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Abstract

We characterize certain properties in a matrix ordered space in order to embed it in a C∗-algebra. Let
such spaces be called C∗-ordered operator spaces. We show that for every self-adjoint operator space
there exists a matrix order (on it) to make it a C∗-ordered operator space. However, the operator space
dual of a (nontrivial) C∗-ordered operator space cannot be embedded in any C∗-algebra.
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1. The characterization theorem

In this short communication, we determine a set of necessary and sufficient conditions
on a matrix ordered space so that it can be order embedded in some C∗-algebra. (Some
related results can be found in [6, 12].) Let us call such spaces C∗-ordered operator
spaces. We have been able to show that on any self-adjoint operator space there exists
a matrix order (which may be trivial) such that the space turns out to be a C∗-ordered
operator space. Interestingly, however, we have proved that the operator space dual
of a (nontrivial) C∗-ordered operator space is not a C∗-ordered operator space. In
particular, the operator space dual of an operator system cannot be order embedded in
a C∗-algebra. This improves a result due to Blecher and Neal [1]. At the end of this
paper, we discuss a class of examples of C∗-ordered operator spaces.

We begin by recalling some definitions. Let V be a complex vector space. For
m, n ∈ N, Mm,n(V ) denotes the set of all m × n matrices with entries from V . For
m = n, we write, Mm,n(V )= Mn(V ). When V = C, we write Mm,n(V )= Mm,n .

DEFINITION 1.1. An L∞-matricially normed space (that is, an abstract operator
space [10]), denoted by (V, {‖ ‖n}), is a complex vector space V together with a
sequence of norms ‖ ‖n (called a matrix norm on V ) such that:

(i) (Mn(V ), ‖ ‖n) is a normed linear space for all n;
(ii) ‖v ⊕ w‖n+m =max{‖v‖n, ‖w‖m}; and
(iii) ‖αvβ‖n ≤ ‖α‖‖v‖n‖β‖ for all v ∈ Mn(V ), w ∈ Mm(V ), α, β ∈ Mn and n ∈ N.
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[2] Order embedding of a matrix ordered space 11

DEFINITION 1.2. A ∗-vector space is complex vector space V together with an
involution ∗. A matrix ordered space is a ∗-vector space V together with a cone
Mn(V )+ in Mn(V )sa for all n ∈ N and with the following property: if v ∈ Mn(V )+ and
γ ∈ Mn,m then γ ∗vγ ∈ Mm(V )+ for any n, m ∈ N. It is denoted by (V, {Mn(V )+}).

DEFINITION 1.3. An L∞-matricially ∗-normed space is an L∞-matricially normed
space (V, {‖ ‖n}), such that V is a ∗-vector space and that for all v ∈ Mn(V ) we have
‖v∗‖n = ‖v‖n .

DEFINITION 1.4. Let V and W be complex vector spaces. Every linear map φ :
V →W induces a sequence {φn} where φn([vi j ])= [φ(vi j )]. Let (V, {‖ ‖n}) and
(W, {‖ ‖n}) be L∞-matricially normed spaces. Then a linear map φ : V →W is called
completely bounded if ‖φ‖cb = sup{‖φn‖ : n ∈ N}<∞ and φ is called a complete
isometry if φn is an isometry for all n. Let (V, {Mn(V )+}) and (W, {Mn(W )+}) be
matrix ordered spaces and let φ : V →W be a self-adjoint linear map. We say that
φ is completely positive if φn is positive for all n, and that φ is a complete order
isomorphism if it is a linear isomorphism and both φ and φ−1 are completely positive
on their domains.

DEFINITION 1.5. Let (V, {Mn(V )+}) be a matrix ordered space. We say that V+ is
proper if V+ ∩ (−V+)= {0}.

It is shown in [2] that if V+ is proper, then so is Mn(V )+ for all n. In the first
result we extract some necessary conditions on a matrix ordered space so that it may
be embedded in a C∗-algebra. We also prove that these conditions are sufficient.

PROPOSITION 1.6. Let (V, {Mn(V )+}) be a matrix ordered space. Assume that
φ : V → A is a linear complete order isomorphism for some C∗-algebra A. For each
n ∈ N define

‖v‖n = ‖φn(v)‖

for all v ∈ Mn(V ). Then:

(1) (V, {‖ ‖n}) is an (abstract) operator space;
(2) ‖v∗‖n = ‖v‖n for all v ∈ Mn(V ), n ∈ N. (In other words, V is an L∞-

matricially ∗-normed space.)

