NEAR-RING HOMOMORPHISMS

Joseph J. Malone, Jr.

(received July 28, 1967)

1. Introduction. Blackett [4] introduced the concepts of near-ring homomorphism and near-ring ideal. Beidleman [1] established the fundamental homomorphism theorem and the isomorphism theorems for (left) near-rings obeying the condition that 0.a = 0 for every a in the near-ring. Several others, for example [3], [5], and [7], have taken up the study of ideals. This paper takes up the study of homomorphisms of (left) near-rings not subject to the condition 0.a = 0. It is shown that such homomorphisms can be decomposed into homomorphisms of two special sub-near-rings. Conversely, conditions are sought under which homomorphisms of the two sub-near-rings may be mated to produce a homomorphism of the near-ring.

We require the following theorem which is proved in [2].

Near-ring Decomposition Theorem. Let R be a near-ring Each $r \in R$ has a unique decomposition in each of the forms

$$0r + (-0r + r)$$
 and $(r - 0r) + 0r$.

Thus

$$R = R_z + R_c = R_c + R_z$$
,

where $R_c = \{p \mid p \in R, 0p = 0\}$ and $R_z = \{0r \mid r \in R\}$.

Therefore every near-ring may be expressed as a sum of its maximal sub-C-ring and its maximal sub-Z-ring.

2. Decomposition.

PROPOSITION 1. Let α be a near-ring homomorphism of R into N. Then the image of R c is a sub-near-ring of

Supported in part by NASA Grant NGR 44-005-037, Supplement 1.

Canad. Math. Bull. vol. 11, no. 1, 1968

 N_{c} and the image of R_{z} is a sub-near-ring of N_{z} .

<u>Proof.</u> It is known that the image of a near-ring is a near-ring. Let $r \in R_c$. Then the first assertion follows from

$$0(\alpha r) = (\alpha 0)(\alpha r) = \alpha(0r) = \alpha 0 = 0.$$

For the second assertion, recall that $p \in R_z$ if and only if there exists a $q \in R$ such that 0q = p, and consider

$$\alpha p = \alpha(0q) = (\alpha 0)(\alpha q) = 0(\alpha q).$$

In light of the near-ring decomposition theorem, we may say that a homomorphism from R to N is completely determined by its restrictions to R_c and R_z . So we may associate with each near-ring homomorphism of R a unique homomorphism pair; the first member of the pair being a near-ring homomorphism of R_c into N_c and the second member being a near-ring homomorphism of R_c into R_c

Let α_1 and α_2 be, respectively, near-ring homomorphisms of R_c into N_c and R_z into N_z . If these are to be the restrictions of some near-ring homomorphism α , then α must be such that

$$\alpha \mathbf{r} = \alpha (\mathbf{c} + \mathbf{z}) = \alpha \mathbf{c} + \alpha \mathbf{z} = \alpha_1 \mathbf{c} + \alpha_2 \mathbf{z}, \quad \mathbf{c} \in \mathbf{R}_{\mathbf{c}} \quad \text{and} \quad \mathbf{z} \in \mathbf{R}_{\mathbf{z}}.$$

Moreover, the mapping is defined unambiguously. For if c+z=z+d, $d \in R_c$, then

$$\alpha(z + d) = \alpha(z + d - z + z) = \alpha(c + z).$$

When we speak of the map (and possible homomorphism) α on R to N arising from the pair α_1 and α_2 , we use the notation $\alpha = [\alpha_1, \alpha_2]$ and me an the map defined by

$$\alpha r = \alpha_1 c + \alpha_2 z$$
, where $r = c + z$, $c \cdot R_c$ and $z \in R_z$.

3. An example. The following example shows that a homomorphism pair need not give rise to a homomorphism.

Let (R, +) be the group of order 8 with generating relations

$$4a = 2b = 0$$
, $b + a = 3a + b$.

