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GORENSTEIN WITT RINGS 

ROBERT W. FITZGERALD 

Throughout R is a noetherian Witt ring. The basic example is the Witt 
ring WF of a field F of characteristic not 2 and F IF1 finite. We study the 
structure of (noetherian) Witt rings which are also Gorenstein rings (i.e., 
have a finite injective resolution). The underlying motivation is the 
elementary type conjecture. The Gorenstein Witt rings of elementary type 
are group ring extensions of Witt rings of local type. We thus wish to 
compare the two classes of Witt rings: Gorenstein and group ring over 
local type. We show the two classes enjoy many of the same properties 
and are, in several cases, equal. However we cannot decide if the two 
classes are always equal. 

In the first section we consider formally real Witt rings R (equivalently, 
dim R = 1). Here the total quotient ring of R is i^-injective if and only if R 
is reduced. Further, R is Gorenstein if and only if R is a group ring over Z. 
This result appears to be somewhat deep. Both proofs we have found 
require the classification of reduced Witt rings. A typical consequence 
here is: for reduced R, every regular ideal / satisfies (I~l)~l = I if and 
only if R is a group ring over Z. 

In the second section we consider nonformally real R (equivalently, 
dim R — 0). We have here a simple characterization of Gorenstein Witt 
rings: R is Gorenstein if and only if |ann IR\ = 2, where IR is the 
fundamental ideal of R. A number of striking properties hold for 
Gorenstein Witt rings. For example, ann(ann I) = I for any ideal / . 
Under an additional assumption on annihilators of ideals we can show 
that Gorenstein Witt rings are group ring extensions of Witt rings of local 
type. The proof of this involves a reduction step of independent interest: if 
IR ¥" 0 and for all 1 ¥= x e G, 7?/ann(l, —x) is a group ring extension of 
a Witt ring of local type, then so is R. 

Our results are, with one exception, for abstract Witt rings as defined by 
Marshall (cf. [11] ). To the Witt ring R there is an associated group G of 
one dimensional forms and a mapping q:G X G —» B, B a. pointed set. IR is 
the fundamental ideal of R and XR is the set of orderings. The total 
quotient ring of R will be denoted K; thus K = S~lR where S is the set of 
non-zero-divisors of R. For ideals /, J c R we set 

[/:/] = {/* G R\ rJ c / } . 
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Dn will denote a group of exponent 2 and order T. The group ring 
extensions arising here are R[kn] for some n. A Witt ring R is of local type 
if and only if \IR\ = 2. The structure of these rings is well known 
(cf. [11] ). 

1. One dimensional Witt rings. In this section R denotes a noetherian 
Witt ring with XR non-empty. For a e XR and n e N we set 

P(a, n) = {r G R\ sgna r = 0 (mod «) } 

and write P(a) for P(a, 0). The prime ideals of R are 7#, P(a) and P(a, /?) 
where a & XR and /? is an odd prime (cf. [10] ). The primary ideals of 
R are all ideals in IR containing some 2 , P(oc) and P(a, pl) where i = 1 
(cf. [6]). 

We recall that an ideal / c R is irreducible if it cannot be written as a 
finite intersection of ideals properly containing /. Irreducible ideals are 
primary but the converse need not hold. We first wish to determine some 
of the irreducible ideals. 

LEMMA 1.1. Let Q c R be a primary ideal and a G XR. 
(1) If P(a) < Q then Q == P(a, pl) for some odd prime p and i i? 1, or, 

2k G Q for some k. 
(2) IfP(ay pl) < Q then Q = P(a, pj)for some j < i. 

Proof (1) If g is /^-primary then 2k G Q for some k. Otherwise, since 
all P(f$) are minimal primes, Q = P(ft, pl) for some /? G XR, p an odd 
prime and / ^ 1. For all a G G with a <a 0 we have 

s g n ^ l , a) = 0 (mod/?')-

Hence a <p 0 and « = ft. 
(2) Follows quickly from (1). 

COROLLARY 1.2. Let Rbe a noetherian Witt ring of dimension one. For all 
a G XR, odd primes p and i ^ 1, P(a) and P(a, pl) are irreducible. 

Proof. We use primary decomposition. First suppose P{a) is reducible; 
say 

P(a) = O g , 

where each Qj is a primary ideal properly containing P(a). Each Qj con
tains some n- G Z\{0} by (1.1). Then 

n 

II «, G na = P(«), 

which is impossible. 
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Next suppose P(a, pl) is reducible; say 

P(a, pl) = n Qj9 

where each Qj is a primary ideal properly containing P(a, pl). Each 
Q equals P(a, pmj) for some m- < i. If m = max{ra } then 

HQj = P(a, pm) * P{a, />''), 

a contradiction. 

