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Abstract

We prove that the hypotheses in the Pigola–Rigoli–Setti version of the Omori–Yau maximum principle are
logically equivalent to the assumption that the manifold carries a C2 proper function whose gradient and
Hessian (Laplacian) are bounded. In particular, this result extends the scope of the original Omori–Yau
principle, formulated in terms of lower bounds for curvature.
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1. Introduction

The celebrated Omori–Yau maximum principle [6, 9, 13], which became a powerful
tool in geometry and analysis [3–5, 8, 9, 12, 14], states that if (M, g) is a complete
Riemannian manifold with sectional curvature (respectively, Ricci curvature) bounded
below then, for every f ∈C2(M) that is bounded above, there exists a sequence (qk) in
M such that

f (qk) > supM f −
1
k
, |∇ f |(qk) <

1
k
,

Hess f (qk) <
1
k

g(qk)
(
respectively, ∆ f (qk) <

1
k

)
,

(1.1)

for all k ∈ N, where the third inequality above is in the sense of quadratic forms.
Pigola et al. [10, Theorem 1.9] obtained a version of the Omori–Yau maximum

principle where the hypothesis that the curvature is bounded below is replaced by the
assumption that the manifold admits a smooth function with special properties. More
precisely, they proved the following result.

T 1.1. Let (M, g) be a Riemannian manifold. Assume that there exist a C2

function γ : M→ [0, +∞), a compact set K ⊂ M and constants A, B > 0 such that:
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(i) γ is proper, that is, γ(x)→ +∞ as x→∞;
(ii) |∇γ| ≤ A

√
γ on M \ K;

(iii) Hess γ ≤ B
√
γG(
√
γ)g (respectively, ∆γ ≤ B

√
γG(
√
γ)) on M \ K,

where G : [0, +∞)→ [0, +∞) is a smooth function satisfying

G(0) > 0, G′(t) ≥ 0 for all t ≥ 0, (1.2)∫ +∞

0

dt
√

G(t)
= +∞ and lim sup

t→+∞

tG(
√

t)
G(t)

< +∞. (1.3)

Then, for every f ∈C2(M) that is bounded above, there exists a sequence (qk) in M
satisfying (1.1).

The function theoretic approach to the Omori–Yau maximum principle provided
by Theorem 1.1 has been applied by several authors to obtain results in different
contexts [1, 2, 10]. In Section 2 of this work, we show that Theorem 1.1 is logically
equivalent to the following more conceptual statement.

T 1.2. If a Riemannian manifold (M, g) admits a C2 function φ : M→ R
satisfying, for some constants C, D > 0, that

(i) φ is proper;
(ii) |∇φ| ≤C;
(iii) Hess φ ≤ Dg (respectively, ∆φ ≤ D),

then, for every f ∈C2(M) that is bounded above, there exists a sequence (qk) in M
satisfying (1.1).

Under the assumption that a Riemannian manifold M is complete and has sectional
curvature (respectively, Ricci curvature) bounded below, Schoen and Yau [11,
Theorem 4.2] proved that, for every p ∈ M, there exists a smooth function φ : M→ R
satisfying, for some constants C, D > 0,

φ(x) ≥ d(x, p), |∇φ|(x) ≤C,

Hess φ(x)(v, v) ≤ D|v|2 (respectively, ∆φ(x) ≤ D),

for all x ∈ M and v ∈ TxM. In particular, φ satisfies (i), (ii) and (iii) in the statement of
Theorem 1.2. This shows that Theorem 1.2 (and so Theorem 1.1) is a generalisation
of the original Omori–Yau maximum principle.

2. The arguments

The proof below was inspired by the proof of a conceptual refinement of the Omori–
Yau maximum principle stated in [7].
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P  T 1.2. We will give the proof of the half of the theorem that refers to
the Hessian. The proof of the other half is entirely analogous and will be left to the
reader.

Multiplying φ by a positive constant if necessary, we can assume that C = D = 1.
Let f : M→ R be a C2 function satisfying supM f < +∞ and (pk) a sequence in M
such that

f (pk) > sup
M

f −
1
2k
, k ∈ N. (2.1)

For each k ∈ N, define a function fk : M→ R by

fk(x) = f (x) − εk(φ(x) − φ(pk)), (2.2)

where εk = min{ηk, 1/2k} and

ηk =

1/2k
(
φ(pk) − inf

M
φ
)

if φ(pk) > infM φ,

1/2k if φ(pk) = infM φ.

Since εk > 0 and f is bounded above, from (i) one obtains that fk(x)→−∞ as x→∞,
and so fk attains a global maximum at some point qk ∈ M. Hence, by (2.2) and the
ordinary maximum principle,

0 = ∇ fk(qk) = ∇ f (qk) − εk∇φ(qk) (2.3)

and

0 ≥ Hess( fk)(qk)(v, v) = Hess f (qk)(v, v) − εk Hess φ(qk)(v, v), for all v ∈ Tqk M.
(2.4)

From (ii), (2.3) and the definition of εk,

|∇ f (qk)| = εk|∇φ(qk)| ≤ εk ≤
1
2k

<
1
k
.

