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Abstract

We analyze the optimal policy for the sequential selection of an alternating subsequence
from a sequence of n independent observations from a continuous distribution F , and
we prove a central limit theorem for the number of selections made by that policy. The
proof exploits the backward recursion of dynamic programming and assembles a detailed
understanding of the associated value functions and selection rules.
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1. Introduction

In the problem of online selection of an alternating subsequence, a decision maker observes
a sequence of independent random variables {X1, X2, . . . , Xn} with common continuous
distribution F , and the task is to select a subsequence such that

Xθ1 < Xθ2 > Xθ3 < · · · ≷ Xθk
,

where the indices 1 ≤ θ1 < θ2 < θ3 < · · · < θk ≤ n are stopping times with respect to the
σ -fields Fi = σ {X1, X2, . . . , Xi}, 1 ≤ i ≤ n. In other words, at time i when the random
variable Xi is first observed, the decision maker has to choose to accept Xi as a member of
the alternating sequence that is under construction, or choose to reject Xi from any further
consideration.

We call such a sequence of stopping times a feasible policy, and we denote the set of all such
policies by �. For any π ∈ �, we then let Ao

n(π) denote the number of selections made by π

for the realization {X1, X2, . . . , Xn}, i.e.

Ao
n(π) = max{k : Xθ1 < Xθ2 > · · · ≷ Xθk

and 1 ≤ θ1 < θ2 < · · · < θk ≤ n}.
It was found in Arlotto et al. (2011) that for each n there is a unique policy π∗

n ∈ � such that

E[Ao
n(π

∗
n )] = sup

π∈�

E[Ao
n(π)],
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and it was proved that the optimal mean E[Ao
n(π

∗
n )] can be tightly estimated. Specifically, we

have
E[Ao

n(π
∗
n )] = (2 − √

2)n + O(1). (1)

Here, our main goal is to show that Ao
n(π

∗
n ) satisfies a central limit theorem.

Theorem 1. (Central limit theorem for optimal online alternating selection.) There is a constant
0 < σ 2 < ∞ for which we have the convergence in distribution such that

Ao
n(π

∗
n ) − (2 − √

2)n√
n

d−→ N(0, σ 2) as n → ∞.

The exact value of σ 2 is not known, but σ 2 has a representation as an infinite series and Monte
Carlo calculations suggest that σ 2 ∼ 0.3096. (Numerical estimates are obtained discretizing
the state space with a grid size of 10−4 and performing 5 × 105 repetitions. The standard error
for the estimate of σ 2 is 6.19 × 10−4.) The determination of a closed-form expression for σ 2

remains an open problem. It may even be a tractable problem, though it is unlikely to be easy.

1.1. Motivation: history and connections

The theory of alternating sequences has ancient roots. It began with the investigations of
Euler on alternating permutations, and, through a long evolution, it has become an important part
of combinatorial theory (cf. Stanley (2010)). The probability theory of alternating sequences
is much more recent, and its main problems fit into two basic categories: problems of global
selection and problems of sequential selection.

In a problem of global selection (or an offline problem), we see the whole sequence {X1, X2,

. . . , Xn}, and the typical challenge is to understand the distribution of length of the longest alter-
nating subsequence under various probability models. For example, when {X1, X2, . . . , Xn}
is a random permutation of the integers [1 : n], explicit bivariate generating functions were
used by Widom (2006), Pemantle (cf. Stanley (2007, p. 568)), and Stanley (2008) to obtain
central limit theorems. Simpler probabilistic derivations of these results were then developed by
Houdré and Restrepo (2010) and Romik (2011). These authors exploited the close connection
between the length of the longest alternating subsequence and the number of local extrema of
a sequence, a link that is also relevant to local minima problems studied in computer science
(see e.g. Bannister and Eppstein (2012)) and to similar structures in the theory of turning point
tests (see e.g. Brockwell and Davis (2006, p. 313) or Hua (2010, Section 1.2)).

The theory of online alternating subsequences is of more recent origin, but it is closely tied to
some classic themes of applied probability. In the typical online decision problem, a decision
maker considers n random values in sequential order and must decide whether to accept or
reject each presented value at the time of its first presentation. In the most famous problem of
this type, the decision maker gets to make only a single choice, and his goal is to maximize the
probability that the selected value is the best out of all n values. Cayley (1875) considered a
problem of this kind, but the modern development of the theory began in earnest with notable
studies by Lindley (1961) and Dynkin (1963). Samuels (1991) gave a thoughtful survey of the
work on related problems through the 1980s, and connections to more recent work were given
by Krieger and Samuel-Cahn (2009), Buchbinder et al. (2010), and Bateni et al. (2010).

In more complex problems, the decision maker typically makes multiple sequential selections
from the sequence of presented values, and the objective is to maximize the expected number
of selected elements, subject to a combinatorial constraint. For example, we can consider the
optimal sequential selection of a monotone subsequence. This online selection problem was
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introduced by Samuels and Steele (1981), and was analyzed more recently by Gnedin (1999),
(2000a), (2000b), Baryshnikov and Gnedin (2000), Bruss and Delbaen (2001), and Arlotto and
Steele (2011).

The present investigation is particularly motivated by Bruss and Delbaen (2004), where a
central limit theorem was proved for the sequential selection of a monotone subsequence when
the number, N , of values offered to the decision maker is a Poisson random variable that is
independent of the sequence of the offered values. The methodology of Bruss and Delbaen
(2004) is tightly bound with the theory of Markov processes and Dynkin’s formula, while the
present method leans heavily on the Bellman equation and explicit estimates of the decision
functions.

1.2. Organization of the analysis

The proof of Theorem 1 rests on a sustained investigation of the value functions that are
determined by the Bellman equation for the alternating selection problem. The optimal policy
π∗

n is determined in turn by the time-dependent threshold functions {gn, gn−1, . . . , g1} that tell
us when to accept or reject a newly presented value. Inferences from the Bellman equation
almost inevitably require inductive arguments, and the numerical calculations summarized in
Figure 1, below, are a great help in framing appropriate induction hypotheses.

In Section 2, we frame the selection problem as a dynamic program, and we summarize a
few results from earlier work. The main observation is that, by symmetry, we can transform
the natural Bellman equation into an equivalent recursion that is much simpler. We also note
that the value functions determined by the reduced recursion have a useful technical feature,
which we call the property of diminishing returns.

Sections 3–6 develop the geometry of the value and threshold functions. Even though the
alternating subsequence problem is rather special, there are generic elements to its analysis,
and our intention is to make these elements as visible as possible. Roughly speaking, we frame
concrete hypotheses based on the suggestions of Figure 1 (or its analog), and we prove these
hypotheses by inductions that are driven by the Bellman equation. While the specific inferences
are unique to the problem of alternating selections, there is still some robustness to the pattern
of the proof.

Sections 7 and 8 exploit the geometrical characterization of the threshold functions to obtain
information about the distribution of Ao

n(π
∗
n ), the number of selections made by the optimal

policy for the problem with time horizon n. The main step here is the introduction of a horizon-
independent policyπ∞ that is determined by the limit of the threshold functions that defineπ∗

n . It
is relatively easy to check that the number of selections Ao

n(π∞) made by this policy is a Markov
additive functional of a stationary, uniformly ergodic, Markov chain. Given this observation,
we can use off-the-shelf results to confirm that the central limit theorem holds for Ao

n(π∞),
provided that we show that the variance of Ao

n(π∞) is not o(n). We then complete the proof of
Theorem 1 by showing that there is a coupling under which Ao

n(π
∗
n ) and Ao

n(π∞) are close in L2;
specifically, we show that we have ‖Ao

n(π
∗
n ) − Ao

n(π∞) − E[Ao
n(π

∗
n ) − Ao

n(π∞)]‖2 = o(
√

n).

