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This paper documents and discusses the structure and Reynolds number scaling of
the viscous sublayer in front of a cylinder–wall junction. The data were obtained by
large-eddy simulation and particle-image velocimetry in an open channel at cylinder
Reynolds numbers of ReD = 20 000, 39 000 and 78 000. We distinguish between outer
and inner flow regions. The outer region covers the downflow, the horseshoe vortex and
an upstream-directed near-wall jet in front of the cylinder. When normalized with the bulk
velocity and the cylinder diameter, the dynamics of the outer flow depends only weakly
on the Reynolds number in the investigated range. The inner region is the thin laminar
sublayer developing along the bottom wall under the near-wall jet. In the region of the
maximum wall shear stress, the amplitude of the friction coefficient and the inner layer
thickness both scale with the inverse of the square root of the cylinder Reynolds number.
The velocity profiles in the inner layer can be approximated well by Falkner–Skan profiles,
scaled by the thickness of the inner layer and the velocity at the interface between the inner
and outer layers. Even when the pressure gradient parameter of the Falkner–Skan profiles
was estimated by outer flow variables, a good match between velocity profiles in the inner
layer and the corresponding Falkner–Skan solutions is observed in the region of maximal
wall shear stress. In the whole region of the upstream directed wall jet, the wall shear
stress can be estimated from these Falkner–Skan profiles with an accuracy between 10 %
and 20 %.
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U. Jenssen and others

1. Introduction

We study the flow around a wall-mounted circular cylinder, which is of relevance
for various technical applications and problem classes in hydraulic engineering,
turbomachinery and aeronautics. This flow has a lot in common with flows around more
generally shaped bluff bodies mounted on a flat plate. When a turbulent boundary layer
approaches such a bluff body, a characteristic vortex system develops at the body–wall
junction. This vortex bends around the obstacle and is, therefore, called a horseshoe vortex
(Melville & Raudkivi 1977; Baker 1980). The horseshoe vortex is commonly assumed to
govern the dynamics of body–wall junction flows and has been demonstrated to drive the
local scour development, e.g. around bridge piers (see for example Dargahi 1990). As
many bridge failures were caused by scoured foundations (Imhof 2004), a large number of
investigations were devoted to exploring the dynamics of the horseshoe vortex system in
the context of scouring (for example by Das, Das & Mazumdar 2013).

The shear in the boundary layer approaching a wall-mounted bluff body generates a
vertical pressure gradient at its front. This pressure gradient, in turn, causes a downflow
transporting fluid of high momentum towards the bottom wall where it is deflected mainly
in the upstream direction, and forms the horseshoe vortex as well as an upstream-directed
wall-parallel jet (Devenport & Simpson 1990). This jet develops from the position where
the downflow impinges at the bottom wall, passes under the horseshoe vortex and
penetrates under the oncoming flow, see figure 1.

The horseshoe vortex is characterized by a complicated dynamics (see e.g. Devenport &
Simpson 1990 or Apsilidis et al. 2015). These dynamics causes strongly enhanced levels
of turbulent kinetic energy (TKE) around the horseshoe vortex core and bi-modal velocity
distributions between the vortex core and the wall. Between the cylinder and the horseshoe
vortex, where the wall shear stress attains its maximum values, the TKE itself is relatively
small (Schanderl et al. 2017b). There is a thin layer in which the production of TKE is
negative due to the normal stress production term −〈u′u′〉∂〈u〉/∂x, 〈(.)〉 being the average
and (.)′ being the fluctuation. Furthermore, turbulent stresses play a minor role in the
momentum transport towards the wall (Schanderl, Jenssen & Manhart 2017a). According
to these findings, it appears unlikely that the wall shear stress can be assessed accurately
by measuring turbulent stresses or by applying a wall model relying on the logarithmic law
of the wall. Numerical studies solved this problem by employing a high spatial resolution
in the wall-normal direction around the cylinder (Kirkil, Constantinescu & Ettema 2009;
Escauriaza & Sotiropoulos 2011; Schanderl & Manhart 2016).

The high wall-normal resolution applied in the mentioned numerical studies leads to
a ‘wall-resolved’ simulation in which the wall shear stress can be computed from the
first grid points off the wall which have to lie within the viscous layer. In contrast, a
wall-modelled simulation applies a coarser grid spacing and estimates the wall shear stress
by assuming a certain functional dependence, such as the law of the wall. Both simulation
strategies – wall resolved and wall modelled – suffer from problems and open questions.
Wall-resolved simulations experience a severe challenge for large Reynolds numbers due
to ever finer grids near the wall. Furthermore, it is still unclear how the requirements
for the wall-normal resolution scale with Reynolds number. According to the classical
estimation by Chapman (1979), O(Re1.8) degrees of freedom have to be resolved for the
representation of the dynamics of the inner layer. However, this estimate is based on the
assumption of the classical turbulent boundary layer scaling. Schanderl et al. (2017a)
demonstrated that the stress balance in the wall layer does not follow the classical near-wall
scaling, which has two consequences. First Chapman’s estimation does not apply here.
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Figure 1. Sketch of the horseshoe vortex system.

Second, the wall-modelled simulations based on the logarithmic law of the wall will not
perform well in this situation.

The failure of the logarithmic law of the wall can be taken as an explanation
for the difficulties in determining experimentally the wall shear stress from velocity
measurements in front of a cylinder–wall junction. Graf & Istiarto (2002) showed
that the wall shear stress estimations based on velocities and Reynolds stresses differ
strongly there. In this light, Manes & Brocchini (2015) have chosen a different approach
using the phenomenological theory of turbulence. For negligible viscous stresses,
they argue that the friction coefficient in an equilibrium scour hole scales with the
cubic root of the ratio of the grain diameter to the characteristic length scale of
the largest eddies. This argument is certainly reasonable for rough surfaces in the
high Reynolds number limit in which the friction coefficient depends on the relative
roughness only. However, many experiments and simulations have been performed at
lower Reynolds numbers and over smooth walls. The understanding, quantification and
simulation of the scour process in natural and laboratory scenarios is therefore limited
by the little available information on the Reynolds number dependence of the wall
shear stress. In view of the failure of the logarithmic law of the wall in large parts
of the wall jet under the horseshoe vortex, it seems important to us to study the
near-wall behaviour of the velocity profiles with emphasis on their Reynolds number
dependence.

Published results indicate that different topologies of the horseshoe vortex system occur
dependent on the Reynolds number. At low Reynolds numbers, two or more horseshoe
vortices (train of vortices) have been observed (Dargahi 1989; Doligalski, Smith & Walker
1994; Launay et al. 2017). With increasing Reynolds number, this vortex configuration
becomes unsteady and can show a chaotic dynamics (Launay et al. 2017). At high Reynolds
numbers, the time-averaged horseshoe vortex system consists of a single dominant vortex
(Devenport & Simpson 1990; Apsilidis et al. 2015; Schanderl et al. 2017b). The appearance
of the individual regimes seems to be dependent on the Reynolds number based on
cylinder diameter, the boundary layer-to-diameter and water depth-to-diameter ratios
(Launay et al. 2017) and the turbulence in the approaching flow (Kirkil & Constantinescu
2015).
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The Reynolds number dependence of the turbulence structure around the horseshoe
vortex shows no common trend. The simulations of Escauriaza & Sotiropoulos (2011)
reveal strong changes between Re = 2 · 104 and Re = 3.9 · 104. In the simulations at
Re = 1.6 · 104 and Re = 5 · 105 by Kirkil & Constantinescu (2015) the normalized
turbulence level around the horseshoe vortex decreases strongly with Reynolds number.
They explain this with the fact that the horseshoe vortex moves closer to the wall with
increasing Reynolds number in their simulations. They also conjecture that a realistic
representation of the turbulence in the approaching flow suppresses secondary vortices
around the horseshoe vortex. In an experimental study Apsilidis et al. (2015) measured
flow fields in the symmetry plane in front of a cylinder at three different Reynolds
numbers (Re = 2.9 · 104, 4.7 · 104 and 1.23 · 105). The measured flow topology is in
line with published results except that they did not resolve the corner vortex directly at
the cylinder–wall junction. They did not observe a clear Reynolds number dependence
of the position of the horseshoe vortex. However, they observed a clear dependence of
the distribution of the TKE on the Reynolds number. At the larger Reynolds numbers, the
intensity of a second peak of the TKE (beside the one around the vortex core) under the
horseshoe vortex increases, which was also reported by Kirkil & Constantinescu (2015).
This peak is caused by the near-wall jet pointing in the upstream direction under the
horseshoe vortex (Apsilidis et al. 2015; Kirkil & Constantinescu 2015; Schanderl et al.
2017b).

Despite the large amount of literature on the Reynolds number dependence of the
topology of the horseshoe vortex system, its dynamics and turbulence structure, knowledge
of the behaviour in the immediate wall layer is limited. The open questions include the
following. How is the time-averaged wall shear stress linked to Reynolds shear stresses
above the wall? How does the time-averaged wall shear stress scale with Reynolds
number? Which resolution do we need to accurately estimate the wall shear stress and
how does it scale with Reynolds number? What is the thickness of the viscous layer and
how does it scale with Reynolds number? Is a classical wall model suited to estimate the
wall shear stress from velocities at a larger wall distance? Can we find universal behaviour
in the viscous layer or even self-similar velocity profiles? How can we construct a better
wall model for the flow in front of the cylinder?