Put Qn(V )= { f : Mn(V )→ C | f ≥ 0 and ‖ f ‖ ≤ 1} for all n ∈ N. Then:

(3) ‖v‖ = sup{| f (v)| : f ∈ Qn(V )} for all v ∈ Mn(V )sa, n ∈ N;
(4) for n ∈ N and v ∈ Mn(V )sa we have v ∈ Mn(V )+ if and only if f (v)≥ 0 for all

f ∈ Qn(V );
(5) V+ (and therefore Mn(V )+, for all n) is proper.

PROOF. (1) By definition, φ becomes a complete isometry so that V may be treated
as a subspace of A.

(2) For any v ∈ Mn(V ),

‖v∗‖n = ‖φn(v
∗)‖ = ‖φn(v)

∗
‖ = ‖φn(v)‖ = ‖v‖n.
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(3) We know that for all a ∈ Mn(A)sa,

‖a‖ = sup{|g(a)| : g ∈ Qn(A)}.

Also, for g ∈ Qn(A), we have g ◦ φn ∈ Qn(V ). Thus

‖v‖n = ‖φn(v)‖ = sup{|g(φn(v))| : g ∈ Qn(A)} ≤ sup{| f (v)| : f ∈ Qn(V )}.

The other part is obvious.
(4) First, let v ∈ Mn(V )sa be such that f (v)≥ 0 for all f ∈ Qn(V ). Then as in (3)

we have that g ◦ φn(v)≥ 0 for all g ∈ Qn(A). It follows that φn(v) ∈ Mn(A)+. Since
φ is a complete order isomorphism, we may conclude that v ∈ Mn(V )+. Now the
converse is trivial. Finally, as φ is a (complete) order isomorphism, (5) also holds. 2

We shall also prove the converse of this result. For this purpose, we shall require
the following improvement on a result due to Effros and Ruan [3].

THEOREM 1.7. Let (V, {Mn(V )+}) be a matrix ordered space. Assume that {‖ ‖n}
is a matrix norm on V such that it is an L∞-matricially ∗-normed space. Fix n ∈ N
and let f : Mn(V )→ C be a linear self-adjoint contraction. Then there exist a linear,
self-adjoint, complete contraction φ : V → Mn and a norm-one n2

× 1 matrix δ such
that

f (v)= δ∗φnδ.

If in addition, f is positive, then φ is completely positive too.

PROOF. The techniques used in the proof are essentially adapted from [3]. However,
for completeness, we include the main points of the proof. It is divided into several
steps.

Step I. Consider the C∗-algebra Mn and let S be its state space. Let C(S) denote the
space of all real-valued, continuous functions on S. For α ∈ Mm,n and v ∈ Mm(V )sa
with ‖v‖m = 1, we define ψαv ∈ C(S) given by

ψαv (p)= p(α∗α)− f (α∗vα)

for all p ∈ S. Put

9 = {ψαv : α ∈ Mm,n and v ∈ Mm(V )sa with ‖v‖m = 1}.

Then ψαv + ψ
β
w = ψ

[α
β

]
v⊕w and |λ|2ψαv = ψ

λα
v for all α ∈ Mm,n, β ∈ Mp,n, v ∈

Mm(V )sa, w ∈ Mp(V )sa with ‖v‖m = 1, ‖w‖p = 1 and λ ∈ C. Since {‖ ‖n} satisfies
the L∞-condition, we see that ‖v ⊕ w‖m+p = 1. Thus 9 is a cone. Let 0 denote the
cone of all strictly negative functions in C(S). Then int(0) 6= ∅ and 9 ∩ 0 = ∅. Thus
by the geometric form of the Hahn–Banach theorem, there exists a nonzero Radon
measure µ on S such that µ|9 ≥ 0 and µ|0 ≤ 0. It follows that µ is a positive measure

https://doi.org/10.1017/S000497271100222X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271100222X
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and we may assume that it is a probability measure. Then p0 =
∫

S p dµ(p) ∈ S. Since
µ|9 ≥ 0, for any α ∈ Mm,n and v ∈ Mm(V )sa with ‖v‖m = 1 we have

0≤
∫

S
9αv (p) dµ(p)=9αv (p0)= p0(α

∗α)− f (α∗vα).

In other words,
f (α∗vα)≤ p(α∗α)‖v‖m,

for all α ∈ Mm,n and v ∈ Mm(V )sa. Now using standard techniques (see, for
example, [3]), we may conclude that

f (α∗vβ)≤ [p(α∗α)p(β∗β)]1/2‖v‖m,

for all α, β ∈ Mm,n and v ∈ Mm(V ).