2. Dynamic programming formulation

We first note that, since the distribution F is continuous and since the problem is unchanged
if we replace Xi by Ui = F−1(Xi), we can assume without loss of generality that the Xis are
uniformly distributed on [0, 1]. The main task now is to exploit the symmetries of the problem
to obtain a tractable version of the Bellman equation.
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We proceed recursively and, for 1 ≤ i ≤ n, we let Si denote the value of the last member
of the subsequence selected up to and including time i. We also set Ri = 0 if Si is a local
minimum of {S0, S1, . . . , Si}, and we set Ri = 1 if Si is a local maximum. Finally, to initialize
our process, we set S0 = 1 and R0 = 1, and we note that the process {(Si, Ri) : 0 ≤ i ≤ n} is
Markov.

At time i, the decision to accept or reject the new observation Xi depends only on the
following two quantities:

1. the state of the selection process before the presentation of Xi ; this is represented by the
pair (Si−1, Ri−1),

2. the number of observations k that were yet to be seen before the presentation of Xi , i.e.
k = n − i + 1.

We can now characterize the optimal policy π∗
n through these state variables and an associated

dynamic programming equation (or Bellman equation) for the value function. We let vk(s, r)

denote the expected number of optimal alternating selections when the number of observations
yet to be seen is k, and the state of the selection process is given by the pair (s, r). If k = 0 then
we set v0(s, r) ≡ 0 for all (s, r) ∈ [0, 1] × {0, 1}. Otherwise, for 1 ≤ i ≤ n, states Si−1 = s

and Ri−1 = r and residual time k = n − i + 1, we have the Bellman equation

vk(s, r) =

⎧⎪⎪⎨
⎪⎪⎩

svk−1(s, 0) +
∫ 1

s

max{vk−1(s, 0), 1 + vk−1(x, 1)} dx if r = 0,

(1 − s)vk−1(s, 1) +
∫ s

0
max{vk−1(s, 1), 1 + vk−1(x, 0)} dx if r = 1.

(2)

To see why this equation holds, first consider the case when r = 0 (so the next selection
needs to be a local maximum). With probability s, we are presented with a value, Xi , that is
less than the previously selected value. In this case, we do not have the opportunity to make a
selection, we reduce the number of observations yet to be seen to k − 1, and this contributes
the term svk−1(s, 0) to our equation.

Next, consider the case when r = 0 but s < Xi ≤ 1. In this case, we must decide to
select Xi = x, or to reject it. If we do not select the value Xi = x, then the expected number
of subsequent selections equals vk−1(s, 0). If we do select Xi = x, then we account for the
selection of x plus the expected number of optimal subsequent selections, which together equal
1 + vk−1(x, 1). Since Xi is uniformly distributed in [s, 1], the expected optimal contribution is
given by the second term of our Bellman equation (2) (the first line). The proof of the second
line of our Bellman equation (2) is completely analogous.

One benefit of indexing the value functions vk(·, ·) by the ‘time-to-go’ parameter k is that,
by the optimality principle of dynamic programming, the selection problem for a sequence of
size n embeds automatically into the selection problem for a sequence of size n + 1. As a
consequence, we can consider the infinite sequence of value functions {vk(·, ·), 1 ≤ k < ∞}.
It is also useful to observe that these value functions satisfy an intuitive symmetry property:

vk(s, 0) = vk(1 − s, 1) for all 1 ≤ k < ∞ and all s ∈ [0, 1], (3)

so we can define the single-variable value function vk(y), 1 ≤ k < ∞, by setting

vk(y) ≡ vk(y, 0) = vk(1 − y, 1) for all 1 ≤ k < ∞ and all y ∈ [0, 1].
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(A formal proof of (3) is given in Arlotto et al. (2011, Lemma 3).) Now, when we replace the
bivariate value function vk(·, ·) in the earlier Bellman equation with the corresponding value
of the univariate value function vk(·), we obtain a much nicer recursion:

vk(y) = yvk−1(y) +
∫ 1

y

max{vk−1(y), 1 + vk−1(1 − x)} dx. (4)

Here, we have v0(y) ≡ 0 for all y ∈ [0, 1], and we note that the map y �→ vk(y) is continuous
and differentiable on [0, 1], and it satisfies the boundary condition vk(1) = 0 for all 1 ≤ k < ∞.
In this reduced setting, the state of the selection process is simply given by the value y, rather
than the pair (s, r).

The key benefit of the reduced Bellman equation (4) is that it leads to a simple rule for the
optimal acceptance or rejection of a newly presented observation. Specifically, if we set

gk(y) = inf{x ∈ [y, 1] : vk−1(y) ≤ 1 + vk−1(1 − x)}, (5)

then a value x is an optimal selection if and only if gk(y) ≤ x. For 1 ≤ k < ∞, we then
call the function gk : [0, 1] → [0, 1] the optimal threshold function if it satisfies the variational
characterization given by (5). We will see shortly that the value function y �→ vk(y) is strictly
decreasing on [0, 1], a fact that will imply that gk(y) is uniquely determined for each y ∈ [0, 1].

The optimal threshold functions {gn, gn−1, . . . , g1} give us a useful representation for the
number Ao

n(π
∗
n ) of selections made by the optimal policy π∗

n . Specifically, if we set Y0 ≡ 0
and define the sequence Y1, Y2, . . . , by the recursion

Yi =
{

Yi−1 if Xi < gn−i+1(Yi−1),

1 − Xi if Xi ≥ gn−i+1(Yi−1),

then we have

Ao
n(π

∗
n ) =

n∑
i=1

1(Xi ≥ gn−i+1(Yi−1)) (6)

and, moreover, by the principle of optimality of dynamic programming, we have

E[Ao
n(π

∗
n )] = vn(0) for each n ≥ 1.

The representation (6) also tells us that Ao
n(π

∗
n ) is a sum of functions of a time inhomogeneous

Markov chain. The analysis of this inhomogeneous additive functional calls for a reasonably
detailed understanding of both the threshold functions {gk(·) : 1 ≤ k < ∞} and the value
functions {vk(·) : 1 ≤ k < ∞}.

A technical fact that will be needed shortly is that, for each 1 ≤ k < ∞, the value function
vk(·) satisfies the bound

vk−1(u) − vk−1(1 − y) ≤ vk(u) − vk(1 − y) for all y ∈ [
0, 1

2

]
and u ∈ [y, 1 − y]. (7)

This bound reflects a restricted principle of diminishing returns; a proof of (7) is given by
Arlotto et al. (2011, Lemma 4).

Given the dynamic programming formulation provided here, the results in this paper can be
read independently of Arlotto et al. (2011). Still, for the purpose of comparison, we should
note that the notation used here simplifies our earlier notation in some significant ways. For
example, we now take k to be the number of observations yet to be seen, and this gives us
the pleasing formulation (4) of the Bellman equation. We also write gk(y) for the optimal
threshold function when there are k observations yet to be seen, and this replaces the earlier,
more cumbersome, notation f ∗

n−k+1,n(y).
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3. Geometry of the value and threshold functions

Figure 1 gives a highly suggestive picture of the individual threshold functions gk(·), and
it foretells much of the story about how they behave as k → ∞. Analytical confirmation of
these suggestions is the central challenge. The path to understanding the threshold functions
goes through the value functions, and we begin by proving the very plausible fact that the value
functions are strictly decreasing.