To answer these questions, we investigate the Reynolds number dependence of the
near-wall flow by conducting both large-eddy simulation (LES) and particle-image
velocimetry (PIV) experiments in front of a wall-mounted cylinder placed in an open
channel. We used three moderate Reynolds numbers to study the Reynolds number scaling
of the wall shear stress and the near-wall velocity profiles. Our working hypothesis is that
the flow can be split into an outer and an inner flow. From the classical description of
turbulent boundary layers, the outer flow depends only weakly on the Reynolds number,
whereas this dependence is strong for the inner flow due to the dominance of the viscous
terms. Based on the results of Apsilidis et al. (2015) and the observation that the viscous
terms play a negligible role around the horseshoe vortex (Schanderl et al. 2017a), we can
expect that the horseshoe vortex belongs to the outer flow, which is only mildly dependent
on the Reynolds number in the range considered in this investigation. The validity of
this assumption will be assessed in this paper as it is the basis for a clear inner layer
scaling.

The paper is organized as follows, first, § 2 presents the flow configuration, while the
experimental and the numerical set-ups are documented in §§ 3 and 4, respectively. The
outer flow (vortex system, downflow) in front of the wall-mounted cylinder are briefly
discussed in § 5. Finally in § 6, the resulting near-wall flow and the wall shear stress are
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Figure 2. Sketch of the flow configuration taken from Schanderl et al. (2017b).

documented before a detailed analysis concerning the applicability of the Falkner–Skan
theory is presented.

2. Flow configuration

We investigated the flow around a circular cylinder mounted vertically on the bottom wall
of an open channel (figure 2). The centre of the coordinate system is placed in the cylinder
axis at the height of the bottom wall. The streamwise, lateral and vertical directions are
denoted by (x, y, z), respectively. We considered three Reynolds numbers, ReD = 20 000,
ReD = 39 000 and ReD = 78 000 based on the diameter of the cylinder D and the velocity
averaged over the entire cross-section of the approaching flow (bulk velocity ub). The flow
depth was h = 1.5D for all three Reynolds numbers. However, the ratio of the width of
the channel w to the diameter D had to be adjusted for the highest Reynolds number.
The width was w = 11.7D at ReD = 20 000 and ReD = 39 000 and w = 7.3D at ReD =
78 000. This adjustment resulted from experimental constraints: in the experiment, the
absolute width of the flume was fixed but the large Reynolds number required a larger
flow depth to keep the Froude number Fr = ub/

√
gh low. Since the flow depth-to-diameter

ratio was considered to have a larger influence on the flow field around the cylinder than
the width-to-diameter ratio (Istiarto 2001; Oliveto & Hager 2002), we kept the first one
constant while the latter was changed for the highest Reynolds number case. To assess
the influence of the width-to-diameter ratio, we simulated the ReD = 20 000 flow case for
both widths 11.7D and 7.3D individually and observed only minor differences; they were
significantly smaller than the changes with Reynolds number. Therefore, we consider the
lower aspect ratio at ReD = 78 000 to have a negligible effect for the orientation of this
study. The inflow condition was a fully developed, turbulent open-channel flow with a
Froude number of Fr < 0.32 in the experiments. In contrast, the Froude number in the
simulations was infinitesimal, as the free surface was approximated by a slip boundary
condition, which prevented all deformations of the free surface.

Our flow configuration was identical to the one described in detail by Schanderl
& Manhart (2016, 2017) and Schanderl et al. (2017a,b, 2018). The particular
depth-to-diameter ratio at ReD = 39 000 was selected to be consistent with previous
experiments by Link (2006), Pfleger (2011a) and Pfleger, Rapp & Manhart (2010, 2011).
The set-up is close to the configuration investigated by Dargahi (1989), Escauriaza &
Sotiropoulos (2011) and Apsilidis et al. (2015), which differs from ours in the ratio of
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Figure 3. Sketch of the experimental configuration, taken from Pfleger (2011b).

boundary layer thickness to cylinder diameter. However, they were performed in the same
range of Reynolds numbers.

3. Experimental configuration

The PIV experiments were conducted in the laboratory of the Chair of Hydromechanics
at the Technical University of Munich. The flow configuration was reproduced in a 1.17 m
wide and 30 m long flume (figure 3) with a smooth bed and sidewalls. The flow developed
naturally over approximately 20 m approaching a circular cylinder placed vertically in the
symmetry plane of the flume. At ReD = 20 000 and ReD = 39 000, the diameter of the
cylinder was D = 0.10 m and D = 0.16 m at ReD = 78 000. Thus, the undisturbed inflow
length changed from 200D for ReD = 20 000 and ReD = 39 000 to 125D at ReD = 78 000.

We employed two-dimensional two-component PIV in the symmetry plane in front of
the cylinder. Hollow glass spheres of diameter dp = 10 µm and density ρp = 1100 kg m−3

were added continuously to seed the flow. The corresponding relaxation time of τp =
d2

pρp/(18νρ) = 6.1 · 10−6 s (Raffel et al. 2007) was three orders of magnitude smaller
than the Kolmogorov time scale obtained by the macro-scale estimation of the dissipation
rate of the TKE εmacro = u3

b/D (Pope 2011). Thus, the particles behaved as a passive
tracer following the flow reasonably well, where ub is the depth-averaged velocity in the
symmetry plane of the undisturbed flow, ρ the water density and ν = 1.05 · 10−6 m2 s−1

the kinematic viscosity of the water at a temperature of approximately 18 ◦C.
We used a Nd:YAG laser with a wavelength of 532 nm for the illumination. The light

sheet had a thickness of 2 mm in the spanwise direction and entered the flow from the top
through a slat of acrylic glass, suppressing surface waves. The image pairs were recorded
by a CCD camera with a resolution of 2048 × 2048 px perpendicularly from the side with
a time delay of 700 µs at ReD = 20 000 and ReD = 39 000 and 850 µs for ReD = 78 000.
The pixel size varied between 36.86 µm px−1 and 36.29 µm px−1. The sampling rate of
7.25 Hz was too low to resolve the temporal evolution of turbulent structures. Hence, we
analysed the flow only at the time-averaged level. The images were evaluated by a standard
PIV algorithm with interrogation windows of 16 × 16 px in size and an overlap of 50 %. In
case of the detection of an invalid velocity vector, this individual 16 × 16 px interrogation
window was replaced by the corresponding 32 × 32 px interrogation window with the
same position of the window centre. The number of image pairs and the data resolution
are listed in table 1.
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ReD

Data points
per diameter

Pixel per
diameter f-number Focal length

Recorded
image pairs Valid vectors

20 000 339 2713 2.8 105 mm 20 000 18 500
39 000 339 2713 2.8 105 mm 27 000 24 000
78 000 551 4409 5.6 105 mm 45 822 39 000

Table 1. Data resolution and recorded image pairs of the conducted PIV. The numbers of valid velocity
vectors refer to the numbers which were achieved in wide regions of the flow.

The standard PIV evaluation was complemented by a single-pixel method (Westerweel,
Geelhoed & Lindken 2004; Kähler, Scholz & Ortmanns 2006; Strobl 2017). This
single-pixel PIV (SPPIV) is not based on interrogation windows but provides an
ensemble-averaged velocity vector at every individual pixel, which tremendously increases
the spatial resolution. The larger data resolution allowed an evaluation of the wall shear
stress by resolving the velocity gradient at the wall. The drawback of the SPPIV approach
is a larger statistical scatter in the data.

The error in a SPPIV consists of the statistical error (dependent on the number of
samples), the numerical error while determining the moments of the correlation functions
and the uncertainty in the pixel size and wall position. In a SPPIV, the number of samples
is obtained by the number of image pairs multiplied by the average number of particles
per pixel (p.p.p.) which was Nppp ≈ 0.007 p.p.p. in our measurements. We increased
the number of samples by using the symmetric double correlation technique (Avallone
et al. 2015) and by averaging the correlation functions over five pixels in streamwise
direction, which resulted in an average number of 1950 samples per data point. This
compiles in a statistical root-mean-square deviation in the computed average velocity of
approximately 2 % of its standard deviation. One has to take into account as well the
errors from the integration of the moments from the correlation function. These errors
are strongly dominated by the noise at the edges of the evaluation window (Strobl 2017)
which decays with the square root of the number of images taken. However, its influence
on the computed moments of the velocity probability density function (PDF) depends on
the size and placement of the PDF in the evaluation window. Therefore, this error can
hardly be evaluated a priori. We will give a visual impression of this error in § 6.1.

4. Computational configuration

The numerical datasets were collected by conducting LESs at the three Reynolds numbers
20 000, 39 000 and 78 000. In the following, the numerical methods are described (section
4.1) and the adjustments of the grids to account for the individual Reynolds numbers are
discussed. The influence of the subgrid-scale stress model on the solution is documented
in § 4.2. A further validation of the numerical results is presented in § 6.1 by demonstrating
that the wall shear stress converges when the grid was refined.