By (iii) and (2.4), for all v ∈ Tqk M with v , 0,

Hess f (qk)(v, v) ≤ εk Hess φ(qk)(v, v) ≤ εk|v|
2 ≤

1
2k
|v|2 <

1
k
|v|2.

Since fk(pk) = f (pk), we also have

f (pk) = fk(pk) ≤ fk(qk) = f (qk) − εk(φ(qk) − φ(pk))

= f (qk) − εk

(
φ(qk) − inf

M
φ
)
− εk

(
inf
M
φ − φ(pk)

)
≤ f (qk) − εk

(
inf
M
φ − φ(pk)

)
≤ f (qk) +

1
2k
.

Therefore, by (2.1),

f (qk) ≥ f (pk) −
1
2k

> sup
M

f −
1
2k
−

1
2k

= sup
M

f −
1
k
,

which completes the proof of the theorem. �

https://doi.org/10.1017/S0004972713000634 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000634


340 A. P. Barreto and F. Fontenele [4]

The fact that Theorem 1.1 is equivalent to Theorem 1.2 is an immediate
consequence of the following proposition.

P 2.1. A Riemannian manifold (M, g) admits a function γ : M→ R as in
the statement of Theorem 1.1 if and only if it admits a function φ : M→ R as in the
statement of Theorem 1.2.

P. Let γ : M→ R be a function as in the statement of Theorem 1.1. Define a
(smooth) function u : (0, +∞)→ (0, +∞) by

u(t) =

√
tG(
√

t).

From (1.2),

u′(t) =
G(
√

t) + 1
2

√
tG′(
√

t)

2
√

tG(
√

t)
> 0, t > 0.

Given C > lim supt→+∞ tG(
√

t)/G(t), there exists to > 1 such that

tG(
√

t)
G(t)

<C, t ≥ to.

From the above inequality and the fact that G is nondecreasing,

0 < tG(0) ≤ tG(
√

t) <CG(t), t ≥ to,

and so
1√

tG(
√

t)
>

1
√

C
√

G(t)
, t ≥ to.

Hence ∫ +∞

1

1
u(s)

ds =

∫ +∞

1

1√
sG(
√

s)
ds ≥

∫ +∞

to

1√
sG(
√

s)
ds

≥
1
√

C

∫ +∞

to

1
√

G(s)
ds = +∞,

(2.5)

where in the last equality we used (1.3).
Since u(t) and

√
t are nondecreasing, we can assume, adding a positive constant if

necessary, that γ > 0 and that (ii) and (iii) in the statement of Theorem 1.1 hold on
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all of M. Therefore, for all x ∈ M and all v ∈ TxM,

|∇γ(x)| ≤ A
√
γ(x) =

A
√

G(0)

√
γ(x)G(0)

≤
A

√
G(0)

√
γ(x)G(

√
γ(x))

≤
A

√
G(0)

u(γ(x))

(2.6)

and

Hess γ(x)(v, v) ≤ B
√
γ(x)G(

√
γ(x))|v|2 = Bu(γ(x))|v|2. (2.7)

Let h : (0, +∞)→ R be defined by

h(t) =

∫ t

1

1
u(s)

ds.

Since u > 0 and u′ > 0, we have, for all t > 0,

h′(t) =
1

u(t)
> 0, h′′(t) = −

u′(t)
u2(t)

< 0. (2.8)

Let φ = h ◦ γ, so that

φ(x) = h(γ(x)) =

∫ γ(x)

1

1
u(s)

ds, x ∈ M. (2.9)

From (2.6) and (2.8),

|∇φ(x)| = |h′(γ(x))∇γ(x)| =
1

u(γ(x))
|∇γ(x)| ≤

A
√

G(0)
for all x ∈ M.

Using (2.7) and (2.8), for all x ∈ M and all v ∈ TxM,

Hess φ(x)(v, v) = h′′(γ(x))〈∇γ(x), v〉2 + h′(γ(x)) Hess γ(x)(v, v)

≤
1

u(γ(x))
Hess γ(x)(v, v) ≤ B|v|2.

Moreover, from (2.5), (2.9) and the properness of γ, we obtain that φ is proper. This
concludes the proof of the ‘only if’ part of the proposition. The ‘if’ part is easy and
will be left to the reader. �

R 2.2. The above proof shows that Theorem 1.1 (and so Theorem 1.2)
is equivalent to saying that the Omori–Yau maximum principle holds on every
Riemannian manifold (M, g) that carries a positive proper C2 function γ satisfying,
outside a compact set,

|∇γ| ≤ u ◦ γ and Hess γ ≤ (u ◦ γ)g (respectively, ∆γ ≤ u ◦ γ),

where u ∈C1(0, +∞) is a positive function with u′ ≥ 0 and
∫ +∞

1
u(s)−1ds = +∞.
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