Lemma 1. (Strict monotonicity of the value functions.) For each 1 ≤ k < ∞, the value
function y �→ vk(y) defined by the Bellman recursion (4) is strictly decreasing on [0, 1].

This assertion is certainly intuitive and we may not feel any need for a proof. Nevertheless,
there is something to be gained from a formal proof; specifically, we see in a simple context
how the Bellman equation can be used to propagate a sequence of induction hypotheses.

Proof of Lemma 1. We consider the sequence of hypotheses:

Hk : vk(y + ε) < vk(y) for all y ∈ [0, 1) and all ε > 0 such that y + ε ≤ 1.

Since v1(y) = 1 − y, H1 is true. For k ≥ 2, we note that, by the Bellman recursion (4), we
have

vk(y + ε) − vk(y) = (y + ε)vk−1(y + ε) +
∫ 1

y+ε

max{vk−1(y + ε), 1 + vk−1(1 − x)} dx

− yvk−1(y) −
∫ 1

y

max{vk−1(y), 1 + vk−1(1 − x)} dx

≤ (y + ε)vk−1(y + ε) +
∫ 1

y+ε

max{vk−1(y), 1 + vk−1(1 − x)} dx

− (y + ε)vk−1(y) −
∫ 1

y+ε

max{vk−1(y), 1 + vk−1(1 − x)} dx

= (y + ε){vk−1(y + ε) − vk−1(y)}
< 0,

where the first inequality of the chain follows from

ε vk−1(y) ≤
∫ y+ε

y

max{vk−1(y), 1 + vk−1(1 − x)} dx

and the second inequality follows from Hk−1. This completes the proof of Hk and of the lemma.

Figure 1 further suggests that the threshold functions have a long interval of fixed points;
the following lemma partially confirms this.

Lemma 2. (Range of fixed points.) For all k ≥ 1 and y ∈ [0, 1], we have

vk(y) − vk

( 2
3

) ≤ vk(0) − vk

( 2
3

) ≤ 1. (8)

In particular, for all k ≥ 1, we have

gk(y) = y for all y ∈ [ 1
3 , 1

]
, (9)

and
gk(y) ≤ 1

3 for all y ∈ [
0, 1

3

]
. (10)
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Figure 1: Threshold functions gk(y), 1 ≤ k ≤ 10, and their limit as k → ∞ for y ∈ [0, 0.35]. Solid
lines plot the threshold functions gk, 1 ≤ k ≤ 10, for values of y in the range [0, 0.35]. We have
g1(y) = g2(y) = y for all y ∈ [0, 1], and the piecewise smooth graphs of g3, g4, and g5 are explicitly
labeled with their index placed just below the curve. For k = 6, 7, . . . , 10, the gk are indicated without
labels. Each gk meets the diagonal line at some point, and we have gk(y) = y on the rest of the interval
[0, 1]. The plot suggests most of the analytical properties of the sequence {gk : 1 ≤ k < ∞} that are
needed for the proof of the central limit theorem. In particular, for each fixed y ∈ [0, 1] the sequence
k �→ gk(y) is monotone nondecreasing. The dashed line represents the limit of gk(y) as k → ∞; this

limit is piecewise linear.

Proof. The first inequality of (8) is trivial since the map y �→ vk(y) is strictly decreasing
in y. Also, the identities (9) and (10) are immediate from the variational characterization (5)
and the bound (8).

The real task is to prove the second inequality of (8). This time we use induction on the
hypotheses given by

Hk : vk(0) − vk

( 2
3

) ≤ 1 for 1 ≤ k < ∞.

As before, v1(y) = 1 − y, so H1 is trivially true. Now, when we apply the Bellman recursion
(4) with y = 0 and y = 2

3 , we get

vk(0) − vk

( 2
3

) =
∫ 1

0
max{vk−1(0), 1 + vk−1(1 − u)} du

− 2
3vk−1

( 2
3

) −
∫ 1

2/3
max

{
vk−1

( 2
3

)
, 1 + vk−1(1 − u)

}
du,

from which a change of variable gives

vk(0) − vk

( 2
3

) =
∫ 1/3

0
I1(u) du +

∫ 1

1/3
I2(u) du, (11)

where I1(u) and I2(u) are defined by

I1(u) ≡ max{vk−1(0), 1 + vk−1(u)} − max
{
vk−1

( 2
3

)
, 1 + vk−1(u)

}
and

I2(u) ≡ max
{
vk−1(0) − vk−1

( 2
3

)
, 1 + vk−1(u) − vk−1

( 2
3

)}
.
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For the first integrand, I1(u), we note that

I1(u) = max
{
vk−1(0) − vk−1

( 2
3

)
, 1 + vk−1(u) − vk−1

( 2
3

)}
− max

{
0, 1 + vk−1(u) − vk−1

( 2
3

)}
. (12)

The induction assumption Hk−1 then tells us that

vk−1(0) − vk−1
( 2

3

) ≤ 1,

and the strict monotonicity of the value function vk−1(·) on [0, 1] yields

1 ≤ 1 + vk−1(u) − vk−1
( 2

3

)
for all u ∈ [

0, 1
3

]
.

Thus, both the first and the second addend in (12) equal the right maximand and

I1(u) = 0 for all u ∈ [
0, 1

3

]
,

so the first integral in (11) vanishes.
To estimate I2(u), we note that Hk−1 and the monotonicity of y �→ vk−1(y) tell us that

(i) if u ∈ [ 1
3 , 2

3 ] then

I2(u) = 1 + vk−1(u) − vk−1
( 2

3

) ≤ 1 + vk−1(0) − vk−1
( 2

3

) ≤ 2,

(ii) if u ∈ [ 2
3 , 1] then

I2(u) = max
{
vk−1(0) − vk−1

( 2
3

)
, 1 + vk−1(u) − vk−1

( 2
3

)} ≤ 1.

Now we just calculate

vk(0) − vk

( 2
3

) =
∫ 1

1/3
I2(u) du ≤

∫ 2/3

1/3
2 du +

∫ 1

2/3
1 du = 1,

and thus we complete the proof of (8).

From Lemma 2, we know that a threshold function gk has many fixed points; in particular,
gk(y) = y if y ∈ [ 1

3 , 1]. Figure 1 further suggests that much of the geometry of gk is governed
by its minimal fixed point:

ξk ≡ inf{y : gk(y) = y}. (13)

The value ξk also has a useful policy interpretation. If the value y of the last observation
selected is bigger than ξk , then the decision maker follows a greedy policy; he accepts any fea-
sible arriving observation. On the other hand, if y < ξk , the decision maker acts conservatively;
his choices are governed by the value of the threshold gk(y). Finally, if y = ξk , the greedy
policy and the optimal policy agree. This interpretation of ξk is formalized in the following
lemma, where we also prove that the sequence {ξk : k = 1, 2, . . . } is nondecreasing.

Lemma 3. (Characterization of the minimal fixed point.) For k ≥ 3, the minimal fixed point
ξk ≡ inf{y : gk(y) = y} is the unique solution to the equation

vk−1(y) − vk−1(1 − y) = 1.