4.1. Numerical method and computational grids
Our in-house code MGLET employs a finite volume discretization on Cartesian grids
with a staggered arrangement of variables. Central differences were used for the spatial
approximation, a third-order Runge–Kutta scheme for the time integration and zonally
embedded grids for local grid refinement (Manhart 2004). The curved surface of
the cylinder was represented by a mass-conserving second-order ghost-cell immersed
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Figure 4. Side view of the computational domain. The embedded grids are highlighted in grey. The embedded
grid 1 extends over the entire width of the channel while grids 2 and 3 cover a quadratic area of the x–y-plane.

ReD

Cells per diameter
horizontal/vertical

Grid spacing
Δx+/Δy+/Δz+

wall Grid cells
Sampling

time

20 000 148/571 7.0/7.0/1.8 166 · 106 900D/ub
39 000 250/1000 7.4/7.4/1.9 400 · 106 700D/ub
78 000 440/1778 7.8/7.8/1.9 1.6 · 109 570D/ub

Table 2. Grid resolution in the region of interest around the cylinder and sampling time. The wall shear stress
applied for the evaluation of the wall units was taken from the corresponding approaching flow.

boundary method (Peller et al. 2006; Peller 2010). The subgrid-scale stresses were
modelled using the wall-adapting local eddy viscosity (WALE) model (Nicoud & Ducros
1999). In this approach, the eddy viscosity decreases towards the wall and the Reynolds
stresses show correct asymptotic behaviour. Hence, no damping function had to be applied,
which facilitates the use of an immersed boundary method.

The fully developed, turbulent open-channel flow was simulated on a precursor grid with
periodic boundary conditions in the streamwise direction. A one-way coupling to this grid
supplied the inflow condition for the grid containing the cylinder. We have chosen this
approach as it is practically impossible to supply instantaneous velocity data at the inflow
plane by measurements. We used great care to obtain a satisfying accordance between
the simulated and the measured inflow in a statistical sense, see § 5.1. The free surface
of the open channel was modelled by a slip boundary condition; thus preventing surface
deformations. This corresponds to the limit Fr → 0. The sidewalls and the bottom wall of
the channel were represented by a no-slip boundary condition. The ReD = 39 000 case was
used to design the grid. To achieve the required grid resolution, we successively refined the
region around the cylinder until no substantial changes could be observed in the results,
especially in the wall shear stress. This state was reached with three locally embedded grids
(figure 4), which corresponded to a total refinement factor of eight compared to the global
grid. In addition, the base grid was geometrically stretched in the wall-normal direction
by less than 1 %, which results in a stretching factor smaller than 0.1 % of the finest grid
level. We applied constant time steps which resulted in Courant–Friedrichs–Lewy numbers
below 0.8 on the finest grids. The minimum simulated time to obtain representative
estimates for the first and second statistical moments was 570D/ub (table 2).

The reliability of the ReD = 39 000 simulation was assessed by Schanderl & Manhart
(2016), the near-wall stress balance is documented by Schanderl et al. (2017a) and the
turbulence structure of the horseshoe vortex is presented by Schanderl et al. (2017b, 2018).
We scaled the grids for ReD = 20 000 and ReD = 78 000 to maintain the spatial resolution
in inner units (based on the wall shear stress of the approaching flow) and we observed the
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Figure 5. Time-averaged turbulent viscosity 〈νt〉 taken from three different LESs with different grid resolution
(a) and contributors to the stress balance ν〈∂u/∂z〉, 〈νt∂u/∂z〉 and −ρ〈u′w′〉 taken from the simulation with
the finest grid LES78k #3 (b) in the z direction (wall normal) at x/D = −0.76 corresponding to the horseshoe
vortex centre at ReD = 78 000. The wall shear stress was taken from the simulation with the finest grid LES78k
#3 to evaluate z+.

same convergence behaviour. The grid spacings of the finest local grids at each individual
Reynolds number are listed in table 2.

4.2. Influence of the subgrid-scale stress model
Figure 5(a) illustrates the ratio of the time-averaged modelled (subgrid-scale) viscosity
to the molecular viscosity 〈νt〉/ν as a function of the z direction (wall normal) in front
of the cylinder for ReD = 78 000. Here, 〈·〉 stands for the time-averaging operator. The
streamwise position x/D = −0.76 corresponds to the centre of the horseshoe vortex V1;
〈νt〉 was evaluated for three different simulations: LES78k #1, #2 and #3 used one, two and
three zonal grid refinements, respectively. The finest grid spacing was four times smaller
than the one of LES78k #1. The inner normalization is indicated by (·)+. To facilitate the
mutual comparison, the wall units used for normalizing the wall distance are based on the
wall shear stress from the simulation with the finest grid for all three profiles.

For all three simulations, the subgrid-scale viscosity peaks at the position of the
horseshoe vortex centre (z+ ≈ 180) and decreases towards the wall (figure 5a). The
amplitude decreases nearly with second order as the grid spacing is reduced. This can
be seen from the peak amplitudes of 〈νt〉/ν in figure 5(a) which are 〈νt〉/νpeak = 2.2, 0.68
and 0.2 for LES78k #1, #2 and #3, respectively.

The influence of the modelled viscosity on the stress balance is documented for the
finest grid in figure 5(b) by comparing the viscous ν〈∂u/∂z〉, the Reynolds −ρ〈u′w′〉 and
the modelled subgrid-scale stresses 〈νt∂u/∂z〉. The stresses are normalized by the absolute
value of the local time-averaged wall shear stress 〈τw〉. Here, u denotes the velocity
component in the x direction (streamwise) while w is the component in the wall-normal
direction, u′ and w′ represent the corresponding velocity fluctuations and ρ is the fluid
density. Note that the normalized stresses sum to −1 at the wall since the wall shear stress
points in negative x direction. The viscous stresses dominate the flow close to the wall.
As the modelled viscosity is rather small in this region, the influence of the subgrid-scale
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stress model is also small. In contrast to the region of the horseshoe vortex, where 〈νt〉
is largest, we observe a perceptible contribution of the subgrid-scale stress model to the
viscous stresses. However, outside of the near-wall region the resolved Reynolds stresses
are significantly larger than the viscous and the modelled stresses.

For ReD = 39 000, Schanderl et al. (2017b) showed that the fraction of the modelled
TKE is by two orders of magnitude smaller than the resolved one. Furthermore, the
modelled dissipation is less than 30 % of the total dissipation.

5. The outer flow

In figure 5 it can be seen that the viscous stress ν〈∂u/∂z〉 makes a negligible contribution
to the momentum balance in the streamwise direction when compared with the turbulent
shear stress −ρ〈u′w′〉 in the region around the horseshoe vortex centre (at z+ ≈ 100). If
we define the outer flow as the region in which the viscous stresses play a minor role in
the momentum balance, the horseshoe vortex belongs to the outer flow. Changes of the
outer flow with Reynolds number are attributed to variations of: (i) the shape of the inflow
profile; and (ii) the characteristics of the inner region, e.g. changes of the singular points,
the wall shear stress or of the near-wall turbulence structure, as they propagate to the outer
flow. In what follows, we document the Reynolds number dependence of the approaching
boundary layer, the downflow in front of the cylinder, the pressure gradient, the positions
of the singular points, the turbulent kinetic energy and the outer velocity profiles around
the horseshoe vortex.

5.1. Approaching flow, downflow and pressure gradient
The horseshoe vortex system depends strongly on the profile shape of the approaching
flow, the boundary layer thickness and the turbulence structure (Schanderl & Manhart
2016). We did our best to provide comparable inflow conditions in the simulations
and the experiments. In the simulations, the inflow was a fully developed, turbulent
open-channel flow with all restrictions imposed by modelling and numerical errors.
Whereas, in the experiments, the open-channel flow developed within the limited entry
lengths of 133 water depths at ReD = 20 000 and ReD = 39 000 and 83 water depths
at ReD = 78 000. The time-averaged centreline flow profiles of the approaching channel
flow are documented in figure 6. The inner scaling in figure 6(a) reveals a pronounced
wake region in the LES while this is not the case in the experiment. This is also visible in
the outer scaling (figure 6b). There are many possible reasons for the observed differences
between the LES and PIV profiles of which some are (i) the upper boundary condition, (ii)
the relatively coarse LES grid in the precursor simulation, especially at the lateral wall,
and (iii) possible effects of the subgrid-scale (SGS) model in the precursor simulation.
However, LES and PIV show a clear trend towards profiles displaying a progressively
increasing mixing in longitudinal momentum, with increasing Reynolds number.

