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Abstract

We study the problem of choosing the best subset of p features in linear regression,
given n observations. This problem naturally contains two objective functions including
minimizing the amount of bias and minimizing the number of predictors. The existing
approaches transform the problem into a single-objective optimization problem. We
explain the main weaknesses of existing approaches and, to overcome their drawbacks,
we propose a bi-objective mixed integer linear programming approach. A computational
study shows the efficacy of the proposed approach.

2010 Mathematics subject classification: primary 62J05; secondary 90B50, 90C11.
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1. Introduction

The availability of cheap computing power and significant algorithmic advances in
optimization have caused a resurgence of interest in solving classical problems in
different fields of study using modern optimization techniques. The focus of this study
is on one of the classical problems in statistics, the so-called best subset selection
problem (BSSP), that is, finding the best subset of p predictors in linear regression,
given n observations.

Linear regression models should have two important characteristics in practice
including prediction accuracy and interpretability [20]. The traditional approach of
constructing regression models is to minimize the sum of the squared residuals. It
is evident that models obtained in this approach have low biases. However, their
prediction accuracy can be low due to their large variances. Furthermore, models
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constructed by this approach may contain a large number of predictors and so data
analysts struggle in interpreting them.

In general, reducing the number of predictors in a regression model can improve
not only the interpretability but also, sometimes, the prediction accuracy by reducing
the variance [20]. Hence, there is often a trade-off between the amount of bias and
the practical characteristics of a regression model. In other words, finding a desirable
regression model is naturally a bi-objective optimization problem that minimizes the
amount of bias and the number of predictors simultaneously.

To the best of our knowledge, there has been no study on obtaining a desirable
regression model using a bi-objective optimization approach. This may be due to
the fact that bi-objective optimization problems are usually computationally intensive,
much more than single-objective optimization problems. However, recent algorithmic
and theoretical advances in bi-objective optimization (in particular, bi-objective mixed
integer linear programming) have now made these problems computationally tractable
in practice. More precisely, although bi-objective optimization problems are NP-
hard [15], under some mild conditions, we are now able to solve them reasonably
fast in practice. We believe that this is the first work to construct a regression model
utilizing a bi-objective optimization approach.

The structure of the paper is organized as follows. In Section 2, the main
concepts in bi-objective mixed integer linear programming are explained. In Section 3,
the drawbacks of existing (single-objective) optimization techniques for BSSP are
presented. In Section 4, the proposed bi-objective mixed integer linear programming
formulation is introduced. In Section 5, the computational results are reported. Finally,
in Section 6, some concluding remarks are provided.

2. Preliminaries
A bi-objective mixed integer linear program (BOMILP) can be stated as follows:

min
(x1,x2)∈X

{z1(x1, x2), z2(x1, x2)},

where X =
{
(x1, x2) ∈ Zn1

≥ × R
n2
≥ | A1x1 + A2x2 ≤ b

}
represents the feasible set in the

decision space, Zn1
≥ = {s ∈ Zn1 | s ≥ 0}, Rn2

≥ = {s ∈ Rn2 | s ≥ 0}, A1 ∈ R
m×n1 , A2 ∈ R

m×n2 ,
and b ∈ Rm. It is assumed that X is bounded and zi(x1, x2) = cᵀi,1x1 + cᵀi,2x2, where
ci,1 ∈ R

n1 and ci,2 ∈ R
n2 , for i = 1, 2, represents a linear objective function. The image

Z of X under the vector-valued function z = (z1, z2)ᵀ represents the feasible set in the
objective/criterion space, that is,Z = {o ∈ R2 | o = z(x1, x2) for all (x1, x2) ∈ X}. Note
that BOMILP is called bi-objective linear program (BOLP) and bi-objective integer
linear program (BOILP) for the special cases of n1 = 0 and n2 = 0, respectively.