Moreover, the minimal fixed points form a nondecreasing sequence, so we have

ξk ≤ ξk+1 for all k ≥ 1.
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Proof. From the variational characterization of gk(·), we have

gk(y) = inf{x ∈ [y, 1] : vk−1(y) ≤ 1 + vk−1(1 − x)},
so if we set δk(y) ≡ vk−1(y) − vk−1(1 − y), then we have

gk(y) = y if and only if δk(y) ≤ 1. (14)

The Bellman equation (4) for vk(·) and Lemma 1 tell us that the map y �→ vk−1(y) is continuous
and strictly decreasing with v1(y) = 1 − y and v2(y) = 3

2 (1 − y2). Then, the function δk is
continuous and strictly decreasing, and for k ≥ 3 we have δk(0) = vk−1(0) ≥ v2(0) = 3

2 > 1,
and δk(1) = −vk−1(0) < 0, so, there is a unique value y∗ such that

δk(y
∗) ≡ vk−1(y

∗) − vk−1(1 − y∗) = 1.

Since the map y �→ δk(y) is strictly decreasing, we can also write y∗ as

y∗ = inf{y : vk−1(y) − vk−1(1 − y) ≤ 1} = inf{y : gk(y) = y} = ξk,

where the second equality follows from (14) and the third equality comes from the definition
of ξk .

To prove the monotonicity property ξk ≤ ξk+1 for all k ≥ 1, we first note that, since
v0(y) ≡ 0 and v1(y) ≡ 1 − y, ξ1 = ξ2 = 0. Also, by Lemma 2 we have for k ≥ 3 that there is
always a value 0 ≤ y ≤ 1

3 such that gk(y) = y, so

ξk = inf
{
y ∈ [

0, 1
3

] : gk(y) = y
}

= inf
{
y ∈ [

0, 1
3

] : δk(y) ≡ vk−1(y) − vk−1(1 − y) ≤ 1
}

≤ inf
{
y ∈ [

0, 1
3

] : δk+1(y) ≡ vk(y) − vk(1 − y) ≤ 1
}

= inf
{
y ∈ [

0, 1
3

] : gk+1(y) = y
}

= ξk+1, (15)

where the inequality in (15) follows from the diminishing return property (7).

4. A second property of diminishing returns

The value functions have a second property of diminishing returns that provides some crucial
help. Specifically, we need it to show that the threshold functions gk(·) increase with 1 ≤
k < ∞. This monotonicity moves us a long way toward an exhaustive understanding of the
asymptotic behavior of the threshold functions.

Proposition 1. (Second property of diminishing returns.) For all k ≥ 3, the value functions
defined by the Bellman recursion (4) satisfy the bound

vk−1(y) − vk−1(1 − x) ≤ vk(y) − vk(1 − x) for all y ≤ ξk and x ∈ [y, gk(y)]. (16)

Proof. We again use induction to exploit the Bellman equation, and this time the sequence
of hypotheses is given by

Hk : vk−1(y) − vk−1(1 − x) ≤ vk(y) − vk(1 − x) for all y ≤ ξk and x ∈ [y, gk(y)].
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We first prove H3, which we then use as the base case for our induction. We recall that
v1(y) = 1 − y and, if we use the Bellman recursion (4), v2(y) = 3

2 (1 − y2). In turn, this
implies g3(y) = max{1 − ( 2

3 + y2)1/2, y} and ξ3 = 1
6 . To calculate v3(y) we apply the Bellman

recursion one more time, and we obtain a messier but still tractable formula:

v3(y) =
{ 3

2 (1 − y2) + 3−3/2(2 + 3y2)3/2 if y ≤ 1
6 ,

1
2 (1 − y)(4 + 5y + 2y2) if y ≥ 1

6 .

Thus, for y ≤ ξ3 = 1
6 , we need to show

v2(y) − v2(1 − x) ≤ v3(y) − v3(1 − x) for all x ∈ [y, g3(y)],
where g3(y) = 1 − ( 2

3 + y2)1/2. From our explicit formulae for v2(·) and v3(·), we have

v3(1 − x) − v2(1 − x) = 5
2x − 3x2 + x3

and
v3(y) − v2(y) = 3−3/2(2 + 3y2)3/2 ≥ ( 2

3

)3/2 ≈ 0.5443.

Calculus shows that 5
2x − 3x2 + x3 increases on 0 ≤ x ≤ 1 − ( 2

3 )1/2 and attains an endpoint
maximum of 1

18 (9 − √
6) ≈ 0.3640. Thus, we find

v3(1 − x) − v2(1 − x) ≤ 1
18 (9 − √

6) <
( 2

3

)3/2 ≤ v3(y) − v2(y)

for all y ≤ 1
6 and y ≤ x ≤ 1 − ( 2

3 + y2)1/2, completing the proof of H3.
We now suppose that Hk holds, and we seek to show Hk+1. First, from the variational

characterization of gk(·) and the definition of ξk , recall that

1 ≤ vk−1(y) − vk−1(1 − x) for y ≤ ξk and x ∈ [y, gk(y)],
which, together with the induction assumption Hk , implies

1 ≤ vk−1(y) − vk−1(1 − x) ≤ vk(y) − vk(1 − x) for y ≤ ξk and x ∈ [y, gk(y)]. (17)

The second inequality in (17) and the variational characterization (5) give us

gk(y) ≤ gk+1(y) for all y ≤ ξk.

Moreover, if x ∈ [gk(y), gk+1(y)], the variational characterization of gk+1(·) also gives

vk−1(y) − vk−1(1 − x) ≤ 1 ≤ vk(y) − vk(1 − x) for y ≤ ξk and x ∈ [gk(y), gk+1(y)],
which combines with (17) to give the crucial inequality

vk−1(y) − vk−1(1 − x) ≤ vk(y) − vk(1 − x) for y ≤ ξk and x ∈ [y, gk+1(y)]. (18)

From an application of the Bellman recursion (4) for y ≤ ξk and x ∈ [y, gk+1(y)], we obtain

vk(y) − vk(1 − x)

= y(vk−1(y) − vk−1(1 − x))

+
∫ 1−x

y

max{vk−1(y) − vk−1(1 − x), 1 + vk−1(1 − u) − vk−1(1 − x)} du. (19)
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If we now change variable in the last integral by replacing u with 1 − u, then the range of
integration changes to [x, 1 − y] and we can rewrite (19) as

vk(y) − vk(1 − x) = y(vk−1(y) − vk−1(1 − x))

+
∫ 1−x

x

max{vk−1(y) − vk−1(1 − x), 1 + vk−1(u) − vk−1(1 − x)} du

+
∫ 1−y

1−x

max{vk−1(y) − vk−1(1 − x), 1 + vk−1(u) − vk−1(1 − x)} du.

In this last equation, we see that we can use our crucial inequality (18) to bound the first addend
and the left maximand of the other two addends. Moreover, since x ≤ gk+1(y) ≤ 1

3 , we can
appeal to the diminishing return property (7) to bound the right maximand of the second addend.
In doing so, we obtain

vk(y) − vk(1 − x) ≤ y(vk(y) − vk(1 − x))

+
∫ 1−x

x

max{vk(y) − vk(1 − x), 1 + vk(u) − vk(1 − x)} du

+
∫ 1−y

1−x

max{vk(y) − vk(1 − x), 1 + vk−1(u) − vk−1(1 − x)} du.

(20)

We now observe that the monotonicity property of the map u �→ vk−1(u), for u ∈ [1−x, 1−y],
and the variational characterization of gk+1(·) combine to give

1 + vk−1(u) − vk−1(1 − x) ≤ 1 ≤ vk(y) − vk(1 − x)

for all y ≤ ξk and x ∈ [y, gk+1(y)]. Hence, the second integrand in (20) satisfies the equality

max{vk(y) − vk(1 − x), 1 + vk−1(u) − vk−1(1 − x)} = vk(y) − vk(1 − x),

and an analogous monotonicity argument for u ∈ [1 − x, 1 − y] also yields

max{vk(y) − vk(1 − x), 1 + vk(u) − vk(1 − x)} = vk(y) − vk(1 − x).