The downflow in front of the cylinder can be considered as an upper boundary condition
for the near-wall flow and the horseshoe vortex. Figure 7(a) shows horizontal profiles
of the time-averaged vertical velocity 〈w〉/ub at z/D = 0.15 for all cases. The downflow
reveals a sharp peak at x/D ≈ −0.52. The corresponding values are approximately −0.4ub
in the experiment and −0.5ub in the simulation. This is a considerable fraction of the
inflow momentum. Upstream of the maximum of the downflow, the profiles decrease over
a distance of 0.3D and do not change significantly with Reynolds number. Thus, potential
Reynolds number effects on the flow are not obscured by inconsistent boundary or
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Figure 6. Time-averaged velocity profiles in the centre of the approaching flow in inner scaling (a) and outer
scaling (b). The symbols mark the LES data at every tenth data point.
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Figure 7. Time-averaged horizontal profiles of the vertical velocity at z/D = 0.15 (a), and the pressure
coefficient cp at the bottom wall in front of the cylinder (b).

inflow conditions. The accordance between LES and PIV is satisfactory; the differences
could be assigned to the horizontal slat of acrylic glass at the free surface in the
experiment, which was used to enable an undisturbed light sheet entering the water body
(section 3). This slat moved the upper stagnation point on the cylinder front a little
downwards compared with the LES. Consequently, the momentum of the downflow is
smaller in the experiment (figure 7a). We will discuss this effect on the vortex system in
§ 5.2.

The downflow reaching the bottom wall causes the pressure to increase. The location of
the maximum value of the horizontal pressure distribution corresponds to the position of
the minimum value of the vertical velocity component in the downflow. This is indicated
by figure 7(b) showing the pressure coefficients cp = ( p − pref )/(

1
2ρu2

b) from the LES
data. The reference values of the pressure pref are chosen that the pressure coefficients are
zero at the corner between the cylinder and wall. The distribution has been validated for
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Re = 39 000 by (Schanderl & Manhart 2016) by comparing to the distribution measured
by Dargahi (1989). The peak values of the pressure distributions occur at x/D ≈ −0.54
decreasing steeply in the upstream direction until x/D ≈ −0.7 with a slight kink at x/D ≈
−0.6. Upstream of x/D ≈ −0.9, the pressure gradient is constant but smaller. In both
regions, the pressure coefficient is independent of the Reynolds number. In between, the
nearly constant steep and mild pressure gradients are separated by a disturbance linked to
the horseshoe vortex. The amplitude, the spatial extent and the distance from the cylinder
of this disturbance increase with Reynolds number.

5.2. Horseshoe vortex system
The flow configuration at the cylinder–wall junction is illustrated by streamlines of the
time-averaged flow field taken from the LES at ReD = 39 000 (figure 8). The in-plane
downflow impinges at S3 (a half-saddle) and is mainly deflected in the upstream direction;
a small part is redirected towards the cylinder. The location of S3 corresponds to the
position of the maximum of the pressure at the bottom wall and to the peak of the
downflow (figure 7). One part of the downflow is entrained into the horseshoe vortex V1
(a node). The rest forms a jet in the upstream direction along the bottom wall underneath
V1, highlighted by the separating streamline. This jet dominates the behaviour of the wall
shear stress as the further analysis will show. The wall-parallel jet starts to develop from
S3 and penetrates until the half-node N1 (a saddle point in the walls shear stress vector
field). Between N1 and S1, a flow reversal occurs on top of the jet, which is separated from
V1 by the saddle point S1. The downflow generates a boundary layer along the cylinder
front, which separates at S4 (a half-saddle) and forms a small vortex V3 (a node) directly
at the cylinder–wall junction. The configuration of the singular points at the cylinder–wall
junction is in accordance between LES and PIV and does not change with Reynolds
number.

The terms half-node and half-saddle are rational given the topological considerations
presented in Foss (2004) and Foss et al. (2016). They refer to singular points on a
seam of a collapsed sphere. With that understanding, the streamline that stagnates on the
cylinder (above the domain shown in figure 8) represents the upper leg of the seam that
continues through S4, S3 and past N1. The upstream hole in the collapsed sphere (between
the lower surface and the identified stagnation streamline) leads to the a priori Euler
characteristic χA = +1. The experimental Euler characteristic observed in figure 8: χE =
2

∑
N + ∑

N′ − 2
∑

S − ∑
S′ = 2(2) + 1 − 2(1) − 2 = +1, is in agreement with χA,

providing assurance that no further singular points are required to satisfy the topological
constraint.

We document the positions of the singular points for the three Reynolds numbers in
table 3. Both, vortex V1 and saddle point S1 move in the upstream direction away from the
cylinder with increasing Reynolds number, which is in line with the observations of Agui
& Andreopoulos (1992). In contrast, the half-node N1 and the corresponding recirculation
zone move towards the cylinder. This can be explained by the larger near-wall momentum
of the approaching flow at the higher Reynolds number, which counteracts the penetration
of the jet. Therefore, the distance between the upstream point N1 and V1 decreases with
increasing Reynolds number in the investigated range.

In the experiment, the horseshoe vortex V1 has a smaller extent and is located closer to
the cylinder. Due to the slat of acrylic glass, the momentum of the downflow is smaller
and could cause the observed differences here as well.

There is common agreement that in the considered flow the distribution of the TKE
has a distinct c shape (Devenport & Simpson 1990; Paik, Escauriaza & Sotiropoulos
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Figure 8. Streamlines of the time-averaged flow field in the symmetry plane in front of the cylinder with
singular points for ReD = 39 000 computed from LES (top) and PIV (bottom). The black line indicates
the separating streamline of the horseshoe vortex and the wall-parallel jet. Note the two different scales of
the x-axis for which xadj is adjusted between the stagnation point S3 and the horseshoe vortex centre V1. The
measurement data only extend to x/D = −1.06.

LES PIV

xV1 xS1 xN1 xS3 xV1 xS1 xN1 xS3

ReD = 20 000 −0.717 −0.812 −1.17 −0.534 −0.681 −0.765 −0.93 −0.531
ReD = 39 000 −0.73 −0.845 −1.1 −0.53 −0.697 −0.788 −0.92 −0.533
ReD = 78 000 −0.76 −0.874 −1.09 −0.531 −0.705 −0.794 −0.9 −0.527

Table 3. Positions of the singular points obtained by LES and PIV.

2007; Apsilidis et al. 2015; Schanderl et al. 2017b). The upper branch of the c is formed
by a peak of TKE in the region of the main vortex V1, from where a leg-like peak
reaches towards the bottom wall and thus forms the lower branch of the c. To the upper
branch, the fluctuations of the vertical velocity component w′make a strong contribution,
while the lower branch results from strong fluctuations in the streamwise direction u′
predominantly (Devenport & Simpson 1990; Apsilidis et al. 2015; Schanderl et al. 2017b).
The lower branch is located where the jet decelerates. As observed by Apsilidis et al.
(2015), the amplitude of u′ in this jet increases with Reynolds number and the lower
branch of the c shape becomes more pronounced. All the mentioned features are visible
in the distribution of the in-plane TKE kip = 0.5(〈u′u′〉 + 〈w′w′〉) presented in figure 9
for both LES and PIV at all three Reynolds numbers. The change with Reynolds number
is consistent with the observation of Apsilidis et al. (2015) in that the distribution and
magnitude of in-plane TKE around the horseshoe vortex centre is only weakly dependent
on Reynolds number. In the leg under the horseshoe vortex, an increase in TKE is
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Figure 9. In-plane TKE kip/u2
b in the symmetry plane in front of the cylinder for Re = 20 000 (a,b),

Re = 39 000 (c,d) and Re = 78 000 (e, f ), taken from the LES (left column) and the PIV (right column).

observed in both experiment and LES. This suggests that the turbulence structure of the
horseshoe vortex system is only mildly dependent on Reynolds number in the considered
range.

5.3. Outer velocity profiles
Figure 10 shows the profiles of the streamwise velocity component normalized by the
bulk velocity 〈u〉/ub at five positions in the symmetry plane in front of the cylinder. The
data were taken from the LES. Since the position of vortex V1 changes slightly with
Reynolds number, we introduce an adjusted streamwise coordinate xadj to compare the
profiles at identical positions with respect locations of the horseshoe vortex centre xV1 and
the stagnation point xS3

xadj = x − xS3

xS3 − xV1
, (5.1)

where xadj = 0 corresponds to xS3 and xadj = −1 is the position of the horseshoe vortex
V1 (see figure 8 for ReD = 39 000). In the wall-normal direction, the location of vortex
V1 did not change, thus no comparable adjustment was applied to the z coordinate.

The upstream-directed wall jet is indicated by the negative 〈u〉/ub close to the wall.
This jet is accelerated from stagnation point S3 (xadj = 0) in the upstream direction by
the pressure gradient. The velocity profiles reveal a sharp peak, which increases to its
maximum value of approximately 0.5ub at xadj = −0.75. This is around the location at
which the dividing streamline indicated in figure 8 is closest to the wall.

With further increasing distance from the cylinder, the jet widens vertically due to the
influence of the horseshoe vortex. As a result, the jet starts to decelerate and the velocity
peak begins to lift off from the bottom wall around the position of the vortex core (xadj =
−1). This mechanism is indicated by the cp-distribution and the streamlines (figure 7
and figure 8). Between xadj = −0.25 and the position of the vortex centre at xadj = −1,
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Figure 11. In the symmetry plane in front of the cylinder at x/D = −0.6 for Re = 78 000. (a) Wall-normal
profiles of the streamwise velocity component normalized by the bulk velocity 〈u〉/ub. The dotted line indicates
our conceptual understanding of the velocity profile when Re → ∞. (b) Resolved viscous shear stress ν〈∂u/∂z〉
and Reynolds shear stress −ρ〈u′w′〉. For z > δs, the viscous shear stress is negligible in comparison to the
Reynolds shear stress.

the peak is consistently largest at Re = 78 000 and smallest at Re = 20 000, but the
velocity difference is small. Above the (negative) velocity peak, the normalized profiles
seem to be essentially Reynolds number independent, except at positions upstream of the
vortex core (xadj < −1).