For $x, y \in R$ define multiplication by

$$x. y = \begin{cases} 0, & y \in \{0, 2a, 3a + b, a + b\} \\ 2a + b, & y \in \{a, 3a, b, 2a + b\}. \end{cases}$$

Then (R, +, .) is a near-ring with $R_c = \{0, 2a, 3a + b, a + b\}$ and $R_z = \{0, 2a + b\}$. On R_c consider the automorphism α_1 which fixes 0 and a + b and permutes 3a + b and 2a. On R_z take the identity map as α_2 . If $\alpha = [\alpha_1, \alpha_2]$ is a near-ring homomorphism, we have

$$\alpha b = \alpha(2a + (2a + b)) = \alpha_1(2a) + \alpha_2(2a + b)$$

$$= (3a + b) + (2a + b) = a$$
and
$$\alpha b = \alpha((2a + b) + 2a) = \alpha_2(2a + b) + \alpha_1(2a)$$

$$= (2a + b) + (3a + b) = 3a.$$

Thus $[\alpha_1, \alpha_2]$ is not a near-ring homomorphism.

4. Conditions on the pair. The α of the example failed to be a homomorphism because it did not behave properly on an element of the form z + c. The following proposition shows that this is, indeed, a critical question.

PROPOSITION 2. A necessary and sufficient condition that $\alpha = [\alpha_1, \alpha_2]$ preserves addition is that

$$\alpha(z + c) = \alpha_2 z + \alpha_1 c$$
, $z \in R_z$ and $c \in R_c$.

<u>Proof.</u> Of course, if α preserves addition the implication is trivial.

Assume the stated equality. Recalling that $(R_c, +)$ is normal in (R, +), we see that

$$\alpha \mathbf{r}_{1} + \alpha \mathbf{r}_{2} = \alpha_{1} \mathbf{c}_{1} + \alpha_{2} \mathbf{z}_{1} + \alpha_{1} \mathbf{c}_{2} + \alpha_{2} \mathbf{z}_{2}$$

$$= \alpha_{1} \mathbf{c}_{1} + \alpha(\mathbf{z}_{1} + \mathbf{c}_{2}) + \alpha_{2} \mathbf{z}_{2}$$

$$= \alpha_{1} \mathbf{c}_{1} + \alpha((\mathbf{z}_{1} + \mathbf{c}_{2} - \mathbf{z}_{1}) + \mathbf{z}_{1}) + \alpha_{2} \mathbf{z}_{2}$$

$$= \alpha_{1} \mathbf{c}_{1} + \alpha_{1} (\mathbf{z}_{1} + \mathbf{c}_{2} - \mathbf{z}_{1}) + \alpha_{2} \mathbf{z}_{1} + \alpha_{2} \mathbf{z}_{2}$$

$$= \alpha_{1} (\mathbf{c}_{1} + \mathbf{z}_{1} + \mathbf{c}_{2} - \mathbf{z}_{1}) + \alpha_{2} (\mathbf{z}_{1} + \mathbf{z}_{2})$$

$$= \alpha(\mathbf{c}_{1} + \mathbf{z}_{1} + \mathbf{c}_{2} + \mathbf{z}_{2}) = \alpha(\mathbf{r}_{1} + \mathbf{r}_{2}).$$

Thus, preservation of addition follows from the given special case.

PROPOSITION 3. A necessary and sufficient condition that $\alpha = [\alpha_1, \alpha_2]$ preserves multiplication, given that α preserves addition, is that

$$\alpha(rd) = (\alpha r)(\alpha_1 d), r \epsilon R, d \epsilon R_c$$

Proof. Assume the equality holds and compare

$$\alpha(\mathbf{r}_{1}\mathbf{r}_{2}) = \alpha((\mathbf{c}_{1} + \mathbf{z}_{1}) \mathbf{c}_{2} + \mathbf{z}_{2})$$
$$= \alpha((\mathbf{c}_{1} + \mathbf{z}_{1})\mathbf{c}_{2}) + \alpha_{2}\mathbf{z}_{2}$$

with
$$(\alpha r_1)(\alpha r_2) = (\alpha_1 c_1 + \alpha_2 z_1)(\alpha_1 c_2) + \alpha_2 z_2$$
.

Then, by the equality, $\alpha(r_1r_2) = (\alpha r_1)(\alpha r_2)$.

5. Another example. In order to show that the above conditions may be fulfilled, we indicate a type of near-ring for which every homomorphism pair gives rise to a homomorphism.

