}^{n} = e_{\lambda} \oplus \cdots \oplus e_{\lambda}$. Moreover, $\{e_{\lambda}\}$ determines a matrix Riesz seminorm $\{\| \|_{n}\}$ on *V*. We call $(V, \{e_{\lambda}\})$ an *approximate matrix order unit space* if $(V, \{\| \|_{n}\}, \{M_{n}(V)^{+}\})$ is an L^{∞} -matricially Riesz normed space.

When $e_{\lambda} = e$ for all λ we drop the term 'approximate' in the above notions. For example, (V, e) denotes a matrix order unit space. For details, refer to [9].

Let V be an approximate matrix order unit space. It follows, from Theorem 1.8 and [8, Proposition 1.20], that

$$M_n(V')_{\rm sa} = \operatorname{co}(Q_n(V) \cup (-Q_n(V)))$$

for all *n*. Thus we may conclude with the following result.

PROPOSITION 2.9. An approximate matrix order unit space is a C*-matricially Riesz normed space.

A. K. Karn

References

- D. P. Blecher and M. Neal, 'Open partial isometries and positivity in operator spaces', *Studia Math.* 182 (2007), 227–262.
- [2] M. D. Choi and E. G. Effros, 'Injectivity and operator spaces', J. Funct. Anal. 24 (1977), 156–209.
- [3] E. G. Effros and Z. J. Ruan, 'On the abstract characterization of operator spaces', Proc. Amer. Math. Soc. 119 (1993), 579–584.
- [4] G. J. O. Jameson, *Ordered Linear Spaces*, Lecture Notes in Mathematics, 141 (Springer, New York, 1970).
- [5] R. Kadison and J. Ringrose, *Fundamentals of the Theories of Operator Algebras, I* (Academic Press, New York, 1983).
- [6] A. K. Karn, 'A *p*-theory of ordered normed spaces', *Positivity* 14 (2010), 441–458.
- [7] A. K. Karn and R. Vasudevan, 'Approximate matrix order unit spaces', *Yokohama Math. J.* 44 (1997), 73–91.
- [8] A. K. Karn and R. Vasudevan, 'Matrix duality for matrix ordered spaces', *Yokohama Math. J.* 45 (1998), 1–18.
- [9] A. K. Karn and R. Vasudevan, 'Characterizations of matricially Riesz normed spaces', *Yokohama Math. J.* 47 (2000), 143–153.
- [10] Z. J. Ruan, 'Subspaces of C*-algebras', J. Funct. Anal. 76 (1988), 217–230.
- [11] W. J. Schreiner, 'Matrix regular operator spaces', J. Funct. Anal. 152 (1998), 136–175.
- [12] W. Werner, 'Subspaces of L(H) that are *-invariant', J. Funct. Anal. 193 (2002), 207–223.

ANIL K. KARN, Department of Mathematics, Deen Dayal Upadhyaya College, University of Delhi, Karam Pura, New Delhi 110 015, India e-mail: anil.karn@gmail.com [9]