Together with the observation of cp being independent of Reynolds number, this allows
us to introduce the conceptional division into an outer and an inner flow in which the outer
flow is only marginally dependent on the viscosity, whereas the inner flow is strongly
affected by viscous effects. In figure 11(a), the two regions are illustrated with the help of
the time-averaged velocity profile at x/D = −0.6. The peak velocity of the jet is denoted as
uδ and the corresponding wall distance as δs. This characteristic point marks the boundary
between the inner and the outer flows. For Re → ∞, the layer affected by the wall would
become arbitrarily small. Figure 11(b) shows that the viscous stress is large in the inner
layer and almost zero in the outer layer; conversely, the turbulent stress is large in the outer
layer and reduces quickly to zero in the inner layer. While the viscous stress is negative
in the inner layer due to the negative velocity gradient, the turbulent stress is positive. As
a result, the production of turbulent kinetic energy changes sign from positive to negative
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when crossing the boundary from outer to inner layer. Furthermore, it can be seen that the
turbulent stress is fully decoupled from the wall shear stress – it has the opposite sign.
We conclude, therefore, that the turbulent shear stress plays a minor role in the inner
layer. The inner layer (below the peak) can be regarded as an accelerated boundary layer
dominated by the pressure gradient and the viscosity.

6. The inner flow

In this section, we discuss the inner flow and its Reynolds number dependence. The scaling
behaviour of the inner layer is crucial to understanding the flow behaviour at the larger
Reynolds numbers and to develop models for estimating the wall shear stress.

Whereas the outer flow was found to be only mildly dependent on the Reynolds number,
we expect the inner flow to follow either the classical turbulent inner scaling or a laminar
scaling. If classical turbulent scaling were applicable, the velocity and length scales would
scale with the friction velocity uτ = √

τw/ρ and the viscosity ν and the law of the wall
could be used to approximate the velocity profiles and the wall shear stress. As illustrated
in figure 11(b), the Reynolds shear stress plays a minor role for the inner layer dynamics.
Based on this, we can expect that the logarithmic law of the wall does not hold true,
which has already been demonstrated by Schanderl et al. (2017a). This is a hint for a
laminar scaling behaviour. For laminar scaling, the friction factor and the inner length
δs are proportional to 1/

√
Re (Schlichting & Gersten 2006b; Kundu, Cohen & Dowling

2012). In what follows, we discuss the wall shear stress and the inner layer thickness.
Then, we focus on the inner velocity profiles.

6.1. Wall shear stress
Owing to the sensitivity of the wall shear stress to data resolution, we validate our wall
shear stress evaluation first.

6.1.1. Validation of the wall shear stress
A grid study was conducted at each Reynolds number to prove the convergence of the
numerical results. The grid was locally refined by up to three embedded grids each
with a refinement factor of two, see LES78k #1 to LES78k #3, respectively. The grid
study at ReD = 78 000 is documented in figure 12 showing the friction coefficient cf =
〈τw〉/(1

2ρu2
b).

The downflow is deflected at xS3 = −0.53D. Therefore, cf is zero at this position.
Towards the cylinder, the corner vortex V3 causes a narrow region of positive wall
shear stress, whereas the upstream-directed wall-parallel jet generates the broad region
of negative cf values. Since the jet penetrates until xS2 = −1.17D, the friction coefficient
stays negative upstream of the horseshoe vortex. By refining the grid spacing, we observe
some differences in the results: while LES78k #1 has a single minimum, LES78k #2 and
#3 have two local minima. Furthermore, LES78k #1 is too coarse to resolve the small
corner vortex V3. Here, too, lies the only substantial difference between LES78k #2 and
LES78k #3. LES78k #2 does not accurately resolve the sharp peak and underestimates its
amplitude. Nevertheless, the maximum amplitude in the upstream-directed jet does not
change with grid refinement, indicating a resolved near-wall gradient. This applies for
all three Reynolds numbers. Schanderl et al. (2017a) documented the near-wall velocity
profiles in front of the cylinder at ReD = 39 000, which supports our assumption of a
wall-resolved LES. There is a small uncertainty as to whether, at ReD = 78 000, a small
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Figure 12. Friction coefficient cf in the symmetry plane in front of the cylinder at ReD = 78 000 evaluated
from LES data at each level of grid refinement and from single-pixel PIV. For the sake of visibility, only every
second data point is plotted in the case of the LESs.

secondary recirculation would appear near x/D = −0.85. The coarsest grid does have one,
but the two finer grids do not have one. We consider, therefore, the numerical results to be
sufficiently converged over grid spacing, and did not perform additional refinement.

We also evaluated the friction coefficient from the experimental data by applying a
single-pixel algorithm (denoted as SPPIV78k). Due to the reduced number of samples
compared with an interrogation window method, the data are noisier. However, we take
advantage of the increased spatial resolution of this method in order to calculate the wall
shear stress. We give an impression of the noise level in SPPIV in figure 13 in which a
true single-pixel evaluation is compared to an evaluation in which the correlation function
was averaged over five pixels in streamwise direction. We plotted profiles obtained at five
neighbouring pixels. These plots demonstrate the magnitude of the scatter in our data and
how the scatter in the SPPIV data can be reduced by a better statistics.

For computing the wall shear stress from the SPPIV, we evaluated the velocity vector at
the second pixel above the wall. The corresponding wall distance was z/D = 7.4 · 10−4,
which is approximately twice the wall distance of the centre of the first grid cell in the
LES (z/D = 2.8 · 10−4). As the vortex system is located closer to the cylinder in the
experiment, the wall shear stress minimum is not as broad as in the simulation. However,
as the minimum of the SPPIV78k data has the same magnitude as the one in the LES,
we conclude that the numerical results are mainly confirmed by the experimental ones
(figure 12).

6.1.2. Reynolds number dependence of the wall shear stress
In what follows, we evaluate the Reynolds number dependence of the wall shear stress.
There are some arguments which let us assume that the friction coefficient is more likely
to follow a viscous scaling (cf ∼ ReD

−1/2) than a turbulent scaling (cf ∼ ReD
−1/5). The

wall layer between the velocity maximum of the wall jet and the wall is extremely thin and
has a small Reynolds number and the turbulent stresses in this layer are small compared
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Figure 13. Near-wall streamwise velocity profiles at x/D = −0.6 obtained by SPPIV (a) without spatial
averaging of the correlation function and (b) averaging of the correlation function over five pixels in the
streamwise direction.

0

–0.005

0.005

0.010

–0.010

–0.015
–1.2 –1.0 –0.8 –0.6

x/D

0

–0.005

0.005

0.010

–0.010

–0.015
–1.2 –1.0 –0.8 –0.6

x/D

cf

LES20k
LES39k
LES78k

SPPIV20k
SPPIV39k
SPPIV78k

(a) (b)

Figure 14. Friction coefficient cf in the symmetry plane in front of the cylinder for all three Reynolds
numbers obtained by (a) LES and by (b) single-pixel PIV.

with the viscous stresses. Thus, we presume the wall shear stress to follow a viscous scaling
behaviour. This presumption is discussed next.

Figure 14 indicates that cf decreases with increasing Reynolds number in the LES. For
the SPPIV data, a similar decrease is obvious for the lower two Reynolds numbers but
not between the higher two Reynolds numbers. The measured wall shear stress amplitude
is slightly larger than the simulated one at ReD = 78 000 but slightly smaller at the two
lower Reynolds numbers. This could eventually be attributed to the change in experimental
conditions for the highest Reynolds number.

In figure 15, we present the friction coefficient multiplied by the square root of the
corresponding Reynolds number for LES and SPPIV. By applying this normalization, the
maximum amplitudes of the LES data match each other and confirm the presumed scaling
behaviour cf ∼ 1/

√
ReD. In the SPPIV, this scaling can be confirmed for the two lower
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Figure 15. Friction coefficient scaled with the square root of the corresponding Reynolds number cf · √
ReD

in the symmetry plane in front of the cylinder obtained by (a) LES and by (b) single-pixel PIV.
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Figure 16. Friction coefficient cf from the LES at an polar angles of (a) 54◦ and (b) 90◦ with respect to the
symmetry plane in front of the cylinder. The radial coordinate r is measured from the centre of the cylinder.

Reynolds numbers, which used the identical measurement set-up. It is important to note
that there is no match of the skin friction amplitudes when normalized by Re−1/5

D (not
shown here).