When we use the last two observations in (20) we obtain

vk(y) − vk(1 − x) ≤ vk+1(y) − vk+1(1 − x) for all y ≤ ξk and x ∈ [y, gk+1(y)].
We now conclude our argument by considering values y ∈ [ξk, ξk+1]. From the variational

characterization of gk+1(·) and the definition of ξk , we obtain

vk−1(y) − vk−1(1 − x) ≤ 1 ≤ vk(y) − vk(1 − x) for y ∈ [ξk, ξk+1] and x ∈ [y, gk+1(y)],
which can be used instead of (18) to construct an argument similar to the earlier one, so we
conclude that

vk(y) − vk(1 − x) ≤ vk+1(y) − vk+1(1 − x) for y ∈ [ξk, ξk+1] and x ∈ [y, gk+1(y)],
just as needed to complete the proof of (16).
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The usefulness of the property of diminishing returns in Proposition 1 shows itself simply,
but clearly, in the following corollary.

Corollary 1. (Monotonicity of optimal thresholds.) For all y ∈ [0, 1], the threshold functions
satisfy

gk(y) ≤ gk+1(y) for all k ≥ 1, (21)
1
6 ≤ gk(y) for all k ≥ 3. (22)

Proof. For k = 1, 2, we have v0(y) = 0 and v1(y) = 1 − y, so that

g1(y) = g2(y) = y.

For k = 3, we have already noticed in the course of proving Proposition 1 that we have
g3(y) = max{1 − ( 2

3 + y2)1/2, y}, so, in particular, g3(y) ≥ 1
6 for y ∈ [0, 1]. Finally, for

k > 3, the bound (16) and the variational characterization (5) of the threshold function give us
(1), and this confirms the lower bound (22).

We now pursue two further suggestions from Figure 1. Specifically, we show that the limit
function g∞ has exactly the piecewise linear shape that the figure suggests, and we also show
that the convergence to g∞ is uniform. The proof of these facts requires some additional
regularity properties that are discussed in Section 5.

5. Regularity of the value and threshold functions

The minimal fixed points give us a powerful guide to the geometry of the value function
and its derivatives. The connection begins with the Bellman recursion (4) and the variational
characterization (5) which together give the identity

vk(y) = gk(y)vk−1(y) +
∫ 1

gk(y)

{1 + vk−1(1 − x)} dx.

If we now differentiate both sides with respect toy, we obtain the recursion for the first derivative,
i.e.

v′
k(y) = g′

k(y)vk−1(y) + gk(y)v′
k−1(y) − g′

k(y){1 + vk−1(1 − gk(y))}.
The definition of the minimal fixed point (13) and the variational characterization (5) then gives
us

vk−1(y) = 1 + vk−1(1 − gk(y)) if y ≤ ξk, (23)

so our recursion for v′
k(·) can be written more informatively as

v′
k(y) =

{
gk(y)v′

k−1(y) if y ≤ ξk,

vk−1(y) − 1 − vk−1(1 − y) + yv′
k−1(y) if y ≥ ξk .

(24)

These relations underscore the importance of the minimal fixed points to the geometry of the
value function, and they also lead to useful regularity properties.

Lemma 4. (Monotonicity properties of the derivatives.) For all k ≥ 1, we have

−1 ≤ v′
k(y) ≤ v′

k+1(y) ≤ 0 for y ∈ [
0, 1

3

]
, (25)

v′
k+1(y) ≤ v′

k(y) ≤ −1 for y ∈ [ 1
2 , 1

]
. (26)
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Proof. We already know from Lemma 1 that y �→ vk(y) is strictly decreasing, so v′
k(y) is

nonpositive on [0, 1]. Since 0 ≤ gk(y) ≤ 1, the top line of (24) tells us that

v′
k−1(y) ≤ gk(y)v′

k−1(y) = v′
k(y) for y ≤ ξk. (27)

To cover the rest of the range in (25), we use induction on the sequence of hypotheses

Hk : v′
k−1(y) ≤ v′

k(y) for all y ∈ [
ξk,

1
3

]
and 2 ≤ k < ∞.

For the base case H2, we have ξ2 = 0, v1(y) = 1 − y, and v2(y) = 3
2 (1 − y2). So

v′
1(y) = −1 ≤ −3y = v′

2(y) if and only if y ≤ 1
3 ,

just as needed. Now taking Hk as our induction assumption we seek to prove Hk+1.
First, for y ∈ [ξk,

1
3 ], the second line of (24) gives us v′

k(·). By the diminishing return
property (7), the monotonicity ξk ≤ ξk+1, and the induction assumption Hk , we see for y ∈
[ξk+1,

1
3 ] that

v′
k(y) = vk−1(y) − 1 − vk−1(1 − y) + yv′

k−1(y)

≤ vk(y) − 1 − vk(1 − y) + yv′
k(y)

= v′
k+1(y),

completing the proof of Hk+1. To complete the proof of (25), we just need to note that the
lower bound −1 ≤ v′

k(y) now follows from v′
1(y) = −1 together with (27) and Hk .

To prove (26), we again use induction, but this time the sequence of hypotheses is given by

Hk : v′
k(y) ≤ v′

k−1(y) for y ∈ [ 1
2 , 1

]
and 2 ≤ k < ∞.

As before, v1(y) = 1 − y and v2(y) = 3
2 (1 − y2), so v′

1(y) = −1 and v′
2(y) = −3y. For

y ≥ 1
2 , we then have

v′
2(y) ≤ − 3

2 ≤ −1 = v′
1(y),

proving H2. As tradition demands, we again take Hk as our induction assumption, and we seek
to prove Hk+1.

Since y ∈ [ 1
2 , 1], we have 1 − y ≤ 1

2 ≤ y, so the diminishing return property (7) gives us

vk−1(1 − y) − vk−1(y) ≤ vk(1 − y) − vk(y). (28)

Next, recall the identity of the bottom line of (24), but, as you do so, replace k by k + 1. We
can then directly apply (28) and Hk to get

v′
k+1(y) = vk(y) − 1 − vk(1 − y) + yv′

k(y)

≤ vk−1(y) − 1 − vk−1(1 − y) + yv′
k−1(y)

= v′
k(y).

This inequality completes the proof of Hk+1 and confirms the lower bound of (26). For the
upper bound of (26), v′

k(y) ≤ −1 on [ 1
2 , 1], we just need to note that it follows from the fact

v′
1(y) = −1 and the validity of Hk for all k ≥ 1.

The smoothness of the value functions converts easily into a very useful Lipschitz equicon-
tinuity property of the threshold functions.
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Lemma 5. (Lipschitz equicontinuity of threshold functions.) For all k ≥ 1, we have

|gk(y) − gk(z)| ≤ |y − z| for all y, z ∈ [0, 1]. (29)

Proof. We first consider y ∈ [0, ξk]. In this case, (23) holds, so, by its differentiation, we
obtain

g′
k(y) = − |v′

k−1(y)|
|v′

k−1(1 − gk(y))| ≤ 0 for all y ∈ [0, ξk]. (30)

Moreover, since y ∈ [0, ξk], we know that y ≤ 1
3 , so by (10) we have gk(y) ≤ 1

3 ; hence, by
(26) we obtain 1 ≤ |v′

k−1(1 − gk(y))|. Consequently, (30) gives us

|g′
k(y)| ≤ |v′

k−1(y)| for all y ∈ [0, ξk], (31)

and (25) implies |v′
k(y)| ≤ 1. Thus, at last, we have the uniform bound

|g′
k(y)| ≤ 1 for all y ∈ [0, ξk],

which confirms inequality (29) for y, z ∈ [0, ξk]. Also, for y, z ∈ [ξk, 1], (29) trivially holds,
so if we choose y < ξk < z, the triangle inequality gives us

|gk(y) − gk(z)| ≤ |gk(y) − gk(ξk)| + |gk(ξk) − gk(z)| ≤ |y − z|,
confirming that (29) holds in general.

