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Abstract

We characterize certain properties in a matrix ordered space in order to embed it in a C*-algebra. Let
such spaces be called C*-ordered operator spaces. We show that for every self-adjoint operator space
there exists a matrix order (on it) to make it a C*-ordered operator space. However, the operator space
dual of a (nontrivial) C*-ordered operator space cannot be embedded in any C*-algebra.
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1. The characterization theorem

In this short communication, we determine a set of necessary and sufficient conditions
on a matrix ordered space so that it can be order embedded in some C*-algebra. (Some
related results can be found in [6, 12].) Let us call such spaces C*-ordered operator
spaces. We have been able to show that on any self-adjoint operator space there exists
a matrix order (which may be trivial) such that the space turns out to be a C*-ordered
operator space. Interestingly, however, we have proved that the operator space dual
of a (nontrivial) C*-ordered operator space is not a C*-ordered operator space. In
particular, the operator space dual of an operator system cannot be order embedded in
a C*-algebra. This improves a result due to Blecher and Neal [1]. At the end of this
paper, we discuss a class of examples of C*-ordered operator spaces.

We begin by recalling some definitions. Let V be a complex vector space. For
m,n €N, M,, ,(V) denotes the set of all m x n matrices with entries from V. For
m =n, we write, My, ,(V) = M,(V). When V = C, we write M, ,(V) =M,, .

DEFINITION 1.1. An L®-matricially normed space (that is, an abstract operator
space [10]), denoted by (V, {|| |l»}), is a complex vector space V together with a
sequence of norms || ||, (called a matrix norm on V') such that:

i) (M, (V), |l lln) is a normed linear space for all n;
(i) v @ wllp+m = max{l[v|l,, [lwllm}; and
(i) [levBlla < lalllivli. Bl forall v e My (V), w € My (V), @, B € M, andn € N.
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DEFINITION 1.2. A x-vector space is complex vector space V together with an
involution *. A matrix ordered space is a x-vector space V together with a cone
M, (V)*in M, (V)s, for all n € N and with the following property: if v € M, (V)™ and
Y € My, then y*vy € M,, (V)T for any n, m € N. It is denoted by (V, {M,(V)*}).

DEFINITION 1.3. An L°-matricially *-normed space is an L°°-matricially normed
space (V, {|| l»}), such that V is a x-vector space and that for all v € M, (V) we have

V¥l = [0l

DEFINITION 1.4. Let V and W be complex vector spaces. Every linear map ¢ :
V — W induces a sequence {¢) where ¢, ([v;j]) = [¢(vi)]. Let (V. {| [.}) and
(W, {Il ll.}) be L°°-matricially normed spaces. Then a linear map ¢ : V. — W is called
completely bounded if |||, = sup{||¢,|l : » € N} < oo and ¢ is called a complete
isometry if ¢, is an isometry for all n. Let (V, {M,(V)*}) and (W, {M,(W)™}) be
matrix ordered spaces and let ¢ : V — W be a self-adjoint linear map. We say that
¢ is completely positive if ¢, is positive for all n, and that ¢ is a complete order
isomorphism if it is a linear isomorphism and both ¢ and ¢! are completely positive
on their domains.

DEFINITION 1.5. Let (V, {M,(V)'}) be a matrix ordered space. We say that VT is
properif VT N (=V1) ={0}.
It is shown in [2] that if VT is proper, then so is M, (V)™ for all n. In the first

result we extract some necessary conditions on a matrix ordered space so that it may
be embedded in a C*-algebra. We also prove that these conditions are sufficient.

PROPOSITION 1.6. Let (V, {M,(V)T}) be a matrix ordered space. Assume that
¢ : V. — A is a linear complete order isomorphism for some C*-algebra A. For each
n € N define

vlln = llga ()i

forallv e M,,(V). Then:

() (V,{ll lIn}) is an (abstract) operator space;
Q) v, =Illvll, for all ve M,(V), neN. (In other words, V is an L*°-
matricially x-normed space.)

Put Q,(V)={f:M,(V) - C| f=0and | f|l <1} foralln eN. Then:

(3) vl =sup{|f()|: f € Qn(V)}forallve M;(V)s, n €N;

4) forneNandve M,(V)s, we have v € M, (V)" if and only if f(v) > 0 for all
f€eonV);

(5) V™ (and therefore M,,(V)™, for all n) is proper.

PROOF. (1) By definition, ¢ becomes a complete isometry so that V may be treated
as a subspace of A.
(2) Forany v € M,,(V),

[0 lla = llgn @) = llgn @)*I| = llgn ()]l = V]l
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(3) We know that for all a € M, (A)sa,

lall = sup{lg(a)] : g € Qn(A)}.