Definition 2.1. A feasible solution (x1, x2) ∈ X is called efficient or Pareto optimal if
there is no other (x′1, x

′
2) ∈ X such that z1(x′1, x

′
2) ≤ z1(x1, x2) and z2(x′1, x

′
2) < z2(x1, x2),

or z1(x′1, x′2) < z1(x1, x2) and z2(x′1, x′2) ≤ z2(x1, x2). If (x1, x2) is efficient, then
z(x1, x2) is called a nondominated point. The set of all efficient solutions is denoted by
XE . The set of all nondominated points z(x1, x2) for (x1, x2) ∈ XE is denoted by ZN
and referred to as the nondominated frontier.

https://doi.org/10.1017/S1446181118000275 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000275


66 H. Charkhgard and A. Eshragh [3]

Figure 1. An illustration of different types of (feasible) points in the criterion space.

Definition 2.2. If there exists a vector (λ1, λ2)ᵀ ∈ R2
> = {s ∈ R2 | s > 0} such that

(x∗1, x
∗
2) ∈ arg min

(x1,x2)∈X
λ1z1(x1, x2) + λ2z2(x1, x2),

then (x∗1, x∗2) is called a supported efficient solution and z(x∗1, x∗2) is called a supported
nondominated point.

Definition 2.3. Let Ze be the set of extreme points of the convex hull of Z, that
is, the smallest convex set containing the set Z. A point z(x1, x2) ∈ Z is called an
extreme supported nondominated point if z(x1, x2) is a supported nondominated point
and z(x1, x2) ∈ Ze.

In summary, based on Definition 2.1, the elements of Z can be partitioned into
dominated and nondominated points. Furthermore, based on Definitions 2.2 and 2.3,
the points can be partitioned into unsupported, nonextreme supported, and extreme
supported nondominated points. Overall, bi-objective optimization problems are
concerned with finding all elements ofZN , that is, all nondominated points, including
supported and unsupported nondominated points. An illustration of the set Z and its
corresponding categories is shown in Figure 1.

It is well known that in a BOLP, both the set of efficient solutions XE and the
set of nondominated points ZN are supported and connected [17]. Consequently, to
describe all nondominated points in a BOLP, it suffices to find all extreme supported
nondominated points. A typical illustration of the nondominated frontier of a BOLP
is displayed in Figure 2(a), where (solid) circles are extreme supported nondominated
points.

Since we assume that X is bounded, the set of nondominated points of a BOILP
is finite. However, due to the existence of unsupported nondominated points in a
BOILP, finding all nondominated points is more challenging than in a BOLP. A typical
nondominated frontier of a BOILP is shown in Figure 2(b), where the rectangles are
unsupported nondominated points.

Finding all nondominated points of a BOMILP is even more challenging.
Nonetheless, if at most one of the objective functions of a BOMILP contains
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Figure 2. An illustration of the nondominated frontier.

continuous decision variables, then the set of nondominated points is finite and BOILP
solution approaches can be utilized to solve it [19]. However, in all other cases
in which more than one objective function contains continuous decision variables,
the nondominated frontier of a BOMILP may contain connected parts as well as
supported and unsupported nondominated points. Therefore, in these cases, the set
of nondominated points may not be finite and BOILP algorithms cannot be applied to
solve them any more. A typical nondominated frontier of a BOMILP is illustrated
in Figure 2(c), where even half-open (or open) line segments may exist in the
nondominated frontier. Interested readers are referred to the literature [3, 4, 10, 11]
for further discussions on the properties of BOILPs and BOMILPs and algorithms to
solve them.

3. Bi-objective versus single objective optimization models for BSSP

As discussed in Section 1, BSSP is naturally a bi-objective optimization problem
(BOOP), which can be stated as minβ̂∈F {z1(β̂), z2(β̂)}, where F is the feasible set
of parameter estimator vectors β̂, z1(β̂) is the total bias, and z2(β̂) is the number of
predictors. Since there is no bi-objective optimization technique in the literature of
BSSP, the following two approaches have widely been used to convert BOOP to a
single-objective optimization problem.

(i) The weighted sum approach: Given some λ > 0, BOOP has been reformulated
as

min
β̂∈F

z1(β̂) + λz2(β̂).

(ii) The goal programming approach: Given some k ∈ Z≥, BOOP has been
reformulated as

min
β̂∈F :z2(β̂)≤k

z1(β̂).
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Figure 3. The set of feasible points in the criterion space.