Step II. Let {εi j : 1≤ i, j ≤ n} be the matrix units of Mn . Put p0(εi j )= α j i and set
A0 = [αi j ] ∈ Mn . It follows, from [5, Exercise 4.6.18], that:

(1) A0 ∈ M+n ;
(2) tr(A0)= 1; and
(3) p0(B)= tr(A0 B) for all B ∈ Mn .

Let A be the positive square root of A0. Consider the closed subspace K = A(Cn) of
Cn . For a fixed v ∈ V , define v̂ : K × K → C given by

v̂(A(α), A(β))= f (αvβ∗)

for all α, β ∈ Cn (identified with Mn,1). Then v̂ is a contractive sesquilinear form on
K , for ‖A(α)‖2 = p0(αα

∗) by (3). Thus there exists a unique contractive linear map
Tv : K → K such that

〈TvA(α), A(β)〉 = f (αvβ∗).

Let P be the range projection of A. Then φ(v)= TvP may be identified in Mn and
we may conclude that v 7→ φ(v) defines a self-adjoint linear map φ : V → Mn . Let
{εi : 1≤ i ≤ n} be the matrix units of Mn,1. Set δ = (A(εi )) ∈ (Cn)n (identified with
Mn2,1). Then

‖δ‖2 =

n∑
i=1

‖A(εi )‖
2
= tr(A0)= 1

using (2). Since for v = [vi j ] ∈ Mn(V ) we have v =
∑n

i, j=1 εivi jε
∗

j , we obtain that

f (v)=
n∑

i, j=1

〈φ(vi j )A(εi ), A(ε j )〉 = δ
∗φn(v)δ.

Now the rest of the proof is routine. 2

THEOREM 1.8. Let (V, {Mn(V )+}) be a matrix ordered space. Assume that {‖ ‖n}
is a matrix norm on V and that conditions (1)–(5) of Proposition 1.6 hold in V .
Then there exist a C∗-algebra A and a linear, completely isometric, complete order
isomorphism 8 : V → A.
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PROOF. Let us write CQn(V ) for the set of all completely contractive completely
positive maps φ : V → Mn . Then CQn(V ) is nonempty. Write Mφ

n for Mn for all
φ ∈ CQn(V ) and put An =

⊕
Mφ

n where φ runs over CQn(V ) for all n. Define
8(n) : V → A2n given by

8(n)(v)= (φ(v))φ∈CQ2n(V ).

Then8(n) is a well-defined completely contractive completely positive map. We show
that (8(n))n is an order isomorphism (onto its range). Let v ∈ Mn(V )sa be such that
(8(n))n(v)≥ 0. Then φn(v) ∈ Mn(M2n)

+ for all φ ∈ CQ2n(V ). Let f ∈ Qn(V ). Then
by Theorem 1.7, there exist φ ∈ CQn(V )(⊂ CQ2n(V )) and δ ∈ Mn2,1 such that

f (v)= δ∗φn(v)δ ≥ 0.

Thus by condition (4), v ∈ Mn(V )+. Next, let v ∈ Mn(V )sa be such that
(8(n))n(v)= 0. Then as above, ±v ∈ Mn(V )+ so that by condition (5), v = 0. Thus
(8(n))n is an order isomorphism for all n. Now set

A =
⊕
{A2n : n ∈ N} (the C∗-direct sum).

Define 8 : V → A given by 8(v)= (8(n)(v)), for all v ∈ V . Then 8 is a linear
completely contractive complete order isomorphism. We further show that 8 is a
complete isometry. Let v ∈ Mn(V ). Then[

0 v

v∗ 0

]
∈ M2n(V )sa.

Thus by condition (4) for given ε > 0, there is an f ∈ Q2n such that

‖v‖n − ε =

∥∥∥∥[ 0 v

v∗ 0

]∥∥∥∥
2n
− ε <

〈
f,

[
0 v

v∗ 0

]〉
.

By Theorem 1.7 there exist φ ∈ CQ2n(V ) and δ ∈ M(2n)2,1 such that∣∣∣∣〈 f,

[
0 v

v∗ 0

]〉∣∣∣∣= δ∗φ2n

([
0 v

v∗ 0

])
δ.