COROLLARY 1.3. Let R, a, p and i be as in (1.2). Set P = P(a, p) and 
Q = P(a, pl) and let k = Rp/Pp. Then 

dimk[Qp:Pp]/Qp = 1. 

Proof. Combine (1.2) and [14, Theorem 34]. 

Remarks. (1) Primary decomposition holds for some non-noetherian 
Witt rings (cf. [6] ). Thus (1.2) and (1.3) hold more generally. 

(2) There are reducible /^-primary ideals. Indeed the intersection of 
two non-comparable /^-primary ideals is again primary and clearly 
reducible. 

As mentioned, K denotes the total quotient ring of R. 

PROPOSITION 1.4. Let R be a one-dimensional noetherian Witt ring. Then 
K is R-injective if and only if R is reduced. 

Proof. We apply [1, 6.1] and check if (0) c R is unmixed with 
irreducible primary components. First suppose R is not reduced. Then IR 

is maximal in the set of zero-divisors and ht(/#) = 1. Thus (0) is not 
unmixed and K is not .R-injective. 

Next suppose R is reduced. The primes in the set of zero-divisors are the 
P(a), a G XR (cf. [10] ). Hence (0) is unmixed. Further, (0) = n a P(a) is 
the primary decomposition of (0). Thus all the primary components of (0) 
are irreducible by (1.2). Hence K is i^-injective. 

COROLLARY 1.5. If R is reduced and I c R is an ideal then 

K - ann^(ann^ I) = K • I. 

Proof. K • ann#(ann# / ) = ann^(ann^ / ) = KI by [5, 19.10]. 

For an #-submodule / of K we set 

r l = {x G K\xl c R). 

PROPOSITION 1.6. Let R be reduced. R is Gorenstein if and only if[ (2):IR] 
is generated by two elements. 
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Proof. R is Gorenstein if and only if P can be generated by two 
elements, for all maximal ideals P [1, 6.3]. Now 

P(a,p)~l = n~xP{a9p
l) 

for some n and z, which is generated by two elements [7, 2.3, 2.5]. Hence 
we need only check if IR

l = 2~\ (2):IR] is generated by two elements. 

LEMMA 1.7. Let R be reduced. If [ (2):IR] is generated by two elements 
then it is generated by 2 and any o e [ (2):IR]\(2). 

Proof. The result is clear if R = Z. Suppose R ¥= Z and note that then 
IR ¥= (2) and so [ (2) :^ ] c IR. Let [(2):/^] = (Vl, <p2) and say 
2 = «pjttj + <P2«2- Then either at or at + (1) is in IR so that q>iai equals 2\pt 

or 2\pj + <p, for some ^ e IR. Hence either <pl9 <p2 or <p} + <p2 lies in (2). 
Thus [ (2):/^] = (2, V/) for / = 1 or 2. Let 

o e [(2):/^]\(2). 

Then a = 2a + ^ with 0 « J^. Writing )8 = <1> + j80 and j8oV = 2i//, we 
obtain a = 2(a -f t//) 4- <p. Hence 

[(2):/*] = (2 , v ) = (2, a). 

THEOREM 1.8. Le/ Rbe a one-dimensional Witt ring. Then R is Gorenstein 
if and only if R is a group ring over Z. 

Proof The implication (<—) is by [3, Corollary 9]; it may also easily be 
checked by (1.6). For the implication (—>) suppose that R = Z[AJ X 
Z[Am] with Aw generated by th . . ., tn and Aw generated by sh . . ., sm. 
Then aj = </1 ? . . . , /„> and a2 = <^sx, . . . , s m » are in [ (2):IR] but 
°\ ~ °2 £ (2)- Thus [ (2):IR] is not generated by two elements (1.7). Thus 
R is not Gorenstein (1.6). An inductive argument, using Marshall's 
classification of reduced Witt rings [11, 6.23], completes the proof. 

Remark. We sketch another proof that R Gorenstein implies R is a 
group ring over Z. If R is reduced but not a group ring over Z then there 
exists an a e G with 

D(\, a) = {1, a, b, ab). 

(This follows easily from Marshall's classification; I do not know a direct 
proof.) There is a well-defined i£-module homomorphism h:(\, a)R —> 
K/R by 

h(r(\,a)) = 2 _ 1 r ( l , -b) + R. 

But there does not exist an x e K/R with /z( j ) = xy for all 7. Thus K/R 
is not injective (Baer's criterion) and R is not Gorenstein. 

There are many conditions on a ring equivalent to the Gorenstein 
property. We list some of the more interesting ones. Recall that for an 

https://doi.org/10.4153/CJM-1988-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-050-x


1190 ROBERT W. FITZGERALD 

/^-module M, if the natural map M —> M** is injective then M is 
torsionless, and if it is an isomophism then M is reflexive. 