In addition, the amplitudes of the friction coefficients scaled with the square root of the
Reynolds number cf · √

ReD are evaluated at the polar angle of the maximum wall shear
stress (54◦) and at 90◦ with respect to the symmetry plane in front of the cylinder (negative
x − z plane). The cylinder surface is located at r/D = 0.5 ( figures 16a and 16b). When the
flow bends around the cylinder, a strong velocity overshoot occurs close to the cylinder’s
surface leading to a large wall shear stress amplification. This peak, however, has a width
of approximately 0.1D only and its amplitude decreases rapidly with increasing distance
from the cylinder. At 54◦, the friction coefficient reaches its global maximum value, and
scales with Re−1/2, as in the symmetry plane. This is not the case at 90◦, which indicates
that near-wall turbulent stresses might set in between 54◦ and 90◦.
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Figure 17. Wall distance of the first maximum value of the streamwise velocity component in front of the
cylinder for each Reynolds number (a) over the topology-adjusted coordinate xadj (outer scaling) and (b) over
the streamwise coordinate x/D and premultiplied with

√
ReD (inner or laminar scaling).

6.2. Scaling of the inner layer thickness
The inner layer begins to develop along the bottom wall from stagnation point S3 onwards
in the negative x-direction (figure 8). As turbulent shear stresses are small, the growth of
this layer is governed by an interplay between viscous forces, time-averaged convective
fluxes and the pressure gradient. By taking into account the outer flow similarity and the
scaling of the friction coefficient, we expect that the inner layer thickness decreases with
the square root of the Reynolds number.

In order to evaluate the wall distance δs separating the inner from the outer layer
(compare figure 11a), we determined a cubic interpolant for the velocity profiles of the LES
around the near-wall velocity peak and calculated the maximum absolute velocity value
and the corresponding wall distance. Doing so, the results of the presented analysis do not
suffer from a step-wise distribution due to the grid resolution. In figure 17, the thickness of
the inner layer δs is plotted in front of the cylinder as a function of the streamwise position
for all three Reynolds numbers. For figure 17(a), we chose the scaling of the outer flow
and the topology-adjusted horizontal coordinate xadj defined in (5.1). For figure 17(b), we
scaled the inner layer thickness with

√
ReD and plotted it over the horizonal coordinate

x/D. This corresponds to a boundary layer scaling. The stagnation point S3 is located at
x/D ≈ −0.53, thus the near-wall flow evolves from right to left in this plot.

The overall trends of δs are similar for each ReD. Between S3 and the centre of the
horseshoe vortex V1, [−0.7 � x/D � −0.53], the thickness of the inner layer δs is small
(< 0.01D) and proportional to 1/

√
ReD. This is the region of the large wall shear stress

(figure 14).
When the wall jet passes the horseshoe vortex, the near-wall flow decelerates, the wall

shear stress is strongly diminished and a strong increase of the inner layer thickness can be
observed. In this region, the inner layer thickness seems to depend on Reynolds number
mainly through the shift of the singular points, as the curves of δs almost collapse in
the topology-adjusted coordinate xadj (figure 17 for [−1.5 � xadj � −1.0]). In particular,
the maximum values of the inner layer thickness are almost independent of the Reynolds
number and are reached approximately between the horseshoe vortex centre V1 and the
saddle point S1.
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Between S1 and N1 (xadj � −1.5) the thickness of the inner layer decreases in local flow
direction of the wall jet and scales with 1/

√
ReD. This can be linked to the fast convergence

of the streamlines upstream of S1 (figure 8). From here up to point N1, the inner layer is
very thin.

In conclusion, we found that the distribution of the thickness of the inner layer follows
a laminar scaling behaviour δs ∼ 1/

√
ReD in the regions [xN1 � x � xS1] and [−0.7 �

x/D � −0.53]. In these two regions the pressure gradient was found to be independent of
the Reynolds number (figure 7b). In the region xS1 � x/D � −0.7 between the centre of
the horseshoe vortex V1 and the saddle point S1, the inner layer thickness scales like the
outer flow.

6.3. Local similarity of the inner velocity profiles
In the previous sections, we demonstrated that the mean wall shear stress and the
thickness of the inner layer scale with 1/

√
ReD in the regions [−0.7 � x/D � xS3/D]

and [xN1 � x � xS1]. This scaling is typical for laminar boundary layers (Schlichting &
Gersten 2006b). From the analogy with a laminar boundary layer, one could expect that
the wall shear stress could be related to the peak velocity uδ and the thickness δs in the
form τw ∼ μuδ/δs. This would imply similarity of the velocity profiles inside the inner
layer among Reynolds numbers. In figure 18, we therefore plot normalized inner velocity
profiles u/uδ along z/δs for all Reynolds numbers. We extracted profiles for x positions
corresponding to the regions indicated by figure 17. We observe an approximate collapse
of the velocity profiles in the regions with the 1/

√
ReD scaling. This indicates that also the

velocity profiles scale like a laminar boundary layer.
We compare the normalized velocity profiles in figure 18 to a simple quadratic fit and

Falkner–Skan profiles. We can observe that, with a proper choice of the β-parameter, the
Falkner–Skan velocity profiles closely resemble the normalized profiles while a simple
quadratic fit, as proposed in Manhart, Peller & Brun (2008), does not. The quadratic
profile cannot match the wall gradient and uδ at δs simultaneously. The Falkner–Skan
profiles are a one-parametric family of self-similar solutions of the laminar boundary
layer equations. If a velocity profile agrees with a Falkner–Skan profile of some parameter
and and wall-normal length scale, one speaks of local similarity (Schlichting & Gersten
2006a). In the following, we assess whether local similarity holds for the mean velocity
profiles of the inner layer. This question is especially important for wall-modelled LES of
flow configurations similar to the horseshoe vortex. As we observe laminar scaling of the
inner layer, the established wall models based on the classical turbulent near-wall scaling
do not apply. We thus think that a detailed investigation of the local similarity would be
valuable for the development of alternative wall treatments.

The Falkner–Skan velocity profiles are given as the product of the velocity at the edge
of the boundary layer, which we identify with the peak velocity uδ , and the derivative of a
dimensionless streamfunction f

u(x, z) = uδ(x)f ′(η), (6.1)

where
η = z

δN
, (6.2)

is the vertical coordinate normalized by a representative length scale δN of the boundary
layer. The streamfunction f (η) satisfies the Falkner–Skan equation

f ′′′ + f f ′′ + β(1 − f ′2) = 0, (6.3)
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Figure 18. Velocity profiles in inner coordinates for various positions in the three different regions (a) between
S3 and V1; (b) at the point of maximum inner layer thickness; and (c) between S1 and N1. Characteristic
Falkner–Skan profiles are added to illustrate the similarity. The quadratic profiles follow the equation u/uδ =
2(z/δs) − (z/δs)

2. (a) − 0 : 75 < x/D < xS3, (b) xadj ≈ −1.3 and (c) − 1.1 < x/D < xS1.

with boundary conditions as given by Schlichting & Gersten (2006b) and a dimensionless
parameter β. In the framework of local similarity, β is allowed to vary along the x
coordinate. Note that the derivation of the Falkner–Skan equation assumes that the
velocity field is divergence free in the x − z-plane (resulting in the term ff ′′). This
assumption is at best approximately valid in the flow under consideration. Therefore, the
Falkner–Skan solution can only be regarded as an approximation of the flow situation
under consideration.

At every streamwise position, we now search for values of β and δN that minimize the
deviations between the Falkner–Skan profiles and the local velocity profiles of the inner
layer in a least-squares sense. We measure the quality of the fit by the goodness-of-fit
parameter R2 defined as the ratio of the sum of squared errors (SSE) to the total sum
of squares about the mean (SST). We restricted the admissible values to the interval
[−0.199 < β < 2.0] to avoid physically unrealistic values.
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Figure 19. The Falkner–Skan parameters β obtained by the best fit (a) and the corresponding goodness-of-fit
parameter R2 (b) in front of the cylinder for each ReD.

Figure 19(a) presents the β values for an optimal fit and figure 19(b) shows the
corresponding values of R2. It can be seen that the goodness of fit is excellent – over
99 % of the variance of the mean velocity profiles in the inner layer can be represented by
Falkner–Skan velocity profiles. Furthermore, the β values seem to give a coherent picture
among the different Reynolds numbers in both regions where the thickness of the inner
layer shows a 1/

√
ReD scaling. Conversely, in the region where the thickness of the inner

layer exhibits outer scaling, the β values do not show a consistent trend; nonetheless, there
is good agreement of the inner velocity profiles with the Falkner–Skan profiles.

In conclusion, we found that the mean velocity profiles in the inner layer closely
resemble velocity profiles from the Falkner–Skan family. In the next section, we will put
forward an interpretation for the values of β.

6.4. Applicability of the Falkner–Skan theory
We now attempt to interpret the β values presented in figure 19. First, we review
some assumptions and results from the classical Falkner–Skan theory as presented by
Schlichting & Gersten (2006b). The Falkner–Skan (6.3) can be derived from the laminar
boundary layer equations based on two assumptions (Schlichting & Gersten 2006b): (i)
the outer velocity can be expressed as a power function of the streamwise coordinate and
(ii) the peak velocity and wall pressure satisfy the Bernoulli equation at the edge of the
boundary layer (inner layer).