For further details, interested readers are referred to [2, 5, 7, 12, 16, 22] for the
weighted sum approach and [1, 13, 14] for the goal programming approach. Although
those two optimization problems (i) and (ii) can be solved significantly faster than a
bi-objective optimization problem, their drawbacks are explained and illustrated here.

Suppose that for each β̂ ∈ F , the corresponding point (z1(β̂), z2(β̂))ᵀ is plotted into
the criterion space. Figures 3(a) and 3(b) show two typical plots of such pairs for all
β̂ ∈ F . In these two figures, all filled circles and rectangles are nondominated points of
the problem and unfilled rectangles and circles are dominated points. In Figure 3(a),
the region defined by the dashed lines is the convex hull of all feasible points. In this
case, it is impossible that the weighted sum approach finds the filled rectangles for any
arbitrary weight, as all filled rectangles are unsupported nondominated points (that is,
they are interior points of the convex hull). So, this illustrates that there may exist many
nondominated points, but the weighted sum approach can fail to find most of them for
any arbitrary weight. Figure 3(b) is helpful for understanding the main drawback of the
goal programming approach. It is obvious that depending on the value of k, the goal
programming approach may find one of the unfilled rectangles which are dominated
points. So, the main drawback of the goal programming approach is that it may even
fail to find a nondominated point.

The main contribution of our research presented here is to overcome both of these
disadvantages by utilizing bi-objective optimization techniques. We note that in the
literature of BSSP, z1(β̂) is mainly defined as the sum of squared residuals. The
reason lies in the fact that the sum of squared residuals is a smooth (convex) function.
Hence, it is easy to minimize such a function (over a convex feasible set), which
yields a unique solution. However, to be able to exploit existing bi-objective mixed
integer linear programming solvers, we use the sum of absolute residuals for z1(β̂).
Such solvers transform a bi-objective optimization problem into a sequence of single-
objective integer linear programs in which each one can often be solved efficiently,
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in practice, by using commercial solvers such as CPLEX or Gurobi. Note that if we
used the sum of squared residuals, then the bi-objective optimization problem would
become nonlinear. So, a sequence of single-objective integer nonlinear programs
would be solved. However, commercial integer nonlinear programming solvers are
not as mature and fast as integer linear programming solvers. So, it is the main reason
that the focus of this study is on the sum of absolute residuals. Another advantage
of using the latter is that it is a superior model in the presence of outliers [8]. More
precisely, while the sum of squared residuals gives more weights to large residuals, the
sum of absolute residuals gives equal weights to all residuals, which results in a robust
estimation. We conclude this section with the following two remarks.

Remark 3.1. If we incorporate additional linear constraints on the vector of parameter
estimators of the regression model β̂, it is more likely that the goal programming
approach fails to find a nondominated point.

Remark 3.2. Unlike the weighted sum and goal programming approaches, where new
parameters λ and k, respectively, should be employed and tuned by the user, the bi-
objective optimization approach does not need any extra parameter.

4. A bi-objective mixed integer linear programming formulation

Let X = [x1, . . . , xp] ∈ Rn×p be the model matrix (it is assumed that x1 = 1), β ∈ Rp×1

be the vector of regression coefficients, and y ∈ Rn×1 be the response vector. It is
assumed that β is unknown and should be estimated. Let β̂ ∈ Rp×1 denote an estimate
for β. To solve BSSP for this set of data, we construct the following BOMILP and
denote it by BSSP-BOMILP:

min
{ n∑

i=1

γi,

p∑
j=1

r j

}
such that r jl j ≤ β̂ j ≤ r ju j for j = 1, . . . , p, (4.1)

yi −

p∑
j=1

xi jβ̂ j ≤ γi for i = 1, . . . , n, (4.2)

p∑
j=1

xi jβ̂ j − yi ≤ γi for i = 1, . . . , n, (4.3)

r j ∈ {0, 1}, β̂ j ∈ R for j = 1, . . . , p,
γi ≥ 0 for i = 1, . . . , n,

where l j ∈ R and u j ∈ R are, respectively, a lower bound and an upper bound (known)
for β̂ j, γi is a nonnegative continuous variable that takes the value of |yi −

