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The fundamental theorem of projective geometry states that every line-preserving
bijection of a Desarguesian projective plane is induced from a semilinear
transformation. This theorem extends to higher-dimensional projective spaces and
has an affine version, possibly due to Darboux, which states that every line-preserving
bijection of an affine space is composed of a linear transformation and a translation
and a mapping induced by an automorphism of the underlying field. In the 1800s,
properties of maps such as conformal and Möbius transformations were worked out
and, in particular, Liouville showed that sufficiently smooth conformal mappings of
the real plane arise from the action of the conformal group. (Liouville’s contribution is
discussed in [4].) In the 1950s and 1960s more work was done on conformal mappings
and the regularity assumptions of Liouville’s theorem were relaxed by analysts such
as Gehring [5] and Rešetnjak [8]: theorems were proved about conformal mappings
defined on open subsets of Euclidean space, rather than on the whole space or the
one-point compactification of the whole space. Earlier, in the 1930s, Carathéodory [2]
had considered maps of spheres preserving circles in the spheres, and maps of subsets
of the sphere preserving arcs as well. Maps of subsets of the real plane preserving
line segments do not seem to have been considered until quite recently (except that
mappings of the disc that preserve line segments can be interpreted as mappings of the
Klein model of the hyperbolic plane that preserve geodesics; it was apparently well
known that these come from the isometry group of the hyperbolic plane).

In the 1970s, Tits [9] extended the fundamental theorem of projective geometry
to buildings, a combinatorial construction. He associated ‘spherical buildings’ to
semisimple groups over arbitrary fields, and showed that certain bijections of the
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spherical building of rank at least two associated to a semisimple group G come from
the action of G, possibly composed with a mapping induced by an automorphism of the
underlying field; namely, the bijections that preserves the fibrations of the building
associated to the fibrations of G by the cosets of parabolic subgroups P containing a
fixed minimal parabolic subgroup P0.

A little later, Mostow [7] considered certain mappings of G/P0 in the proof of his
‘rigidity theorem’, and showed that these come from the action of the group G; this
involved real Lie groups only. In the 1990s, others, including Gromov and Schoen [6]
and Corlette [3], extended Mostow’s ideas using geometric tools such as harmonic
mappings; some of these extensions dealt with local fields. At around the same time,
in the case of real Lie groups, Yamaguchi [10] proved that smooth, locally defined
mappings of the spaces G/P that preserved the fibrations considered by Tits also arise
from the action of the group G.

This thesis unifies the geometric themes of the classical authors with the group-
theoretic approach of Tits. Associated to the classical real Lie groups G, there are
spaces of the form G/P for some parabolic subgroup P of geometric significance;
for example, some G/P are quasi-spheres. We consider bijections of these spaces that
preserve their geometry, such as transformations of quasi-spheres that preserve quasi-
circles, and show geometrically that these arise from the G-action. Thus, Tits’ results
follow from purely geometric considerations. However, we do more: we prove local
versions of these theorems (along the lines of the result of Carathéodory mentioned
above) and thereby generalize the work of Yamaguchi. Moreover, we prove local
theorems over arbitrary nondiscrete fields, thereby extending theorems that seem to
rely on real differential geometry into a much broader context. Indeed, our work seems
to hint that there might be some form of ‘topological geometry’ that lies between
algebraic geometry and differential geometry.

Some recent work was important for this thesis. In [1], Čap et al., using an argument
that involves order, show that maps of open sets in the plane that preserve collinearity
come from projective transformations. We show that this implies a local version of
Tits’ ‘fundamental theorem of projective geometry’ for the group SL(3, R). In this
thesis, we give an alternative proof of the collinearity-preserving result that works for
an arbitrary nondiscrete topological field.

Part I of this thesis includes a review of the ‘fundamental theorem of projective
geometry’ over the real and complex numbers R and C, as well as the quaternions H.
Both global and local theorems are discussed; the former are well known but the latter
are new. In some sense, the key result is that a mapping defined on open subsets of
the real plane, that preserve line segments, and whose range has sufficiently many
points in general position, is a projective mapping. We include two proofs of this: the
proof of Čap et al. [1] and the present author’s own proof. In Part II, we consider
extensions to other classical groups. Here there are a number of key geometric
results. One result, which extends Carathéodory’s theorem, is that mappings that
send quasi-circles into quasi-circles come from the group G. In this part, we also
consider flag manifolds appropriate to the various classical groups and show how the
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extension of Carathéodory’s theorem can be interpreted as a result about mappings of
a flag manifold.

Part III of the thesis deals with nondiscrete topological fields, and more general
rings, including adeles. We extend many of the results for classical Lie groups and
geometries into this generality. The major result here is both topological and algebraic
in nature: ‘local homomorphisms’ extend to global homomorphisms. This enables
us to extend the local version of the fundamental theorem of projective geometry to
topological fields and division rings and even some rings that are not division rings.
Finally, in Part IV, we consider some results where the hypotheses involve measurable
sets rather than open sets.
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