Condition (i) expresses the outer (peak) velocity as

uδ = c1|x − x0|m, (6.4)

where c1 is a constant. The second assumption applied in the derivation of the
Falkner–Skan equation is that the outer velocity and the wall pressure are linked via the
Bernoulli equation

∂p
∂x

= −ρuδ

∂uδ

∂x
= − ∂

∂x

(
1
2
ρu2

δ

)
. (6.5)

Equations (6.4) and (6.5) imply that the pressure gradient follows a power law as well

∂p
∂x

= mρc2
1(x − x0)

2m−1. (6.6)
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Figure 20. (a) The velocity at the inner/outer layer interface uδ in the region of maximum wall shear stress.
The line corresponds to |x − x0|0.5. This plot demonstrates that the outer velocity is consistent with a constant
pressure gradient and m = 0.5. (b) Near-wall pressure gradient in outer scaling.

Using the wall compatibility condition (Schlichting & Gersten 2006a), we can relate β

to the pressure gradient ∂p/∂x

μ
∂2u
∂z2

∣∣∣∣
w

= μf ′′′
w

uδ

δ2
N

= −μβ
uδ

δ2
N

= ∂p
∂x

, (6.7)

or

β = − δ2
N

μuδ

∂p
∂x

. (6.8)

Therefore, we can interpret β as the pressure gradient made dimensionless with inner
variables. In the Falkner–Skan theory, β is constant in space and follows as β = 2m/

(m + 1). The value β = 0 corresponds to the Blasius boundary layer, while negative values
of β correspond to decelerated boundary layers with separation at β = −0.199. Positive
values of β correspond to accelerated flow and stagnation-point flow appears when β = 1.
A spatially constant pressure gradient is obtained for m = 0.5 and β = 2

3 .
In figure 19(a), we can identify two regions where β is approximately constant in space:

[−0.65 < x/D < −0.57] with β between 0.5 and 0.6 and [−1.0 < x/D < −0.9] with β

between 0.3 and 0.4. This raises the question of whether we can find self-similar behaviour
in the sense of the classical Falkner–Skan theory there.

To evaluate the first condition, (6.4), uδ is plotted in figure 20(a). In the region
[−0.65 � x/D � −0.57], uδ ∼ |x − x0|0.5 as indicated by the line added in the plot.
Therefore condition (6.4) is approximately satisfied locally in this region. The location
of the minimum of uδ coincides approximately with the end of the first region in which the
thickness of the inner layer has laminar scaling (compare figure 17). The local peak values
of uδ at [−0.9 � x/D � −0.8] mark the locations at which the second region of laminar
scaling is found.

In figure 20(b), the dimensionless pressure gradient normalized by outer variables
(∂p/∂x)D/(ρu2

b) is plotted. Like the pressure coefficient cp (figure 7b), the pressure
gradient is mildly dependent on Reynolds number. There is a drop in the pressure
gradient around x/D ≈ −0.7 which is below the horseshoe vortex and occurs at different
streamwise locations depending on Reynolds number. Between the stagnation point S3
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and this drop, a region appears in which the pressure gradient is approximately constant
[−0.65 < x/D < −0.57]. This region coincides with the region in which uδ ∼ |x − x0|0.5,
hence m = 0.5 (β = 2/3). Having in mind the large scatter in these values and the small
influence of β on the Falkner–Skan profiles in this β-range (compare figure 18), the
fitted β-value of 0.5 − 0.6 can be rated as a satisfying accordance. While (6.6) would
imply a dimensionless pressure gradient of 0.5, we find a ∂p/∂x D/(ρu2

b) ≈ 1.25. This
inconsistency suggests that the Bernoulli equation is not valid at the inner/outer layer
interface. However, it was obvious from figure 11 that the Reynolds shear stress is non-zero
at the interface.

Between S1 and N1 (x/D ≈ −0.9), the dimensionless pressure gradient is independent
of x and the Reynolds number. However, the behaviour of uδ (figure 20a) does not fit to the
positive pressure gradient. The β values and the pressure gradient indicate an accelerated
boundary layer for x/D � −0.9 whereas the magnitude of the velocity uδ decreases. This
could be explained by Reynolds stresses acting in this region (Schanderl et al. 2017a).

We conclude that the condition for self-similarity (6.5) is not fulfilled at the inner/outer
layer interface. As figure 11 demonstrates, the Reynolds shear stress is non-zero at the
interface. This raises the question as to why a laminar behaviour of the inner layer was
observed. On the other hand the Reynolds shear stress decays from the interface to the
wall. It is therefore possible that the integral contribution of the Reynolds shear stress is
small compared with the laminar terms in the streamwise momentum balance. In figure 21,
all terms in the streamwise momentum balance integrated from the wall to δs are plotted
except 〈v〉(∂〈u〉/∂y), which is zero because of symmetry, and the viscous terms in the
stream- and spanwise directions. We observe: (i) in [−0.65 < x/D < −0.57] the pressure
gradient and the viscous stress are dominant, (ii) in [−0.85 < x/D < −0.65] – under
the horseshoe vortex – the Reynolds stresses are dominantly responsible for the de- and
acceleration of the flow (〈u〉(∂〈u〉/∂x)) and (iii) in the region [x/D < −0.85] the Reynolds
and viscous stresses are approximately equal in amplitude. This explains the laminar
behaviour of the flow in the region between S3 and the horseshoe vortex, expressed by
the scaling of the inner layer thickness and the wall shear stress and the similarity of the
inner layer velocity profiles to the Falkner–Skan solutions. Furthermore, the outer scaling
observed in the second region is consistent with the dominance of the turbulent terms
in the integrated momentum balance. In the third region the laminar scaling could be
explained by the relatively strong viscous term.

6.5. Modelling of the inner velocity profiles
We have demonstrated so far that the inner layer velocity profiles can be well approximated
by solutions of the Falkner–Skan equation, although the conditions for its validity are not
fully met. We now investigate whether the profile parameter β still can be interpreted as a
dimensionless pressure gradient.

As the parameter β can be related to the pressure gradient according to (6.8), we now
attempt to predict β and thus the inner velocity profiles based on the wall pressure gradient,
the velocity at the inner/outer layer interface uδ and the thickness of the inner layer δs.

We first relate the normalization length δN to the inner layer thickness δs. We
assume that the distance of the near-wall velocity peak δs corresponds to the 99 %
boundary layer thickness of the Falkner–Skan solution δ99. As the Falkner–Skan velocity
profiles are self-similar, the 99 % boundary layer thickness is defined by δ99 = β99 δN ,
where f ′(β99) = 0.99. The factor of proportionality β99 is a function of β. We substitute
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Figure 21. Individual terms in the streamwise momentum balance integrated from the wall to the inner/outer
layer interface δs for ReD = 39 000.

δN = δs/β99 into (6.8) and obtain

ββ2
99(β) = − δ2

s

μuδ

∂p
∂x

. (6.9)

The left-hand side of (6.9) is a nonlinear function of β and can be obtained from the
solutions of the Falkner–Skan (6.3). Some values for β99 are listed by Schlichting &
Gersten (2006b). We can estimate β directly from the pressure gradient, uδ and δs by
solving (6.9). Thus, the advantage of this approach is that β can be determined by outer
flow variables, which possibly can be obtained from non-wall-resolved LES.

The profile parameter β obtained by this procedure is plotted in figure 22 together
with the goodness-of-fit parameter R2. There are two regions in which (6.9) succeeds in
determining values of β that give a good agreement between the Falkner–Skan profile and
the simulated profiles. These regions are between S3 and V1 and between S1 and N1 –
i.e. [−0.7 � x/D � −0.53] and [−1.1 � x/D � −0.85] in case of ReD = 39 000 – and
correspond to the intervals where δs/D ∼ 1/

√
ReD. In these two intervals, the β-values

obtained from the best fit (figure 19) and the pressure gradient (figure 22) are highly
consistent. The determination of β using (6.9) is not valid in the interval between V1 and
S1, where the horseshoe vortex interacts with the inner layer and fluid is lifted up from
the wall (figure 8). We observe that the inner layer thickness grows strongly (figure 17),
the inner/outer interface velocity uδ and the wall shear stress are strongly modified, and
an adverse pressure gradient develops for Re = 78 000 (figures 14 and 20). According
to Schanderl et al. (2017b), the streamwise velocity fluctuations are large here, causing
additional normal stresses in the streamwise direction. Therefore, relation (6.5) between
uδ and the pressure gradient is not valid. Our data suggest that the normal Reynolds stresses
cannot be neglected. However, β-values could be found that result in a reasonable fit to the
simulated profiles (figure 19(b), note the different axis compared with figure 22b). This
indicates that the Falkner–Skan equation can accurately describe the velocity profiles in
the inner layer.
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Figure 22. The Falkner–Skan parameters β obtained by (6.9) (a) and the corresponding goodness-of-fit
parameter R2 (b) in front of the cylinder for each ReD.