∑p
j=1 xi jβ̂ j|

in any efficient solution, and r j is a binary decision variable that takes the value of
one if β̂ j , 0, implying that the predictor j is active. By these definitions, for any
efficient solution, the first objective function, z1(β̂) =

∑n
i=1 γi, takes the value of the
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sum of absolute residuals and the second objective function, z2(β̂) =
∑p

j=1 r j, computes
the number of predictors. Constraint (4.1) ensures that if β̂ j , 0, then r j = 1 for
j = 1, . . . , p. Constraints (4.2) and (4.3) guarantee that∣∣∣∣∣yi −

p∑
j=1

xi jβ̂ j

∣∣∣∣∣ ≤ γi for i = 1, . . . , n.

Note that since we minimize the first objective function, we have |yi −
∑p

j=1 xi jβ̂ j| = γi
for i = 1, . . . , n in an efficient solution.

Remark 4.1. The BSSP-BOMILP can handle additional linear constraints and
variables. Furthermore, by choosing tight bounds in Constraint (4.1), we can speed
up the solution time of BSSP-BOMILP. Hence, we should try to choose l j/u j as
large/small as possible.

Remark 4.2. Since only one of the objective functions in BSSP-BOMILP contains
continuous variables, based on our discussion in Section 2, the set of nondominated
points of BSSP-BOMILP is finite. More precisely, the nondominated frontier of
BSSP-BOMILP can have at most p + 1 nondominated points, as

∑p
j=1 r j ∈ {0,1, . . . , p}.

So, we can use BOILP solvers, such as the ε-constraint method or the balanced box
method, to solve BSSP-BOMILP [3, 6].

Remark 4.3. The solution (γB, rB, β̂
B
) = (|y|,0,0) is a trivial efficient solution of BSSP-

BOMILP, which attains the minimum possible value for the second objective function.
Accordingly, the point (

∑n
i=1 γ

B
i ,

∑p
j=1 rB

j ) = (
∑n

i=1 |yi|, 0) is a trivial nondominated point
of BSSP-BOMILP, where there is no parameter selected in the estimated regression
model. Hence, we exclude this trivial nondominated point by adding the constraint∑p

j=1 r j ≥ 1 to BSSP-BOMILP.

4.1. Bounds for the regression coefficients Establishing tight bounds on para-
meter estimators β̂ j is important in practice, as it can result in generating a strong
formulation [21]. If the bounds are not tight enough, the solution time may increase
significantly. Furthermore, some numerical issues may arise. For example, some
nondominated points may not be found or even some infeasible points may be reported
as nondominated points incorrectly. Consequently, in this section, we develop a data-
driven approach to find good bounds l j and u j for j = 1, . . . , p such that l j ≤ β̂ j ≤ u j, in
the lack of any additional information. For this purpose, we first present a proposition.

Proposition 4.4. Let m be the median of response observations y1, . . . , yn. If (γ∗, r∗, β̂∗)
is an efficient solution of BSSP-BOMILP, then

∑n
i=1 γ

∗
i ≤

∑n
i=1 |yi − m|.

Proof. Let us consider the feasible solution (γ, r, β̂), where r1 = 1, β1 = m, r j =

β j = 0 for j = 2, . . . , p, and γi = |yi −
∑p

j=1 xi jβ̂ j| for i = 1, . . . , n. So, we have
γi = |yi − m| for i = 1, . . . , n, because xi1 = 1 for i = 1, . . . , n in BSSP-BOMILP. Since,
by Remark 4.3,

∑p
j=1 r∗j ≥ 1 =

∑p
j=1 r j, we must have

∑n
i=1 γ

∗
i ≤

∑n
i=1 |yi − m| =

∑n
i=1 γi,

to keep (γ∗, r∗, β̂∗) as an efficient solution. �
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Remark 4.5. It is readily seen that if we replace m with any other real number,
the inequality given in Proposition 4.4 still holds. However, as the minimum of∑n

i=1 |yi − β̂1| is achieved at β̂1 = m [18], Proposition 4.4 provides the best upper bound
for

∑n
i=1 γ

∗
i .