6. The optimal policy at ∞
The minimal fixed points ξk, 1 ≤ k < ∞, are nondecreasing and bounded by 1

3 , so they
have a limit

lim
k→∞ ξk =: ξ ≤ 1

3 . (32)

The threshold values gk(y), 1 ≤ k < ∞, are also nondecreasing and bounded, so they have a
pointwise limit g∞(y). The following proposition characterizes g∞ and gives a crucial bound
on the uniform rate of convergence to g∞.

Proposition 2. (Characterization of limiting threshold.) For the limit threshold g∞, we have

g∞(y) = max{ξ, y} for all y ∈ [0, 1].
Moreover, we have an exact measure of the uniform rate of convergence

max
0≤y≤1

|gk(y) − g∞(y)| = ξ − ξk for all k ≥ 1. (33)

Proof. We first fix m and y ∈ [0, ξm]. We then recall that y ≤ ξm ≤ 1
3 implies that gj (y) ≤ 1

3
for all j ≥ 1. Now, given k ≥ m, we can repeatedly apply the top line of (24) to obtain

|v′
k(y)| = |v′

m−1(y)|
( k∏

j=m

gj (y)

)
≤ 3m−k|v′

m−1(y)| for y ∈ [0, ξm],

and by (25) we have |v′
m−1(y)| ≤ 1 for all y ∈ [0, 1

3 ], so (31) gives us more simply

max
0≤y≤ξm

|g′
k(y)| ≤ 3m−k for all k ≥ m.
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Now, for any y, z in [0, ξm] we have |gk(y) − gk(z)| ≤ 3m−k|y − z|, so, letting k → ∞, g∞
is constant on [0, ξm] for each m ≥ 1. Since ξm ↑ ξ , there is a constant c such that g∞(y) = c

for all y ∈ [0, ξ).
As Figure 1 suggests c = ξ , and this is easy to confirm. Again we fix m, take k ≥ m, and

note that by the triangle inequality and the Lipschitz bound (29) on gk we have

|g∞(ξm) − ξk| ≤ |g∞(ξm) − gk(ξm)| + |gk(ξm) − gk(ξk)|
≤ |g∞(ξm) − gk(ξm)| + |ξm − ξk|.

When k → ∞, gk(ξm) converges to g∞(ξm) and ξk to ξ , so we have

|g∞(ξm) − ξ | ≤ |ξm − ξ |.
Since g∞(ξm) = c does not depend on m and since |ξm − ξ | → 0 as m → ∞, we see that
g∞(ξm) = ξ for all m ≥ 1; consequently, g∞(y) = ξ for all y ∈ [0, ξ ]. Finally, for all m ≥ 1,
we also have gm(y) = y for each y ∈ [ξ, 1], so the proof of the formula for g∞ is complete.

To prove (33), we first note that

g∞(y) − gk(y) =

⎧⎪⎨
⎪⎩

ξ − gk(y), y ∈ [0, ξk],
ξ − y, y ∈ [ξk, ξ ],
0, y ∈ [ξ, 1].

By (30), gk(y) is strictly decreasing on [0, ξk], so the gap g∞(y) − gk(y) is maximized when
y = ξk . This gap decreases linearly over the interval [ξk, ξ ] and equals 0 at ξ ; consequently,
the maximal gap is exactly equal to ξ − ξk .

7. The central limit theorem for Ao
n(π∞) is easy

We now recall that ξ denotes the limit (32) of the minimal fixed points, and we define a
selection policy π∞ for all X1, X2, . . . by taking the (time independent) threshold function to
be

g∞(y) = max{ξ, y} ≡ ξ ∨ y.

If Ao
n(π∞) counts the number of selections made by policy π∞ up to and including time n, then

we have the explicit formula

Ao
n(π∞) =

n∑
i=1

1(Xi ≥ ξ ∨ Y ′
i−1), (34)

where we set Y ′
0 = 0 and we define Y ′

i for i ≥ 1 recursively by

Y ′
i =

{
Y ′

i−1 if Xi < ξ ∨ Y ′
i−1,

1 − Xi if Xi ≥ ξ ∨ Y ′
i−1.

(35)

Given the facts that have been accumulated, it turns out to be a reasonably easy task to prove
a central limit theorem for Ao

n(π∞). We just need to make the right connection to the known
central limit theorems for Markov additive processes.

To make this connection explicit, we first recall that, at any given time 1 ≤ i ≤ n, the
decision maker knows the state of the selection process Y ′

i−1 prior to time i, and the decision
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maker also knows the value Xi of the observation currently under consideration for selection.
The bivariate random sequence

{Zi = (Xi, Y
′
i−1) : i = 1, 2, 3, . . . }

then represents the state of knowledge immediately prior to the decision to accept or to reject
Xi , and this sequence may be viewed as a Markov chain on the two-dimensional state space
S ≡ [0, 1] × [0, 1 − ξ ]. The Markov chain {Zi : i = 1, 2, 3, . . . } evolves over time according
to a point-to-set transition kernel that specifies the probability of moving from an arbitrary state
(x, y) ∈ S into a Borel set C ⊆ S in one unit of time. If we denote the transition kernel by
k((x, y), C), then we have the explicit formula

K((x, y), C) = P((Xi+1, Y
′
i ) ∈ C | Xi = x, Y ′

i−1 = y)

=
∫ 1

0
[1{(u, 1 − x) ∈ C}1(x ≥ ξ ∨ y) + 1{(u, y) ∈ C}1(x < ξ ∨ y)] du,

where the first summand of the integrand governs the transition when Xi is chosen and the
second summand governs the transition when Xi is rejected. Given this explicit formula, it is
straightforward (but admittedly a little tedious) to check that a stationary probability measure
for the kernel K is given by the uniform distribution γ on S = [0, 1] × [0, 1 − ξ ]. We will
confirm shortly that γ is also the unique stationary distribution.

To more deeply understand the chain Zi, i = 1, 2, . . . , we now consider the double chain
(Zi, Z̄i), i = 1, 2, . . ., where Z1 = (x, y) is an arbitrary point of S and Z̄1 has the uniform
distribution on S. For i = 1, 2, . . . , the chains {Zi = (Xi, Y

′
i−1)} and {Z̄i = (Xi, Ȳ

′
i−1)} share

the same independent uniform sequence Xi, i = 1, 2, . . . , as their first coordinate, while their
second coordinates Y ′

i−1 and Ȳ ′
i−1 are both determined by the recursion (35). Typically these

coordinates differ because of their differing initial values, but we will check that they do not
differ for long.

To make this precise, we set ν = min{i ≥ 1 : Xi ≥ 1 − ξ}, and we show that ν is a coupling
time for (Zi, Z̄i) in the sense that

Zi = Z̄i for all i > ν.

Since Y ′
i and Ȳ ′

i both satisfy the recursion (35), we have

Y ′
i ≤ 1 − ξ and Ȳ ′

i ≤ 1 − ξ for all i = 1, 2, . . . ,

so by the definition of ν, we must have

max{ξ ∨ Y ′
ν−1, ξ ∨ Ȳ ′

ν−1} ≤ Xν.