Also, for g € 0,,(A), we have g o ¢, € O, (V). Thus

[vlln = llgn (W) || = supf{lg(#n (V)] : g € Qn(A)} < sup{|f(W)|: f € Qn(V)}.

The other part is obvious.

(4) First, let v € M,,(V)s, be such that f(v) >0 for all f € Q,(V). Then as in (3)
we have that g o ¢,(v) > 0 for all g € Q,(A). It follows that ¢, (v) € M, (A)*. Since
¢ is a complete order isomorphism, we may conclude that v € M, (V)*. Now the
converse is trivial. Finally, as ¢ is a (complete) order isomorphism, (5) also holds. O

We shall also prove the converse of this result. For this purpose, we shall require
the following improvement on a result due to Effros and Ruan [3].

THEOREM 1.7. Let (V, {M,(V)*}) be a matrix ordered space. Assume that {| ||,.}
is a matrix norm on V such that it is an L°°-matricially *-normed space. Fix n € N
and let f : M, (V) — C be a linear self-adjoint contraction. Then there exist a linear,
self-adjoint, complete contraction ¢ : V. — M, and a norm-one n* x 1 matrix 8 such
that

f () =8¢,8.
If in addition, f is positive, then ¢ is completely positive too.

PROOF. The techniques used in the proof are essentially adapted from [3]. However,
for completeness, we include the main points of the proof. It is divided into several
steps.

Step I. Consider the C*-algebra M), and let S be its state space. Let C(S) denote the
space of all real-valued, continuous functions on S. For a € M,, , and v € M;;,(V )sa
with ||v|[,, = 1, we define ¥ € C(S) given by

¥y (p) = p(a*a) — f(ava)
forall p € S. Put

U ={yy:a€Myyandve My(V)s with [|v]|,, = 1}.

Then o + vl =yl and 2ye =y for all o€ My, peMynve
My (V)sa, w € Mp(V)sa with [[vl,, =1, [lw]l, =1 and A € C. Since {|| ||,,} satisfies
the L°°-condition, we see that |[v @ w/||;u4p = 1. Thus W is a cone. Let I" denote the
cone of all strictly negative functions in C(S). Then int(I") 7% ¥ and W N I[" = @. Thus
by the geometric form of the Hahn—Banach theorem, there exists a nonzero Radon
measure p on S such that u|W > 0 and u|I" < 0. It follows that u is a positive measure
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and we may assume that it is a probability measure. Then py = [ g pdu(p) € S. Since
plW >0, forany @ € My, , and v € M, (V)ga with [Jv]|,, = 1 we have

0< /S W (p) dia(p) = W2 (po) = pola*a) — f(a*va).

In other words,

f@*va) < p(@*a)|vlm,
for all « € My, , and v € M;,(V)sa. Now using standard techniques (see, for
example, [3]), we may conclude that

f@*vB) < [p*a)p(B*B1*|vm,
foralla, B € My, , and v € My, (V).

Step II. Let {g;; : 1 <i, j <n} be the matrix units of M,. Put po(s;;) =a;; and set
Ap = [a;;] € M,,. It follows, from [5, Exercise 4.6.18], that:

(1) AgeM,);

2) tr(Ap) =1;and

(3) po(B) =tr(AgB) for all B € M,,.

Let A be the positive square root of Ag. Consider the closed subspace K = A(C") of
C". For afixed v € V, define v : K x K — C given by

0(A(a), A(B)) = f(avp™)

for all o, B € C" (identified with M,, 1). Then 0 is a contractive sesquilinear form on
K, for |A(a)||® = po(aa™) by (3). Thus there exists a unique contractive linear map
T, : K — K such that
(TyA(a), A(B)) = f(avB™).

Let P be the range projection of A. Then ¢ (v) = T, P may be identified in M,, and
we may conclude that v — ¢ (v) defines a self-adjoint linear map ¢ : V — M,,. Let
{e; : 1 <i < n} be the matrix units of M, 1. Set § = (A(e;)) € (C*)" (identified with
M, ;). Then

1817 =" IAE)II* = tr(Ag) = 1
i=1

using (2). Since for v = [v;;] € M,,(V) we have v = Z?,j:l & v,-jejf, we obtain that

n

f@) =" (¢ A, Ale))) =8¢ (v)s.
i,j=1
Now the rest of the proof is routine. O
THEOREM 1.8. Let (V, {M,(V)'}) be a matrix ordered space. Assume that {|| ||,,}
is a matrix norm on V and that conditions (1)—(5) of Proposition 1.6 hold in V.