COROLLARY 1.9. Let R be a reduced Witt ring. The following are 
equivalent: 

(1) R is Gorenstein. 
(2) Each regular element generates an ideal all of whose primary compo

nents are irreducible. 
(3) All finitely generated torsionless R-modules are reflexive. 
(4) All ideals are reflexive. 
(5) / = (I~l)~l for all regular ideals. 
(6) R is a group ring over Z. 
(7) Every character x'.G —> {± 1} with x(~ 1) = —I is a signature of R. 

Proof. (1) through (5) are equivalent by [1, 6.2, 6.3], (1) «-» (6) is (1.8) 
and (6) <H> (7) is [13, Theorem 1]. 

COROLLARY 1.10. Let R be a group ring over Z and let I a R be an 
ideal. If a • ann# / c (b)for some regular b e R then there exists regular 
d G R and c e / with ad-be e (bd). 

Proof. We have ab~l + R is in ann^7^(ann^ / ) = (K/R) • / by 
[5, 19.10]. Hence there exists regular d G R and c ^ I with 

a/? -1 = cd~x (mod # ) . 

2. Zero dimensional Witt rings. Throughout this section, R denotes a 
noetherian Witt ring with XR empty; thus R is local of dimension zero. 

THEOREM 2.1. For R a local noetherian Witt ring, the following are 
equivalent: 

(1) R is Gorenstein. 
(2) R is an injective R-module. 
(3) Ext^(M, R) = 0 for all i > 0 and for all finitely generated R-

modules M. 
(4) ann(Tfl) = {0, /?}, for somep e R. 

Proof. (1) —> (2) is [9, Theorem 214] since R has grade 0. (2) -> (3) is 
standard and (3) -* (1) is [1, 4.5]. (1) ^> (4) is [9, Theorem 221]. 

Condition (4) shows that any group ring extension of a Witt ring of 
local type is Gorenstein. These are the only examples of elementary type 
and the only known examples. 

Let PnR denote the set of «-fold Pfister forms in R and let 

PR = U PR. 
nm n 

For a form <p G R we let D(<p) denote the value set and G(<p) the set 
{x G G\ x<p = <p}. 
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LEMMA 2.2. If XR = 0 and ? G P w/7/z G(<p) ^ G f/œw G(2<p) # G(<p). 

Proo/. Suppose G(tp) = G(2<p). Then D(2) c G(<p) and if >> G D(2) then 
(1, y)<p = 2<p. Thus if y G £>(2), 

Z)<1, y) c G( <1, j » = G(2V) = G(cp). 

Now 

D(4) = Z)(2)(U{D<l, j>| j e Z)(2) } ). 

So Z)(4) c G(<p) also. Continuing the argument will show all D(2m) lie in 
G(<p) and hence that G(«JP) = G, a contradiction. 

LEMMA 2.3. Le/1 J^ = 0 ÛWJ to 0 # o G PP. 77zé>« //zere exists a fi G PP 
wzï/z 0 T̂  jua G a n n ^ ) . 

Proof An easy induction on |zb/)(/?) | shows there exists a non-zero 
p G P P with a|/? and ±D(p) = G. If £>(/?) - G we are done. Other
wise, choose y £ P>(p); Note (1, -y)p ¥> 0. If D( (1, -j>/?) = G then 
we are again done. Otherwise, D( (1, — y)p) = D(p) as [G:D(/?) ] = 2. 
Now -j> G P>(/?) so (1 , -j>/? = 2p. Then £(/?) = G by (2.2). 

We begin describing some of the properties of a local Gorenstein Witt 
ring. 

PROPOSITION 2.4. Let R be Gorenstein with zxm{IR) = {0, p}. Then there 
exists an n such that: 

0)/> e P„R, 
(2) /? w a multiple of all non-zero o G PR, 
(3) /£ = {0, p) andll+x = 0, and 
(4) / / a G P ^ P X f O } then [G:D(o)] = 2. 

Proof (1), (2) and (3) follow quickly from (2.3). (3) implies P is 
«-local, hence, by [12, 2.2], (n — 1)-Hilbert. This implies (4) since no 
o G P„_!P\{0} is universal. 

Recall that 

p(R) = inf{m|/£2 = 0}. 

COROLLARY 2.5. Let R be Gorenstein. If v(R) = 1 then R = Z/2Z, 
/ / !<#) = 2 f/iew P = Z/4Z or (Z/2Z)[A,] and if v{R) = 3 fAew R is of 
local type. 

Proof. This follows immediately from (2.4) (3). 