Recursion (35) then gives us

Y ′
ν = Ȳ ′

ν = 1 − Xν and Zν = Z̄ν .

By the construction of the double process (Zi, Z̄i), if we have Zi(ω) = Z̄i(ω) for some i =
i(ω), then Zj (ω) = Z̄j (ω) for all j ≥ i(ω), so ν is indeed a coupling time for (Zi, Z̄i).

The coupling inequality (see e.g. Lindvall (2002, p. 12)) then tells us that, for all Borel sets
C ⊆ S, we have the total variation bound

‖K�((x, y), C) − γ (C)‖TV ≤ P(ν > �) = (1 − ξ)�, (36)
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where γ is the uniform stationary distribution on S. The bound (36) has several useful
implications. First, it implies that γ is the unique stationary distribution for the chain with
kernel K . It also implies (see e.g. Meyn and Tweedie (2009, Theorem 16.0.1)) that the chain
{Zi : i = 1, 2, . . . } is uniformly ergodic; more specifically, it is a φ-mixing chain with

φ(�) ≤ 2ρ� and ρ = 1 − ξ.

If we set z = (x, y) and f (z) = 1(x ≥ y ∨ ξ), then representation (34) can also be written
in terms of the chain {Zi : i = 1, 2, . . . } as

Ao
n(π∞) =

n∑
i=1

f (Zi),

and this makes it explicit that Ao
n(π∞) is a Markov additive process. Our coupling and

the uniform ergodicity of {Zi : i = 1, 2, . . . } imply (see e.g. Meyn and Tweedie (2009,
Theorem 17.5.3 and Lemma 17.5.1)) that there is a constant σ 2 ≥ 0 such that

lim
n→∞ n−1 var(Ao

n(π∞)) = lim
n→∞ n−1 varγ (Ao

n(π∞)) = σ 2, (37)

where the first variance refers to the chain started at Z1 = (X1, 0) and the second variance
refers to the chain started at Z1 with the stationary distribution γ (i.e. the uniform distribution
on S). The general theory also provides the series representation for the limit (37), i.e.

σ 2 = varγ [1(X1 ≥ {ξ ∨ Y ′
0})]

+ 2
∞∑
i=2

covγ [1(X1 ≥ {ξ ∨ Y ′
0}), 1(Xi ≥ {ξ ∨ Y ′

i−1})], (38)

where the subscript γ again refers to the situation in which the chain starts with Z1 having the
stationary distribution.

The general representations (37) and (38) give us the existence of σ 2 but they do not
automatically entail σ 2 > 0, so to prove a central limit theorem for Ao

n(π∞) with the classical
normalization, we must independently establish that σ 2 > 0. To show this, we first need an
elementary lemma that provides a variance analog to the information processing inequality for
entropy.

Lemma 6. (Information processing lemma.) If a random variable X has values in {1, 2, . . . }
and P(X = 1) = p, then p(1 − p) ≤ var(X).

Proof. Define a function f on the natural numbers N by setting f (1) = 0 and f (k) = 1
for k > 1. We then have |f (x) − f (y)| ≤ |x − y| for all x, y ∈ N. If we take Y to be an
independent copy of X, then we have

2p(1 − p) = E[(f (X) − f (Y ))2] ≤ E[(X − Y )2] = 2 var(X).

Now we can state the main lemma of this section.

Lemma 7. There are constants α > 0 and N∗ < ∞ such that

αn ≤ var(Ao
n(π∞)) for all n ≥ N∗.
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Proof. We first set ν0 ≡ 0 and then define the stopping times

νt = inf{i > νt−1 : Xi ≥ 1 − ξ}, t = 1, 2, . . . .

We also set T (n) = inf{t : νt ≥ n}, and note that T (n) is a stopping time with respect to the
increasing sequence of σ -fields

Gt = σ {ν1, ν2, . . . , νt } for all t ≥ 1.

Next, we set

Ut =
νt∑

i=νt−1+1

1(Xi ≥ ξ ∨ Y ′
i−1) for 1 ≤ t ≤ T (n), (39)

and

V =
νT (n)∑

i=n+1

1(Xi ≥ ξ ∨ Y ′
i−1),

so we have the representation

Ao
n(π∞) = Ao

νT (n)
(π∞) − V =

T (n)∑
t=1

Ut − V.

Here, the random variables Ut, t = 1, 2, . . . , are independent and identically distributed. We
also have V ≤ νT (n) − n and νT (n) = inf{i ≥ n : Xi ≥ 1 − ξ}, so the variance of V is bounded
by a constant that depends only on ξ . The existence of the limit (37) and the Cauchy–Schwarz
inequality then give us

var(Ao
n(π∞)) = var(Ao

νT (n)
(π∞)) + O(

√
n) as n → ∞, (40)

so to prove the lemma it suffices to obtain a linear lower bound for var(Ao
νT (n)

(π∞)).
By the definition of νT (n) and Ut, t = 1, 2, . . . , we have

Ao
νT (n)

(π∞) =
T (n)∑
t=1

Ut,

so, by the conditional variance formula, the independence of the Ut , and the fact that T (n) is
GT (n)-measurable, we have the bound

var

(T (n)∑
t=1

Ut

)
≥ E

[
var

(T (n)∑
t=1

Ut

∣∣∣∣ GT (n)

)]
= E

[T (n)∑
t=1

var(Ut | GT (n))

]
. (41)

We now note from (39) that Ut takes values in {1, 2, . . . , νt −νt−1}. Thus, if p is the probability
that no Xi is selected for i ∈ {νt−1 + 1, . . . , νt − 1}, then, setting a = (1 − ξ)−1ξ , we have

p = P(Ut = 1 | GT (n)) = P(Xi < ξ for all νt−1 + 1 ≤ i ≤ νt − 1 | GT (n)) = aνt−νt−1−1.

Now, by applying Lemma 6 to the conditional expectation, we have

var(Ut | GT (n)) ≥ aνt−νt−1−1(1 − aνt−νt−1−1),
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so from (41) we have

var

(T (n)∑
t=1

Ut

)
≥ E

[T (n)∑
t=1

aνt−νt−1−1(1 − aνt−νt−1−1)

]
.

The summands are independent and identically distributed and T (n) is a stopping time with
respect to the increasing sequence of σ -fields Gt = σ {ν1, ν2, . . . , νt }, t ≥ 1, so by Wald’s
identity we have

var

(T (n)∑
t=1

Ut

)
≥ E[T (n)]E[aν1−1(1 − aν1−1)]. (42)

For the stopping time T (n), we have the alternative representation

T (n) = 1 +
n−1∑
i=1

1(Xi ≥ 1 − ξ),

so we have E[T (n)] = ξ n + O(1). Since ν1 has the geometric distribution with success
probability ξ , we also have E[aν1−1(1 − aν1−1)] > 0, so by (40) and (42) the proof of the
lemma is complete.

All of the pieces are now in place. By the central limit theorem for functions of uniformly
ergodic Markov chains (see Meyn and Tweedie (2009, Theorem 17.5.3) or Jones (2004,
Corollary 5)), we get our central limit theorem for Ao

n(π∞).

Proposition 3. (Central limit theorem for Ao
n(π∞).) As n → ∞, we have the limit

Ao
n(π∞) − μ n√

n

d−→ N(0, σ 2),

where μ = Eγ [1(X1 ≥ {ξ ∨ Y ′
0})], γ is the stationary distribution for the Markov chain

{Zi : i = 1, 2, . . . }, and σ 2 is the constant defined by either the limits (37) or the sum (38).