Motivated by Proposition 4.4, we solve the following optimization problem to find
u j for j = 1, . . . , p:

u j = max
{
β̂ j

∣∣∣∣∣ n∑
i=1

∣∣∣∣∣yi −

p∑
j′=1

xi j′ β̂ j′

∣∣∣∣∣ ≤ n∑
i=1

|yi − m|, β̂ ∈ Rp
}
. (4.4)

There are several ways to transform (4.4) to a linear program (for example, see the
article by Dielman [9]). Here, we propose the linear programming model

u j = max
{
β̂ j

∣∣∣∣∣ n∑
i=1

γi ≤

n∑
i=1

|yi − m|, yi −

p∑
j′=1

xi j′ β̂ j′ ≤ γi,

p∑
j′=1

xi j′ β̂ j′ − yi ≤ γi

for i = 1, . . . , n and β̂ ∈ Rp,γ ∈ Rn
≥

}
. (4.5)

Note that model (4.5) is a relaxation of model (4.4), since γi over-calculates |yi −∑p
j′=1 xi j′ β̂ j′ | for i = 1, . . . , n. Analogously, l j for j = 1, . . . , p can be computed by

changing “max” into “min” in (4.5).

5. Computational results

We conduct a computational study to show the performance of the ε-constraint
method on BSSP-BOMILP numerically. We use C++ to code the ε-constraint method.
In this computational study, the algorithm uses CPLEX 12.7 as the single-objective
integer programming solver. All computational experiments are carried out on a Dell
PowerEdge R630 with two Intel Xeon E5-2650 2.2 GHz 12-core processors (30 MB),
128 GB RAM, and the Red Hat Enterprise Linux 6.8 operating system. We allow
CPLEX to employ at most 10 threads at the same time.

We design six classes of instances, each denoted by C(p, n), where p ∈ {20, 40} and
n ∈ {2p, 3p, 4p}. Based on this construction, we generate three instances for each class
as follows.

• We set all xi1 = 1, and all xi j with j > 1 are randomly drawn from the discrete
uniform distribution on the interval [−50, 50].
• To construct yi for i = 1, . . . , n, two steps are taken: (1) a vector β is generated

such that two-thirds of its components are zeros and the rest of the components
are randomly drawn from the uniform distribution on the interval (0, 1); (2) we
set yi = εi +

∑p
j=1 xi jβ j (with at most one decimal place), where εi is randomly

generated from the standard normal distribution.
• Optimal values of l j and u j for j = 1, . . . , p are computed by solving model (4.5).
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Table 1. Numerical results obtained by running the ε-constraint method.

Class Instance 1 Instance 2 Instance 3 Average
Time Time Time Time
(sec.) #NDPs (sec.) #NDPs (sec.) #NDPs (sec.) #NDPs

C(20,40) 4.1 21 3.7 21 3.8 21 3.8 21.0
C(20,60) 4.6 21 5.4 21 4.3 21 4.8 21.0
C(20,80) 5.2 21 6.0 21 6.1 21 5.8 21.0
C(40,80) 264.4 41 385.5 41 290.6 41 313.5 41.0
C(40,120) 313.0 41 921.5 41 247.0 41 493.8 41.0
C(40,160) 275.6 41 327.9 41 591.0 41 398.2 41.0

In Table 1 we report the numerical results for all 18 instances. For each instance,
there are two columns “Time (sec.)” and “#NDPs” showing the solution time in
seconds and the number of nondominated points, respectively. All nondominated
points can be found, for instances with p = 20 and p = 40, in about 5 seconds and
7 minutes on average, respectively. Note that the numbers in columns “Time (sec.)”
include the computational times to find the lower and upper bounds for β̂ j through
solving the linear programming model given in (4.5). Of course, CPLEX can solve
each of those linear programs efficiently in a fraction of a second for the instances
used in this study.