Then there exist a C*-algebra A and a linear, completely isometric, complete order
isomorphism ® : V — A.
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PROOF. Let us write CQ, (V) for the set of all completely contractive completely
positive maps ¢ : V — M,,. Then CQ, (V) is nonempty. Write Mff for M, for all
¢ €CQ,(V) and put A, =P M,‘f where ¢ runs over CQ,(V) for all n. Define
o™V — A,, given by

™ (v) = (¢ (V) peco,, (v)-

Then & is a well-defined completely contractive completely positive map. We show
that (&™), is an order isomorphism (onto its range). Let v € M, (V)s, be such that
(®™),(v) > 0. Then ¢, (v) € M, (Ma,)" forall ¢ € CQ,, (V). Let f € Q,, (V). Then
by Theorem 1.7, there exist ¢ € CQ,(V)(C CQ,,(V)) and § € M,2 | such that

F ) =8 ¢,(v)8 = 0.

Thus by condition (4), ve M,(V)*. Next, let ve M,(V)sa be such that
(®™), (v) =0. Then as above, +v € M, (V)* so that by condition (5), v =0. Thus
(®™),, is an order isomorphism for all n. Now set

A= @{Az,l :n €N} (the C*-direct sum).

Define ®:V — A given by ®(v) = (™ (v)), for all ve V. Then ® is a linear
completely contractive complete order isomorphism. We further show that ® is a
complete isometry. Let v € M, (V). Then

0 v
V¥ O]GMZn(V)sa-

Thus by condition (4) for given € > 0, there is an f € Q2, such that

N 1 S

By Theorem 1.7 there exist ¢ € CQ,,(V) and § € M ,,)2 | such that

([ )=o)
a*mn([,?* SD‘S "52”([3* SD

and since € > 0 is arbitrary, we conclude that (¢), is an isometry for all n. Now the
result is immediate. O

Since

=

‘ = lon W)l < lVln

DEFINITION 1.9. An operator space considered in Theorem 1.8 will be called a
C*-ordered operator space.
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Now we shall take another approach to examine C*-ordered operator spaces. To
begin with, we state the following improvement on a characterization theorem due
to Effros and Ruan [3]. A proof may be extracted from the proofs of Theorems 1.7
and 1.8.

PROPOSITION 1.10. Let V be an L*°-matricially *-normed space. Then there exist a
C*-algebra A and a completely isometric, self-adjoint, linear isomorphism ¢ : V— A.

THEOREM 1.11. Let V be an L*°-matricially x-normed space. Then there exists a
matrix order structure {M, (V) T} on it so that it is a C*-ordered operator space.

PROOF. By Proposition 1.10, there exist a C*-algebra A and a completely isometric,
self-adjoint, linear isomorphism ¢ : V. — A. For each natural number 7, set

My (V)" ={veMy(V)sa: f ou(v) > 0forall feQ,(A)).

It is routine to check that {M,(V)"} is a matrix order on V and that V™ is proper.
Moreover, since A is a C*-algebra, we also have

Ivlln = lgn ()] = sup{lf o ¢a (V)| : f € Qn(A)}.

Now, by construction, f o ¢, € Q,(V) for all f € Q,(A) so that ¢ has the required
properties to complete the proof. o

2. Order embedding and operator space duality

In this section we show that, in general, operator space duality is not suitable for C*-
ordered operator spaces. At the end, we describe a class of examples of C*-operator
spaces.

PROPOSITION 2.1. Let V be a C*-ordered operator space. Then for any n € N and
u, v, w e My(V)sa, withu <v <w,

lvlln < max{llulln, llwll,}.

In particular, given n € N and [zi MUZ] € Mo, (V)T for some v e M, (V) and uy, us €
M, ()t we have
lvll, < max{|luilln, [luzlln}.

PROOF. Let u, v, w € M(V)sa, with u <v < w for some n € N. Then given f €
0,(V) we have f(u) < f(v) < f(w). Thus by the definition, —|ul,, <|f ()| <
|lw|l, for all f € Q,(V). Now it follows that

lvlln = max{[lull, llwll,}.

] € M2, (V)™ for some v € M, (V) and uy, up € My (V)*. Then

| 0 0 v uy 0 +

Now by the first part, the result is immediate, for V' is an operator space. O

up v
v uy

Next, let [
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THEOREM 2.2. Let V be a nonzero C*-ordered operator space. If the operator space
dual V' of V is also a C*-ordered operator space, then V = C.