Since ∣∣∣∣δ∗φ2n

([
0 v

v∗ 0

])
δ

∣∣∣∣≤ ∥∥∥∥φ2n

([
0 v

v∗ 0

])∥∥∥∥= ‖φn(v)‖ ≤ ‖v‖n

and since ε > 0 is arbitrary, we conclude that (φ)n is an isometry for all n. Now the
result is immediate. 2

DEFINITION 1.9. An operator space considered in Theorem 1.8 will be called a
C∗-ordered operator space.
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Now we shall take another approach to examine C∗-ordered operator spaces. To
begin with, we state the following improvement on a characterization theorem due
to Effros and Ruan [3]. A proof may be extracted from the proofs of Theorems 1.7
and 1.8.

PROPOSITION 1.10. Let V be an L∞-matricially ∗-normed space. Then there exist a
C∗-algebra A and a completely isometric, self-adjoint, linear isomorphism φ : V→A.

THEOREM 1.11. Let V be an L∞-matricially ∗-normed space. Then there exists a
matrix order structure {Mn(V )+} on it so that it is a C∗-ordered operator space.

PROOF. By Proposition 1.10, there exist a C∗-algebra A and a completely isometric,
self-adjoint, linear isomorphism φ : V → A. For each natural number n, set

Mn(V )
+
= {v ∈ Mn(V )sa : f ◦ φn(v)≥ 0 for all f ∈ Qn(A)}.

It is routine to check that {Mn(V )+} is a matrix order on V and that V+ is proper.
Moreover, since A is a C∗-algebra, we also have

‖v‖n = ‖φn(v)‖ = sup{| f ◦ φn(v)| : f ∈ Qn(A)}.

Now, by construction, f ◦ φn ∈ Qn(V ) for all f ∈ Qn(A) so that φ has the required
properties to complete the proof. 2

2. Order embedding and operator space duality

In this section we show that, in general, operator space duality is not suitable for C∗-
ordered operator spaces. At the end, we describe a class of examples of C∗-operator
spaces.

PROPOSITION 2.1. Let V be a C∗-ordered operator space. Then for any n ∈ N and
u, v, w ∈ Mn(V )sa, with u ≤ v ≤ w,

‖v‖n ≤max{‖u‖n, ‖w‖n}.

In particular, given n ∈ N and
[u1 v
v∗ u2

]
∈ M2n(V )+ for some v ∈ Mn(V ) and u1, u2 ∈

Mn(V )+ we have
‖v‖n ≤max{‖u1‖n, ‖u2‖n}.

PROOF. Let u, v, w ∈ Mn(V )sa, with u ≤ v ≤ w for some n ∈ N. Then given f ∈
Qn(V ) we have f (u)≤ f (v)≤ f (w). Thus by the definition, −‖u‖n ≤ | f (v)| ≤
‖w‖n for all f ∈ Qn(V ). Now it follows that

‖v‖n ≤max{‖u‖n, ‖w‖n}.

Next, let
[u1 v
v∗ u2

]
∈ M2n(V )+ for some v ∈ Mn(V ) and u1, u2 ∈ Mn(V )+. Then

−

[
u1 0
0 u2

]
≤

[
0 v

v∗ 0

]
≤

[
u1 0
0 u2

]
∈ M2n(V )

+.

Now by the first part, the result is immediate, for V is an operator space. 2
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THEOREM 2.2. Let V be a nonzero C∗-ordered operator space. If the operator space
dual V ′ of V is also a C∗-ordered operator space, then V ∼= C.

PROOF. Let f be a bounded self-adjoint linear functional on V . Since V is C∗-
ordered, by Proposition 2.1 above and [4, Theorem 3.6.2], there are bounded positive
linear functionals g1 and g2 on V such that f = g1 − g2 with ‖g1‖ + ‖g2‖ ≤ ‖ f ‖.
Then −g2 ≤ f ≤ g1. Thus as V ′ is also C∗-ordered, by Proposition 2.1, we get that
‖ f ‖ ≤max{‖g1‖, ‖g2‖}. Therefore, ‖g1‖ + ‖g2‖ ≤max{‖g1‖, ‖g2‖}. It follows that
either g1 = 0 or g2 = 0. In other words, (V ′)sa = (V ′)+ ∪ (−(V ′)+). Thus for any
f, g ∈ (V ′)sa, either f ≤ g or g ≤ f . Consider

Q(V )= { f ∈ (V ′)+ : ‖ f ‖ ≤ 1}.