PROPOSITION 2.6. Let R be Gorenstein. 
(1) If o G PR then P /ann o is a Gorenstein Witt ring. 
(2) Suppose R = WF for some field F. If x G F then WF( \fx) is a 

Gorenstein Witt ring. 

https://doi.org/10.4153/CJM-1988-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-050-x


1192 ROBERT W. FITZGERALD 

Proof. (1) Set R = # / ann a, &nnR(IR) = {0, p) and write p = op0 

with p0 e Pi?, using (2.4). Since R is a Witt ring [11, 4.24], it suffices 
to show 

&nnR(IR + ann a) = {0, p0 + ann a} 

by (2.1). Let 

<p + ann a e ann^(/^ + ann a). 

Then (1, — x)<p e ann a for all JC G G and so 

<pa G annR(IR) = {0, /?0a}. 

Hence <p = 0 or /?0 (mod ann a). 
(2) Let T = WF(-\fx) and s*:!7 -> # be the Scharlau transfer. Let 

ann R(IF) = {0, p } and suppose /?j e ann7(/,F( yGc) ). Then for all a G F, 

0 = s*(( l , -û>/?,) = <1, -a)s*(px). 

So s*(px) e {0, p}. 
First suppose J*(/?J) = 0. Then p{ = <p ® F(\fx) for some <p ^ R. For 

allz G F ( V J C ) \ 

0 = **( <1, -Z> ® <p ® F( y/i) ) = * ® **( (1 , -Z> ). 

We thus have <p ann(l , — x) = 0 . Hence 

<p G ann(ann(l, —JC) ) = R • (1 , — x), 

since i? is injective ( (2.1) and [5, 19.10] ). But then 

px = <p®F(V^) = 0. 

We have shown that if px e annT(IF(\Gc) ) and px ¥= 0 then ^*(/?i) = P-
In particular, 

|annr(/F(V^))l = 2 

and r is Gorenstein by (2.1). 

Since group extensions of Witt rings of local type are Gorenstein, (2.6) 
(2) gives a slight extension of [2, Theorem 3.8]. 

If W is an i^-submodule of Rn, let 

W± = { ( r „ . . . , r w ) e *"| 

2 rlwl = 0 for all (w,, . . . , w j e If) . 

The following computation, involving Ext, is well known (cf. [5, 19.10] ). 

PROPOSITION 2.7. Let R be Gorenstein and let W be an R-submodule 
ofR". Then W±± = W. 
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We may easily deduce several striking properties of Gorenstein Witt 
rings. For the next six corollaries R denotes a local Gorenstein Witt ring 
with v(R) = n + 1 and axm{IR) = {0, p}. 

COROLLARY 2.8. If I c R is an ideal then ann(ann 7) = 7. 

Proof. 7X = ann 7, so apply (2.7). 

Recall that a form <p is round if G(<p) = 7)(<p). If a G G the radical of 
a is 

rad(a) = {b G G\D(l, -a) c D(l, -b) }. 

COROLLARY 2.9. If q>\ and <p2 are round forms with D(q)l) c D(<p2) then 
<Pj|<p2- In particular, for a e G we have rad(a) = {1, a). 

Proof We have that ann <pj is generated by (1, —a) with a G D ^ ) 
[11, 4.23]. So 

<P2 G ann(ann(Vl) ) = (Vl) 

by (2.8). 

COROLLARY 2.10. ann 7# = 7JJ-1. 

Proof It suffices to show I2
R = ann 7 ^ - 1 by (2.8). Clearly l\ c 

ann 7#_ 1 so if equality does not hold there exists 0 ^ (1, a) G 
ann 7^_ 1 . Thus for any 6^ . . . , bn_x G G we have 

<tf, 6 b . . . ,&„_!» = 0. 

Thus 

< Û , fej, . . . , Z>„_2» e ann IR = {0, /?}, 

and so for any bl9 . . . , bn_2 ^ G we have 

<f l , * ! , . . . , 6W_ 2» = 0. 

Continuing yields (1, a) = 0, a contradiction. 

COROLLARY 2.11. If<p G 7^ _ 1 V^ f/ien G(<p) Aas z/wfejc 2 z« G. 7/77 c G 
w a subgroup of index 2 then there exists <p G 7^ \7jJ WJY/J G(<p) = i/. 

In particular, \IR~ \ = 2|G|. 

Proo/. If <p G 7 £ - 1 \ 7 ^ then for all a G G, <1, Û>V G {0, /?}. Since 
<p £ ann 7^, G(<p) has index 2 in G. 

Now suppose 77 c G is a subgroup of index 2. Let I be the ideal of 
R generated by all (1 , —h), h G 77. Assume there is no <p G IR with 
G(<p) = H. Then for any ç G /^, if c G(v) if and only if G = G(v) if 
and only if <p G {0, ;?}. Hence ann I = {0, /?}. But then (2.8) implies 
I = ann{0, p} = IR, a contradiction. So G(y) = 77 for some <p G 7^. 