Start with any C-ring R_c and any Z-ring R_z . Let (R,+) be the direct sum of $(R_c,+)$ and $(R_z,+)$. Then $(R_z,+)$ is normal in (R,+) and c+z=z+c for every $c \in R_c$ and $z \in R_z$. Define multiplication in R by

$$r_1 \cdot r_2 = (c_1 + z_1)(c_2 + z_2) = c_1c_2 + z_2$$

It is easily checked that multiplication in R is associative and left-distributive over addition. For some N, let α_1 and α_2 have the usual meaning. It is easy to see that $\alpha = [\alpha_1, \alpha_2]$ is a near-ring homomorphism of R into N.

6. Homomorphisms on C- and Z- rings. In view of the decomposition of near-ring homomorphisms, it is appropriate to look at homomorphisms between C-rings and homomorphisms between Z-rings.

The case for Z-rings is easily treated. Let Z_1 and Z_2 be two Z-rings and let β be a homomorphism on $(Z_1,+)$ to $(Z_2,+)$. Note that

$$\beta(w.z) = \beta z = \beta w.\beta z, w, z \varepsilon Z_1$$

Thus any homomorphism on the additive group is a near-ring homomorphism. The following proposition shows that no such sweeping answer is possible for C-rings.

PROPOSITION 4. Let (G, +) and (H, +) be groups and let α be a group homomorphism from G onto H. It is possible to define multiplications on G and H so that (G, +, .) and (H, +, .) are near-rings and α is a near-ring homomorphism.

<u>Proof.</u> Let K be the (group) kernel of α and identify H with G/K. A multiplication on G is needed so that K becomes a near-ring ideal. Recall from [4] that a subset N of a

near-ring R is an ideal if and only if

- 1) (N, +) is a normal subgroup of (R, +),
- 2) RN ⊆ N,

and

3)
$$(r_1 + n)r_2 - r_1 r_2 \epsilon N$$
, r_1 and $r_2 \epsilon R$, $n \epsilon N$.

K, of course, satisfies 1) regardless of the multiplication used.

On G define a multiplication so that

$$\mathbf{x.y} = \begin{cases} 0 & \mathbf{x} \in \mathbf{K} \text{ and } \mathbf{y} \in \mathbf{G}, \\ \mathbf{y} & \mathbf{x} \in \mathbf{G} - \mathbf{K} \text{ and } \mathbf{y} \in \mathbf{G}. \end{cases}$$

With this multiplication (G, +, .) is a near-ring (see [6]). Also, condition 2) is immediate for K. Next,

$$(g_1 + k)g_2 - g_1g_2 = 0 - 0 = 0 \varepsilon K,$$
 $g_1 \varepsilon K,$ $g_2 - g_2 = 0 \varepsilon K,$ $g_3 \varepsilon G - K$

Hence K is an ideal under this multiplication and G/K is a near-ring.

Lastly, to specifically show that α preserves multiplication, consider (keeping in mind that (G, +, .) is a C-ring)

$$\alpha(xy) = \alpha 0 = \alpha x \cdot \alpha y$$
, $x \in K$ and $y \in G$,
= $\alpha y = \alpha x \cdot \alpha y$, $x \in G - K$ and $y \in G$.

REFERENCES

- 1. J.C. Beidleman, On near-rings and near-ring modules, Doctoral Dissertation, The Pennsylvania State University, 1964.
- 2. G. Berman and R. J. Silverman, Near-rings, Amer. Math. Monthly, 66 (1959), 23-34.

- 3. G. Betsch, Ein Radikal für Fastringe, Math. Z. 78 (1962), 86-90.
- 4. D. W. Blackett, Simple and semisimple near-rings, Proc. Amer. Math. Soc. 4 (1953), 772-785.
- 5. R.R. Laxton, A radical and its theory for distributively generated near-rings, J. London Math. Soc. 38 (1963), 40-49.
- 6. J.J. Malone, Jr., Near-rings with trivial multiplications, Amer. Math. Monthly 74(1967), 1111-1112.
- 7. A.P.J. van der Walt, Prime ideals and nil radicals in near-rings, Arch. Math. 15 (1964), 408-414.

Texas A and M University