In order to demonstrate the important role of good bounds for β̂ j derived through
solving the linear programming model (4.5), we solve all 18 instances by setting a wide
range for the parameter estimators, say l j = −1000 and u j = 1000 for j = 1, . . . , p. As
stated in Section 4.1 and illustrated in Figure 4, due to numerical issues, a significant
ratio of nondominated points (that is, around 50% to 70%) fail to be found by the
model. Note that, in practice, most of the missing points belong to the part of the
nondominated frontier in which the total bias is almost the same for them (see, for
example, the vertical segment in Figure 5). So, one may argue that finding and listing
all such points are not very appealing to the final decision. However, the main point
is that employing good bounds prescribed by the data-driven approach developed in
Section 4.1 helps the model to list all p + 1 nondominated points.

Remark 5.1. Table 1 displays that all p + 1 nondominated points have been found
for each instance. This implies that for each of these generated instances, the goal
programming approach should also return a nondominated point for k = 0, . . . , p.
Of course, this is not a surprising result, since by adding more nonzero regression
coefficients to a model, the optimal value of the sum of absolute residuals often
decreases unless the following hold.

(i) Decision makers impose additional constraints, as stated in Remark 3.1. For
instance, one may impose that if r1 = 1, then we should have r2 + r3 = 0, that is,
r2 + r3 ≤ 2(1 − r1).
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Figure 4. The impact of setting a wide bound for β̂ j with l j = −1000 and u j = 1000 for j = 1, . . . , p.

Figure 5. The nondominated frontier of Instance 1 from Class C(20, 40).

(ii) Some columns of the model matrix X are linearly dependent.
(iii) There is an ideal regression model with the sum of absolute residuals equal to

zero.
(iv) Numerical issues arise.

To highlight the drawbacks of existing approaches including the weighted sum
approach and the goal programming approach, the nondominated frontier of Instance
1 from Class C(20, 40) is illustrated in Figure 5. The filled rectangles and circles
are unsupported and supported nondominated points, respectively. As we discussed
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previously, it is impossible to find any of the unsupported nondominated points using
the weighted sum approach. Also, observe that many of the nondominated points lie
on an almost vertical line. This implies that all these points are almost optimal for the
goal programming approach when k = 7, . . . , 20.

We note that selecting a desirable nondominated point in the nondominated frontier
depends on decision makers. Here, we introduce a heuristic algorithm to do so.
Let T = (T1, T2)ᵀ ∈ R2 and B = (B1, B2)ᵀ ∈ R2 be the top and bottom end points of
the nondominated frontier, respectively. One may simply choose the point that has
the minimum Euclidean distance from the (imaginary) ideal point, that is, (T1, B2)ᵀ.
Based on this algorithm, in Figure 5, the (imaginary) ideal point is (22.6, 0)ᵀ and the
closest nondominated point to it is (27.2, 8)ᵀ. The generated instance that we discuss
in Figure 5 is y = 0.42 + 0.86x2 + 0.63x3 + 0.68x4 + 0.42x5 + 0.50x6 + 0.25x7 and the
estimated linear regression model corresponding to the selected nondominated point
is y = 0.4 + 0.87x2 + 0.65x3 + 0.68x4 + 0.43x5 + 0.51x6 + 0.24x7 + 0.01x14, which are
very close together.

Remark 5.2. From Figure 5, we observe that the selected nondominated point which
has the minimum Euclidean distance from the (imaginary) ideal point is a “supported”
nondominated point. However, this is not always the case and, in many other instances,
such a point is an unsupported nondominated point. This implies that those points
cannot be found by the weighted sum approach.

6. Conclusion

Minimizing the amount of bias and the number of predictors is a natural objective
that is typically considered for choosing the best subset of p features in linear
regression, given n observations. The existing approaches transform this problem
into a single-objective optimization problem by using a weighted summation of
the objectives or treating one of the objectives as a constraint. We explained the
main weaknesses of the existing approaches and, to overcome their drawbacks, we
proposed to directly use the bi-objective optimization techniques for solving the
problem. We hope that the simplicity, versatility, and performance of our approach
encourage practitioners to consider using exact bi-objective optimization methods for
constructing linear regression models.
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