We finish by showing <p G I^~\ Let b £ G(<p). If - 1 G G(<p) then 
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G = {hb}G(<p) c G(<1, - Z ) » . 

If - 1 £ G(<p) then (1 , - / > > = 2<p so again G( (1 , -b)<p) = G by (2.2). 
Hence for all Z> G G, (1 , — Z>)<p G ann 7#. That is, 

<p G ann 7^ = 7# _ 1 

by (2.10). Clearly ^ O o r ^ s o ^ G / * ~ V * -
For the last statement, let 77 c G be a subgroup of index 2 and suppose 

<pl5 <p2 e IR~1\IR satisfy (/(«PJ) = H = G(v2)« Then ann(«pj) = ann(<p2) 
and <p2

 = w<Pi f° r some unit u ^ R (2.8). Write w = (d) + w0, with 
w0 G 7^. Then <p2

 = (d)q>\ as WQ^ = 0. Since iGG(<p{) = 2, we see 
there are exactly two elements in IR~\IR having G(<JP) = H. There are 
|G| — 1 many subgroups of index 2 in G, so 

i / rv*i = 2(iGi -1). 
Thus \l£~l\ = 2|G|, as \I%\ = 2. 

COROLLARY 2.12. For any ideal I c R and element b G R we have 

ann[7:(Z>) ] = b ann 7. 

Proof. Suppose 7 is generated by ax, . . . , an G 7?. Set 

K = i* • ( ^ 1 , . . . , ^ ) c jR* and 

W = R -(b, al9...,an) c i ^ + 1 . 

Then 

JT1 = { (r, j ) G i ? " + l | ^ + JÂ = 0}, 

where Â = (al9 . . . , an) G /*" and Jâ = 2 ^ / . Note that (0, J) G JF 1 if 
and only if J G V and if we set 

W\ = {r G /l|(r,S) G ^ } 

then tff = [I:(b) ]. 
Now 

W "̂-1- - { (/, â) G Rn + l\tr + us = 0 for all (r, I ) G W±}. 

In particular, if (/, u) G ^ ± J - then îZs = 0 for all J G F"1. SO 
W G F 1 - 1 = F by (2.7), that is, û = m for some r ^ R. Set 

^ = {(f ,0) G ^ ± J - } . 

Then 0 = W±±/W^ WXIWX n W. Since 

^ = { (/, 0)| tr = u for all r G H ^ } = ann[7:(Z>) ], 

and 

Wx n ^ = b ann 7 
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we have ann[/:(Z>) ] = b ann I. 

COROLLARY 2.13. For ideals I, J cz R: 
(\) I n J = ann(ann I + ann J), 
(2) I + J = ann(ann I n ann J), 
(3) I • J = ann[ann / : / ] . 

Proof, ann I n ann / = ann(7 + / ) which yields (1) and (2) by (2.8). 
For (3), let I be generated by bl9 . .., bn. Then 

ann[ann/:7] = ann(n[ann J:(bt) ] ) = 2 ann[ann J:(bt) ] 

by (1) and (2.8). Then (2.12) and (2.8) yield 

ann[ann / : / ] = 2 btJ = / / . 

Each of the preceding corollaries, except (2.10), characterizes the group 
extensions of local type among those Witt rings of elementary type. We 
turn now to the question of when an arbitrary Gorenstein Witt ring is a 
group extension of a Witt ring of local type. We begin with a reduction 
theorem. 

THEOREM 2.14. Let R be a local noetherian Witt ring with v(R) = n + 4 
(n â 1). Suppose that for all x e G\{1}, i?/ann(l , — x) is a Witt ring of 
local type extended by a group of order 2n. Then R is also a group ring 
extension of a Witt ring of local type. 

Proof We are assuming that for all x e G\{1} there exist groups H(x) 
and A(x) such that: 

(i) G = H(x) X A(JC) 

(ii)Z)<l, -x) c H(x), - 1 e H(x) 
(iii) |A(x) | = 2n 

( i v ) / ) < - * , -y> = {1, -y}D(l, -x)9 for all >> e G\H(X) 

(v) I Z K - X , - j » | = \G\/2n+\ for all y G H(x)\D(l, -x). 
Step 1. There exists an x e G with \D(l, -x) \ < |G| /2"+ 2 . 
If for any x e G\{1} we have |Z)(1, -x) | > |G | /2" + 2 then for 

y G / / (x) \Z)( l , -JC>, Z X - J C , - 7 » = D( l , - JC>. In particular, 
-y G Z>(7, - x ) and < - J C , - 7 » = < 1 , - J C » . Then Z)<1, - x ) = G 
by (2.2) which contradicts (ii), (iii). Hence for all x e G\{1}, 

\D(l, -x) I ^ |G| /2"+ 2 . 