Another way of assessing the accuracy of the Falkner–Skan velocity profiles predicted
by (6.9) is to compare the wall shear stress from these profiles with the simulation results.
Additionally, we compute the wall shear stress from the fitted Falkner–Skan velocity
profiles so that we can approximately separate the effect of the limited representation
capabilities of the Falkner–Skan profile family from the effect of the assumption δs = δ99
employed to arrive at relation (6.9). The wall shear stress for the fitted profiles is computed
as

〈τw〉 = μ
uδ

δN
f ′′
w, (6.10)

and for the profiles obtained via (6.9) as

〈τw〉 = μ
uδ

δs
β99f ′′

w, (6.11)

where f ′′
w denotes the second derivative of the streamfunction at the wall. It can be obtained

from numerical solutions to the Falkner–Skan equation or from tabulated values given by
Schlichting & Gersten (2006a).

In figure 23(a,b), we present the comparison between the friction coefficient cf =
〈τw〉/(1

2ρu2
b) directly computed from the LES data and the friction coefficient computed

from (6.10) and (6.11), respectively.
The friction coefficients cf (or the wall shear stress) obtained from fitted Falkner–Skan

profiles, (6.10), coincide well with the ones directly computed from the LES data
(figure 23a). All features of the wall shear stress distribution are well represented by the
estimation from the Falkner–Skan profiles except for some single positions where the fit
was of poor quality. Furthermore, the wall shear stress computed from the least-squares
fit of the Falkner–Skan profiles matches the amplitudes of the wall shear stress from the
LES.

Using the wall shear stress estimated from the local pressure gradient via (6.9)
and (6.11), the distributions of the wall shear stress are qualitatively reproduced. The
amplitudes in the plateau region (−0.7 < xadj < 0), however, are underestimated by
approximately 10 %–20 % (figure 23b). In particular, we observe a mean relative error
of 11 %, 15 % and 18 % over this interval for ReD = 20 000, ReD = 39 000 and ReD =
78 000, respectively. These errors are significantly larger than the errors in the wall shear
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Figure 23. Friction coefficient cf obtained from the first grid point of the LES data (solid lines), and the
Falkner–Skan profiles (symbols) using (a) the best fit and (b) (6.9) to determine the values of β.

stress obtained from the fitted profiles. We see from the comparison of (6.10) and (6.11)
that this deterioration can only originate from differences in f ′′

w and from the assumption
δs = δ99. The value of f ′′

w increases with β and as the predictions of β via (6.9) are slightly
larger than the fitted values, the discrepancies in β cannot explain why the amplitude of
the wall shear stress in figure 23(b) is smaller than in figure 23(a). On the other hand,
the assumption δs = δ99 overestimates the boundary layer thickness, and consequently, the
wall shear stress is underestimated. Note that we omitted plotting the wall shear stress
in figure 23(b) for ReD = 78 000 for −0.9 < x/D < −0.8 as the estimation of β by (6.9)
gives a very poor goodness of fit and therefore meaningless values for the wall shear stress.

In conclusion, using the assumption of a Falkner–Skan velocity profile for the mean
velocity in the inner layer, we could reconstruct the velocity profiles from the knowledge
of the wall pressure gradient, the velocity uδ at the inner/outer layer interface and the
thickness of the inner layer δs with good accuracy. The estimated wall shear stress shows
the correct qualitative behaviour and underestimates the wall shear stress from the LES by
approximately 10 %–20 %. The estimation of the wall shear stress can be further improved
by finding a suitable relation between the inner layer thickness δs and the boundary layer
thickness of the Falkner–Skan velocity profiles.

6.6. Discussion
The inner flow follows a laminar scaling in the region between the cylinder and the
horseshoe vortex where the flow is strongly accelerated. We expect that the laminar scaling
of the inner layer in this high wall shear stress region will persist at higher Reynolds
numbers unless the flow topology changes in general or instabilities in this layer will
grow. However, the acceleration along the streamlines leads to a negative production of
TKE through the term −〈u′u′〉∂〈u〉/∂x which prevents the growth of TKE and thus keeps
the inner layer laminar. In this study, we observed only a weak dependence of the outer
flow on the Reynolds number. The acceleration of the near-wall jet is a consequence of
the horseshoe vortex and consequently unlikely to change at higher Reynolds numbers.
Therefore, we do not expect that the resulting negative production of TKE, which keeps the
inner layer laminar, will change at larger Reynolds numbers. Although a possible transition
mechanism is not known at this moment, we can expect that a certain critical value of the
inner layer Reynolds number Reδ must be exceeded for transition.
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In a Blasius boundary layer, the critical Reynolds number for Tollmien–Schlichting
waves is Reδ∗,crit = 520, δ∗ being the displacement thickness. The stability limit for
accelerated Falkner–Skan boundary layers grows rapidly, e.g. to Reδ∗,crit ≈ 2000 for
m = 0.075 (Schmid & Henningson 2001). In our largest Reynolds number case, ReD =
78 000, we find an inner layer Reynolds number of Reδ∗, 78 000 ≈ 50. Since the inner layer
thickness decreases with the square root of the outer Reynolds number, δ ∼ Re−1/2

D , and
uδ/ub is approximately independent of ReD, the inner Reynolds number Reδ increases
with Re1/2

D and a Reynolds number ReD of more than 2 · 107 would be required to reach
the stability limit in the inner layer above the region of the largest wall shear stress. This
simple estimation indicates that the scaling found in this study is likely to persist to much
higher Reynolds numbers than the ones used here.

7. Summary and conclusions

We investigated the flow in front of a cylinder–wall junction by LES and PIV with a focus
on the scaling for moderate Reynolds numbers. We distinguished between the outer flow
in which viscous stresses are small and the inner layer near the bottom wall in which
turbulent stresses are small.

The outer flow, comprising the downflow in front of the cylinder and the horseshoe
vortex, is weakly dependent on the Reynolds number when normalized by the bulk velocity
and the cylinder diameter. In particular, we demonstrated this for the velocity profiles and
the wall pressure distribution between the cylinder and the horseshoe vortex. The distance
of the horseshoe vortex core V1 from the cylinder slightly increases with Reynolds number
as well as the disturbance of the pressure gradient at the wall under the horseshoe vortex.

The friction coefficient scales with the cylinder Reynolds number as cf ∼ 1/
√

ReD in
large regions in front of the cylinder including the position of the maximum wall shear
stress at 54o polar angle. This observation can be explained by the weak dependence of
the outer flow on Reynolds number and a laminar scaling of the inner layer thickness which
primarily depends upon 1/

√
ReD.

The inner flow is the lower part of the upstream-directed jet reaching from the stagnation
point of the downflow in front of the cylinder S3 to the point N1 in which the oncoming
boundary layer and the wall jet meet. We defined the vertical position of the maximum
upstream velocity of the wall jet as the edge of the inner layer.

We could identify three regions with individual characteristics: between the stagnation
point of the downflow S3 and the position of the horseshoe vortex centre V1, between V1
and the saddle point S1 upstream and between S1 and N1. In the first region, the flow is
strongly accelerated, in the second strongly decelerated and in the third region a very thin
jet reaches upstream under the detached boundary layer. The thickness of the inner layer
scales with 1/

√
ReD in the first and the third region while it is independent of Reynolds

number in the second region where it scales with outer flow variables.
The wall shear stress attains its maximal values in the first region. This region is

characterized by a strong acceleration according to a power law which is consistent with
a constant pressure gradient which can be observed in a short interval in this region.
Although the Bernoulli equation is not fulfilled at the inner/outer layer interface, we
demonstrated that, due to the dominance of the viscous stresses, the inner layer behaves
like a laminar flow and self-similar velocity profiles can be found which agree well with
Falkner–Skan profiles of a pressure gradient parameter β determined from outer flow
variables and the thickness of the inner layer.
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The second region is characterized by a strong deceleration of the wall jet due to fluid
being uplifted by the horseshoe vortex. In this region, strong horizontal Reynolds normal
stresses appear which have been documented in the literature. Although the preconditions
for a Falkner–Skan similarity solution are not fulfilled in this region, the velocity profiles
can be approximated to a high degree by Falkner–Skan profiles using a best fit procedure.

The third region is characterized by a constant pressure gradient like the first one.
Although the pressure gradient is favourable in inner flow direction, the flow in this region
is decelerated. However, the velocity profiles can well be approximated by Falkner–Skan
profiles with a pressure gradient parameter that can be determined by outer flow variables
and the thickness of the inner layer.

We found that the wall shear stress can be modelled on the basis of Falkner–Skan
solutions determined by using the outer flow variables uδ and ∂p/∂x together with the
inner layer thickness within a 10 %–20 % accuracy. This result gives rise to the hope that
a wall model based on a laminar sublayer could improve wall shear stress predictions
by marginally resolved Reynolds averaged Navier–Stokes simulation or LES in such a
flow situation. The necessary wall-normal grid resolutions scale with 1/

√
ReD, which is

different to standard resolution estimations from turbulent scaling.
Since the inner layer Reynolds number grows with the square root of the outer

Reynolds number, extremely large outer Reynolds numbers would be necessary to reach
the stability limit of accelerated Falkner–Skan boundary layers. Due to the complexity of
the boundary layer in front of the cylinder, a comprehensive stability analysis possibly
comprising roughness effects should be conducted in future studies to understand the
scaling behaviour at higher Reynolds numbers.
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