Then Q(V ) is nonempty, weak*-compact and convex. Let e1 and e2 be any two
nonzero extreme points of Q(V ). Then as above, these are comparable in (V ′)sa.
For definiteness, we may assume that e1 ≤ e2. If e1 6= e2, then

e2 =
1
2 (e2 − e1)+

1
2 (e2 + e1)

is a proper convex combination in Q(V ). Since e2 is an extreme point of C, we have
either 1

2 (e2 − e1)= 0 or 1
2 (e2 + e1)= 0. Since e1 and e2 are nonzero, we must have

e1 = e2. In other words, Q(V ) has a unique nonzero extreme point, say e0. Since 0
is also an extreme point of Q(V ), for any f ∈ Q(V ) we get, by the Krien–Milman
theorem, that f = ke0 for some k ∈ [0, 1]. Then ‖e0‖ = 1. Now it is immediate that
V ∼= C. 2

The following result due to Blecher and Neal [1] is a special case of the above
result.

COROLLARY 2.3. The operator space dual of a nonscalar C∗-algebra cannot be
order embedded in any C∗-algebra.

REMARK 2.4. It will not be hard to show that the operator space dual of an L∞-
matricially ∗-normed space is again an L∞-matricially ∗-normed space. Thus the
operator space duality seems to have a problem with the relation with the matrix norm
and the matrix order. However, we are not in a position to comment on this at this
moment.

At the end we record that matrix order unit spaces (operator systems) are C∗-
ordered operator spaces. More generally, every approximate matrix order unit space
is a C∗-ordered operator space. The latter class includes the class of operator systems
and that of C∗-algebras (unital or nonunital). These classes possess a structure richer
than that of C∗-ordered operator spaces. We explain this as follows.

DEFINITION 2.5. We say that V+ is generating if given v ∈ V there exist
v0, v1, v2, v3 ∈ V+ such that v =

∑3
k=0 ikvk , where i2

=−1.
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It is proved in [7, Proposition 1.8] that V+ is generating if and only if given v ∈ V
there are u1, u2 ∈ V+ such that

[u1 v
v∗ u2

]
∈ M2(V )+ and that in this case Mn(V )+ is

generating for all n. In this case, we say that (V, {Mn(V )+}) is a positively generated
matrix ordered space.

DEFINITION 2.6. Let (V, {Mn(V )+}) be a positively generated matrix ordered space.
A norm ‖ ‖ on V will be called a Riesz norm if for all v ∈ V ,

‖v‖ =

{
max(‖u1‖, ‖u2‖) : u1, u2 ∈ V+ and

[
u1 v

v∗ u2

]
∈ M2(V )

+

}
.

DEFINITION 2.7. An L∞-matricially Riesz normed space (matrix regular operator
space [11]) is a positively generated matrix ordered space (V, {Mn(V )+}) together
with a matrix norm {‖ ‖n} such that ‖ ‖n is a Riesz norm on Mn(V ) and Mn(V )+ is
norm closed for all n and that (V, {‖ ‖n}) is an L∞-matricially normed space. It is
denoted by (V, {‖ ‖n}, {Mn(V )+}). An L∞-matricially Riesz normed space is called
a C∗-matricially Riesz normed space if it is also a C∗-ordered operator space.

It follows, from Proposition 1.6 and Theorem 1.8, that an L∞-matricially Riesz
normed space can be order embedded in a C∗-algebra if and only if it is a C∗-
matricially Riesz normed space. Schreiner [11] proved that the operator space dual
of an L∞-matricially Riesz normed space is again an L∞-matricially Riesz normed
space. It follows, from Theorem 2.2, that, every L∞-matricially Riesz normed space
is not a C∗-matricially Riesz normed space. However, the spaces we define below are
C∗-ordered operator spaces.

DEFINITION 2.8. Let (V, {Mn(V )+}) be a matrix ordered space. An increasing net
{eλ} in V+ is called an approximate order unit for V if for each v ∈ V there is a k > 0
such that [

keλ v

v∗ keλ

]
∈ M2(V )

+ for some λ.

In this case {en
λ} acts as an approximate order unit for Mn(V ) for all n, where

en
λ = eλ ⊕ · · · ⊕ eλ. Moreover, {eλ} determines a matrix Riesz seminorm {‖ ‖n} on V .

We call
(
V, {eλ}

)
an approximate matrix order unit space if (V, {‖ ‖n}, {Mn(V )+}) is

an L∞-matricially Riesz normed space.
When eλ = e for all λ we drop the term ‘approximate’ in the above notions. For

example, (V, e) denotes a matrix order unit space. For details, refer to [9].
Let V be an approximate matrix order unit space. It follows, from Theorem 1.8

and [8, Proposition 1.20], that

Mn(V
′)sa = co(Qn(V ) ∪ (−Qn(V )))

for all n. Thus we may conclude with the following result.

PROPOSITION 2.9. An approximate matrix order unit space is a C∗-matricially Riesz
normed space.
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