Suppose then that |7)<1, -x) \ = \G\/2n+1 for all x e G\{1}. Fix 
x G D( l , 1) so that x e D(l, -x). For all z £ Z)<1, - x ) (iv) and 
(v) imply 

Z X - J C , - z > = {1, u}D(\, -x) for some u e G\Z>(1, - X ) . 

So 
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D(\9 -z) c {1, u}D(\, -x) and 

\D(l, -x) n D(l9 -z) | = ±|Z)<1, - z> | = |G|/2" + 3. 

We use the basic counting formula of [8, Proposition 8]: 

(*) 2 \D(l, -x) n D(l, -y) | 

= |G| - 2|Z)<1, -JC> | + 2 |D(1, -y) |. 
^GZ)(1,-X>\{1} 

Let g = \G\ and let Tbe the sum of |Z)(1, - J C ) n Z>(1, -j>> | over those j 
in Z)(l, - X > \ { 1 , JC}. Then (*) is: 

2 - (2« + 5) [ ( 2« + 2 g _ g ) g + 22" + 5 r ] 

= 2 - ^ + 4 ) [ 2 2 " + 4 g - 2" + 3g + (g - 2" + 2)g] 

(ln+1 - 3)g2 + T = T + \2n + 1 - 3)g. 

As T > 0, we have g < 2" + 3 and hence g = 2" + 2, contradicting our 
supposition. 

Step 2. If \D(\, ~x) | < |G | /2" + 2 and z e G\H(x) then 
(a) |Z)<1, - x > | = \D(1, -z) | 

(b) \D(l, -x) O Z)<1, - z> | = ±|Z)<1, - x > | 

(c) If j ; G # ( J C ) \ Z ) < 1 , - x) and |D<1, ->;> < |G | /2" + 2 then 
|D(1, - j > | = |Z)<1, - J C > | . 

We have, by (iv), that 

2 X - X , - z » - {1, -z}D(l, -x) 

(note that zbz £ Z)(l, — JC) by (2.2)). Suppose x e i /(z). Then, as 
z £ Z)(l, - JC>, 

| Z ) « - x , - z » | = |G|/2" + 1 

and so 

|D<1, - x > | = |G | /2" + 2 

contrary to our assumption. Hence JC e G\H(z) and 

{1, -x}D(l, - z > - D « - x , - z > = {1, -z}D(l, -x). 

This implies (a) and (b). 
For (c), we may choose w £ H(x) U H(y) since G cannot be the union 

of two proper subgroups. By (a), 

|Z><1, -w) | = \D(l9 -x) |. 
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Applying (a) with x replaced by y gives that 

|Z)<1, -w) | = \D(\, - j > | 

also. 
Step 3. There exists an m < |G | /2" + 2 so that for all JC e G\{\} either 

|Z)<1, - x > | = m or |Z)<1, - * > | = |G|/2" + 2. 
Fix an x e G\{1} with |Z)<1, -JC> | < |G | /2" + 2 using Step 1 and set 

m = \D(l, -x) |. If y (Ê D(\, -x) then Step 2 shows |Z)<1, -j>> | - m 
or |G | /2" + 2 . Let y e Z)(l, - JC>. There must exist a z e G\H(X) with 
j £ D( l , —z> since otherwise G\H(x) c D( l , -j>) and so G c 
D( l , —j>). Applying Step 2 with x replaced by z gives |D(1, —y) | = 
|G | /2" + 2 or |D(1, - z> |. Since \D(l, -z) \ = m we are done. 

Step 4. Finish. 
We finish by showing m = 2 and hence that R is a group ring. If / 

is two-sided rigid then so are all elements of A(7). Hence R = S[h] with 
|A| ^ 2n+l and S not a group ring. If 1 ¥= y e G5, the group associated to 
S, then |D(1, - y ) | ¥= 2 and so 

|Z)<1, - j > | = |G | /2" + 2 ^ l-\Gs\. 

Thus S is of local type. 
We again use the counting formula (*). Fix x with \D(\, —x)\ = m. 

Set 

g = \G\, k = |G| /2"+ 2 , 

a = | {z G Z)<1, — JC>\{1} | |D<1, - z> | = m} | 

and let 7 be the sum of \D(\, -y) n D<1, -JC> | for y e Z)(l, - X > \ 

{1, x}. Then (*) yields: 

-ra(g — k) -f r = g — 2m + am + (m — a — Y)k 

T = g — 2m — a(k — m) — k — -m(g — k) 

m 
g > 2m + k + a(k - m) + —(g - &) 

g > ^m(g - *) = 2-1mg(l - 2-<w + 2)). 

We thus have m < 2" + 3/(2* + 2 - 1) < 3 (as n ^ 1). But then m = 2 
as desired. 