PROOF. Let f be a bounded self-adjoint linear functional on V. Since V is C*-
ordered, by Proposition 2.1 above and [4, Theorem 3.6.2], there are bounded positive
linear functionals g; and g> on V such that f = g; — go with ||g1|| + g2l < I f]l.
Then —gy < f < g1. Thus as V' is also C*-ordered, by Proposition 2.1, we get that
171l < max{ligi]l, llg2ll}. Therefore, llgi |l + llg2ll < max{llgi |, llg2]1}. It follows that
either g =0 or go = 0. In other words, (V')sa = (V/)* U (=(V/)™). Thus for any
f, g8 € (V)sa, either f < g or g < f. Consider

QW) ={feW)H :Ifl <1}

Then Q(V) is nonempty, weak*-compact and convex. Let e; and e> be any two
nonzero extreme points of Q(V). Then as above, these are comparable in (V')s,.
For definiteness, we may assume that ey < e;. If e1 # e, then

er=73(ex—e) + 3(e2+ey)

is a proper convex combination in Q(V). Since e; is an extreme point of C, we have
either %(62 —e1)=0or %(62 + e1) = 0. Since ¢; and e; are nonzero, we must have
e] = e3. In other words, Q(V) has a unique nonzero extreme point, say eg. Since 0
is also an extreme point of Q(V), for any f € Q(V) we get, by the Krien—-Milman
theorem, that f = keg for some k € [0, 1]. Then ||eg]| = 1. Now it is immediate that
V=C. a

The following result due to Blecher and Neal [1] is a special case of the above
result.

COROLLARY 2.3. The operator space dual of a nonscalar C*-algebra cannot be
order embedded in any C*-algebra.

REMARK 2.4. It will not be hard to show that the operator space dual of an L°°-
matricially *-normed space is again an L°°-matricially *-normed space. Thus the
operator space duality seems to have a problem with the relation with the matrix norm
and the matrix order. However, we are not in a position to comment on this at this
moment.

At the end we record that matrix order unit spaces (operator systems) are C*-
ordered operator spaces. More generally, every approximate matrix order unit space
is a C*-ordered operator space. The latter class includes the class of operator systems
and that of C*-algebras (unital or nonunital). These classes possess a structure richer
than that of C*-ordered operator spaces. We explain this as follows.

DEFINITION 2.5. We say that VT is generating if given v eV there exist
V0, V], V2, v3 € VT such that v = Zli:o v, where i2 = —1.
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It is proved in [7, Proposition 1.8] that V't is generating if and only if given v € V
there are u1, us € V1 such that [Zi uvz] € M>(V)™T and that in this case M, (V)T is
generating for all n. In this case, we say that (V, {M,(V)™1}) is a positively generated
matrix ordered space.

DEFINITION 2.6. Let (V, {M,(V)™}) be a positively generated matrix ordered space.
A norm || || on V will be called a Riesz norm if forall v € V,

ol = {max(||u1||, lual)) w1, w2 € V' and [Zi u”z] eMz<v>+}.

DEFINITION 2.7. An L®-matricially Riesz normed space (matrix regular operator
space [11]) is a positively generated matrix ordered space (V, {M,(V)*}) together
with a matrix norm {| ||} such that || ||, is a Riesz norm on M, (V) and M, (V)™ is
norm closed for all n and that (V, {|| ||,}) is an L°°-matricially normed space. It is
denoted by (V, {|l ll.}, {M,(V)T}). An L>®-matricially Riesz normed space is called
a C*-matricially Riesz normed space if it is also a C*-ordered operator space.

It follows, from Proposition 1.6 and Theorem 1.8, that an L°°-matricially Riesz
normed space can be order embedded in a C*-algebra if and only if it is a C*-
matricially Riesz normed space. Schreiner [11] proved that the operator space dual
of an L°°-matricially Riesz normed space is again an L°°-matricially Riesz normed
space. It follows, from Theorem 2.2, that, every L°°-matricially Riesz normed space
is not a C*-matricially Riesz normed space. However, the spaces we define below are
C*-ordered operator spaces.

DEFINITION 2.8. Let (V, {M,(V)"}) be a matrix ordered space. An increasing net
{e;} in VT is called an approximate order unit for V if for each v € V thereisak > 0
such that

[kve*k kle),\il € My(V)™  for some A.

In this case {e}} acts as an approximate order unit for M, (V) for all n, where
el =e, @ - - - @ e). Moreover, {e; } determines a matrix Riesz seminorm {|| ||,,} on V.
We call (V, {ex}) an approximate matrix order unit space if (V, {|| |l,}, {M,(V)T}) is
an L°-matricially Riesz normed space.

When ¢; = e for all A we drop the term ‘approximate’ in the above notions. For
example, (V, e) denotes a matrix order unit space. For details, refer to [9].

Let V be an approximate matrix order unit space. It follows, from Theorem 1.8
and [8, Proposition 1.20], that

My (V)sa = co(Qn (V) U (=Qu(V)))
for all n. Thus we may conclude with the following result.

PROPOSITION 2.9. An approximate matrix order unit space is a C*-matricially Riesz
normed space.
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