To prove group ring extensions of Witt rings of local type are the only 
Gorenstein Witt rings the reduction theorem (2.14) (along with (2.5)) 
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shows it suffices to do the case v(R) = 4. We are unable to do this with
out added assumptions. However we will now concentrate on the case 
v(R) = 4. 

Recall that for x e G, 

Q(x) = { « - * , ->>» 4- 4 | y e G} 

is a subgroup of IR/IR. 

PROPOSITION 2.15. Let R be Gorenstein with v(R) = 4. For any x, y e G 
we have: 

IG(*) n ô(j>) I IGW n ô(Acy) I = \Q(x) |. 
Proof. Let 

* = ie(*VG(*) n g(jO |. 

The map G—>ô(x)/Ô(*0 Pi 0 ( 7 ) sending g to the coset represented by 
< - x , - g » has kernel Z)(l, -x>Z)(l , - x y ) . Thus 

k = [G:D(l, -x)D(l, -xy) ]. 

Any a e g (x ) n Q(xy) represents D(l, —x)D(l, —xy) and 
[G:D(o) ] ^ 2 by (2.4). Since there are k subgroups of index ^ 2 contain
ing D ( l , -x)D(l, -xy) and a = a' if and only if D(o) = D(o') by 
(2.9), we have 

\Q(x) n Q(xy) | â *. 

Further, for each subgroup H of index 2 containing Z)(l, — x )D( l , —xy) 
there exists a <p e 72F with G(v) = if (2.11). Now D(l, - x > c G(<p) 
implies 

<JP G ann(ann(l, — x) ) = ( (1 , — x) ), 

by (2.8), and so we may assume <p = «c — x, — w > for some w e G. Also 
Z)(l, - x y ) c G(<p) implies <p G g (x ) n Ô(xy). Thus 

/c ^ |0 (x) O g(xy) | 

and we are done. 

COROLLARY 2.16. Let R be Gorenstein with v(R) = 4. If for some x, 
y e G, Q(x) c Q(y) then x = 1 or y. 

Proof Q(x) c Q(y) implies \Q(x) n g(xy) | = 1 by (2.15). Then 

\D(l, -y) | = |D<1, -x) n D<1, - x j > | 

by [11, 5.2] and so D(l, -y) c Z)<1, - x ) . Thus x e {1, .y} by (2.9). 

COROLLARY 2.17. Let R be Gorenstein with v(R) = 4. If x, y e G 
then: 
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\D(l, -x) | \D(1, - y) | \D(l, -xy) \ 

= \G\ \D(l, -x) n D(l9 -y) |2. 

Proof. Combine (2.15) and the equation [11, 5.2]: 

|D<1, -xy) \/\D(l, -x) n D(l, -y) \ = \Q(x) n Q(y) |. 

THEOREM 2.18. Let R be Gorenstein with v{R) = 4. Assume that for 
all x ¥= 1 and subgroups H c D( l , — x) of index 2 / t o //zere exists a 
y e G w/7/z 

/ / = D < I , - * > n £<l , -jv>. 

T/zert i£ « L[AX] where L is of local type. 

Proof. Step 1. There exists x G. G\{1} with 

[G:D(l, -x)] = 4. 

Choose any x ¥> 1 with \D(\9 — x) | maximal. Let H c D(\, — x) be a 
subgroup of index 2 and let y e G satisfy 

# = D(\, -x) n Z><1, -y). 

Then 

|D<1, -JC> n D(l, -y) | = 1|Z)<1, -x) |. 

If |D<1, -;;> | < \D(l9 -x) | then D( l , ->>) c Z><1, - x > , contradict
ing (2.9). So \D(l, -y) | = |D<1, -x)\ by maximality. Similarly, 
|Z)<1, -x) | = |Z)<1, -xy> |. Apply (2.17) to get 

[G:D(l, -x)] = 4. 

Step 2. K = {x e G| [G.\D(1, - * > ] ^ 4} is a subgroup of index at 
most 2 in G. 

We first note that for no x is Z)(l, — x) of index 2, as *>(#) = 4. 
Let JC j G I Then \Q(x) n g(j>) | = 2 by (2.16) and so \Q(x) n 
Ô(JCV) | = 2 by (2.15). Similarly, | g O 0 n g(jçy) | = 2. Applying (2.15) 
again yields lôO^O I = 4 and xy e K 

If x G £ \ { 1 } then for each H c D( l , - x ) of index 2 there exists 
yH with 

H = D(l, -x) O D(l, -yH). 

Thus |2>(1, - ^ > | ^ |Z)(1, - x > | by (2.9) and so yH and xyH both lie 
in K. Hence 

|tf| ^ 2|D<1, - x > | = l-\G\. 

Step 3. Finish. 
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We first note that if y = z (mod K) then \Q(y)\ = \Q(z)\. Namely, 
suppose y = xz with x e K. As in Step 2, 

\Q(x) n Q(y) \ = 2 = \Q(x) n Q(z) |. 

Hence 

IÔO0I = 2IÔ(j) n ô(z)| = \Q(z)\ 
by (2.15). We let k denote the common size \Q(y)\, y £ K. 

We count using [8, Proposition 8]. Let g = \G\ and fix x G A\{1}. 
Then: 

2 \D(1, -x) n Z)<1, -y) g . _«_ 
2 2&' 

since for _y £ Ĉ, 

|Z)<1, - x > n Z)(l, -;,> | = |Z)<1, -xy) \/\Q(x) n 6 ( ^ ) | = gl2k 

by Step 2. Also: 

8 
\k' 

~2\Q(x) | 4- 2 |/)(1, -7> | = | 4- (/? - l)f + 
^GZ) ( I , -X> 2 4 

where p = |D(1, — x> n AT|. We thus obtain: 

g2 = 8g + 16/^(1/4 - l//c). 

Now/? ^ |Z>(1, — jt) | = g/4 so that 

g2 ^ 8g + 4g2(l/4 - 1/*). 

Thus 4g2/& ^ 8g and k ^ g/2. This implies that for each y € K that 
|D(1, - y ) | = 2. Hence # « LfAJ with L of local type. 

COROLLARY 2.19. Let R be Gorenstein with v(R) = n + 4 (n è 0). 
Assume: for any o G iy£, x £ D(o) and subgroup H with 

D(a) c j f f c D ( (1 , -jc>a) W [Z)( (1 , -*>a) : iJ ] = 2 

//za/1 //zere ex/s/s a y G G w/7/z 

ff = D(<1, -x>a ) H Z)(<1, - y)o). 

Then R « L[An + 1] w/zere L zs of local type. 

Proof Combine (2.14) and (2.18). 

We conclude with an ideal theoretic version of the extra assump
tion in (2.18). Let H c G be a subgroup. Let IH be the 1-Pfister ideal 
( { < 1 , -h)\h G H) ) (cf. [4] ). Let 

JH = {? G /2|77 c G(v) } and 

C ( # ) = {z ^ G\ H cz D(l, -z) }. 
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If R is a local Gorenstein Witt ring and v(R) = 4 then ann IH = 

PROPOSITION 2.20. Let R be Gorenstein with v(R) = 4. Let I = IH be a 
1 -Pjister ideal The following are equivalent: 

(1) ann / is a \-Pfister ideal. 
(2) IR - ann / = IR n ann /. 
(3) &(H) = H. 

Proof. (I) ^(2) is [4, 2.15]. (2)-> (3): 

[7^:ann / ] = ann(ann / • ann IR) 

by (2.13). Thus 

[IR:ann / ] = ann(IR ann / ) = ann(/^ n ann / ) 

= ann l\ + ann(ann I) = I + l\, 

using (2.13), (2.8) and (2.10). Computing differently yields 

[4:ann /] = [4'/C(//) + 4/1 = f4 W 

= a n n JC(H) + 4 = 7C2(//) + 4 
Thus / c2 ( / / ) + I2

R = IH + I2
R and so C2(#) = // . 

(3) -» (1): Here 

ann IC(H) =
 ^C\H) + ^c(H) = IH + ^c(Hy 

Thus, by (2.8), 

JC(H) = a n n TH n ann /C(77) = (IC{H) + / „ ) n (JC(/ / ) + 4 ) . 

In particular, ./# c Ic^Hy So 

ann /# = Ic{H) + JH
 = ^C(H) 

is 1-Pfister. 

COROLLARY 2.21. Let R be Gorenstein with v(R) = 4. Then R « L[A,] 
with L of local type if and only if for all l-Pfister ideals I not containing 
IR we have 

IR ann I = IR C\ ann I. 

Proof. The implication (—>) is simple to check using (2.20) (3). For 
the reverse implication we check the condition of (2.18). Let x e G\{1} 
and let H be a subgroup of D(l, —x) of index 2. If <p e IH n /# then 
x e G(<JP), so that /# £ IH (2.11). Hence our assumption and (2.20) 
give C2(H) = H. Then {1, x) Ç C(H). Let y G C ( # ) \ { 1 , JC}. Then 
H c Z)<1, -y) and Z)<1, -JC> n D(l, -y) * D(l, -x) by (2.9). So 
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H = D(\, -x) n Z)<1, -y) 

as desired. 

THEOREM 2.22. Let R be Gorenstein with v(R) = n + 4 (n ^ 0). 77ze 
following are equivalent: 

(1) JR « L[A„+1], vv/zere L zs of local type. 
(2) i w a// a £ P„,R a«J a// \-Pfister ideals I not containing IR we have 

IR ann(a/) = IR C\ ann(a/). 

Proof Combine (2.21) and (2.14). 
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