By appealing to the known relation (1) that E[Ao
n(π

∗
n )] = (2 − √

2)n + O(1), we can show
with a bit of calculation that here we have μ = 2 − √

2. Since this identification is implicit in
the calculations of the next section, there is no reason to belabor it here.

8. Ao
n(π∗

n) and Ao
n(π∞) are close in L2

Proposition 3 tells us that the easy sum Ao
n(π∞) obeys a central limit theorem, and now

the task is to show that the harder sum Ao
n(π

∗
n ) follows the same law. The essence is to

show that, after centering, the random variables Ao
n(π

∗
n ) and Ao

n(π∞) are close in L2 in the
sense that ‖Ao

n(π
∗
n ) − Ao

n(π∞) − E[Ao
n(π

∗
n ) − Ao

n(π∞)]‖2 = o(
√

n) as n → ∞. For technical
convenience, we work with the random variable

�n := Ao
n−2(π

∗
n ) − E[Ao

n−2(π
∗
n )] − Ao

n−2(π∞) + E[Ao
n−2(π∞)].

The essential estimate of our development is given by the following lemma. In one way or
another, the proof of the lemma calls on all of the machinery that has been developed.
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Lemma 8. (L2-estimate.) There is a constant C such that, for all n ≥ 3, we have

‖�n‖2
2 ≤ C

n∑
k=3

(ξ − ξk);

so, in particular, we have the asymptotic estimate

‖�n‖2 = o(
√

n) as n → ∞.

Proof. We first note that the threshold function lower bound (22) implies that Yi ≤ 5
6 for all

1 ≤ i ≤ n− 2. Consequently, if Xi ≥ 5
6 then Xi is selected by both of the policies π∗

n and π∞.
At such a time i, we have a kind of ‘renewal event’, though we still have to be attentive to the
nonhomogeneity of the selection process driven by π∗

n .
To formalize this notion, we set τ0 = 0 and, for m ≥ 1, we define stopping times

τm = inf
{
i > τm−1 : Xi ≥ 5

6

}
and τ ′

m = min{τm, n − 2};
so τm is the time at which the mth ‘renewal’ is observed. For each 1 ≤ j ≤ n − 2, we then set

N(j) =
j∑

i=1

1
(
Xi ≥ 5

6

)
,

so the time τN(j) is the time of the last renewal up to or equal to j , the time τN(j)+1 is the time
of the first renewal strictly after j , and we have the inclusion

τN(j) ≤ j < τN(j)+1.

For 1 ≤ j ≤ n − 2, we then consider the martingale differences defined by

dj = E[Ao
n−2(π

∗
n ) − Ao

n−2(π∞) | Fj ] − E[Ao
n−2(π

∗
n ) − Ao

n−2(π∞) | Fj−1],
where F0 is the trivial σ -field and Fj = σ {X1, X2, . . . , Xj } for 1 ≤ j ≤ n. Using the counting
variables

ηi ≡ 1(Xi ≥ gn−i+1(Yi−1)) and η′
i ≡ 1(Xi ≥ ξ ∨ Y ′

i−1),

we have the tautology

dj = E

[τ ′
N(j)+1∑
i=j

(ηi − η′
i )

∣∣∣∣ Fj

]
− E

[τ ′
N(j)+1∑
i=j

(ηi − η′
i )

∣∣∣∣ Fj−1

]
(43)

+ E

[ n−2∑
i=τ ′

N(j)+1+1

(ηi − η′
i )

∣∣∣∣ Fj

]
− E

[ n−2∑
i=τ ′

N(j)+1+1

(ηi − η′
i )

∣∣∣∣ Fj−1

]
,

and this becomes more interesting after we check that the last two terms cancel.
To confirm the cancelation, we first recall that, for τN(j)+1 < n − 2, the value XτN(j)+1 ≥ 5

6
is selected as a member of the alternating subsequence under both policies π∗

n and π∞, so we
also have

YτN(j)+1 = Y ′
τN(j)+1

= 1 − XτN(j)+1 .
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Any difference in the selections that are made by the policies π∗
n and π∞ after time τN(j)+1 is

measurable with respect to the σ -field

Tj = σ {XτN(j)+1 , XτN(j)+1+1, . . . , Xn−2}.

Trivially, we have j < τN(j)+1, so Fj is independent of Tj , and the last two addends in (43)
do cancel as claimed.

We can therefore write

dj = E

[τ ′
N(j)+1∑
i=j

(ηi − η′
i )

∣∣∣∣ Fj

]
− E

[τ ′
N(j)+1∑
i=j

(ηi − η′
i )

∣∣∣∣ Fj−1

]
= Wj − Ij−1(Wj ),

where Wj denotes the first summand and Ij−1 is the projection onto L2(Fj−1). Denoting the
identity by I , I − Ij−1 is an L2 contraction, so

E[d2
j ] ≤ E[W 2

j ] = E

[(τ ′
N(j)+1∑
i=j

(ηi − η′
i )

)2]
, (44)

and the remaining task is to estimate the last right-hand side.
For 1 ≤ j ≤ n − 2, we let L(j) denote time from j since the last renewal preceding j ; in

other words, L(j) is the age at time j . Analogously, we let M(j) denote the time from j until
the time of the next renewal or until time n − 2; so M(j) is the residual life at time j with
truncation at time n − 2. We then have

L(j) = j − τN(j) and M(j) = τ ′
N(j)+1 − j.

Our interarrival times are geometric, so L(j) and M(j) are independent, and for p = 1
6 we

have

P(L(j) = �) =
{

p(1 − p)� if 0 ≤ � < j,

(1 − p)j if � = j ,

and

P(M(j) = m) =
{

p(1 − p)m−1 if 1 ≤ m < n − 2 − j,

(1 − p)n−3−j if m = n − 2 − j .

We now introduce the disagreement set

Dj [�, m] = {ω : there exists i ∈ {j − � + 1, . . . , j, . . . , j + m} : Xi(ω) ∈ [ξn−i+1, ξ ]};

this is precisely the set of ω for which, if Yj−� = Y ′
j−�, then the policies π∞ and π∗

n differ in at
least one selection during the time interval {j −�+1, . . . , j +m}, while on the complementary
set Dc

j [�, m] the selections all agree. Thus, by the crudest possible bound, we have

∣∣∣∣
τ ′
N(j)+1∑
i=j

(ηi − η′
i )

∣∣∣∣ ≤ (L(j) + M(j))1(Dj [L(j), M(j)]),
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and when we square both sides and rearrange, we obtain

(τ ′
N(j)+1∑
i=j

(ηi − η′
i )

)2

≤ (L(j) + M(j))21(Dj [L(j), M(j)])

=
n−2−j∑
m=1

j∑
�=0

(� + m)21(Dj [�, m])1(L(j) = �)1(M(j) = m). (45)

For each 1 ≤ j ≤ n − 2, we now set

Rj [�, m] = {
ω : Xi(ω) < 5

6 for all i ∈ {j − � + 1, . . . , j + m}},
so Rj [�, m] is the event that no renewal takes place in [j − � + 1, j ] or in [j + 1, j + m]. By
the definition of L(j) and M(j), we then have

1(L(j) = �) = 1(Rj [�, 0])1(
Xj−� ≥ 5

6 or � = j
)

for 0 ≤ � ≤ j,

and
1(M(j) = m) ≤ 1(Rj [0, m − 1]) for 1 ≤ m ≤ n − 2 − j.

Thus, if we define 1(Rj [0, 0]) ≡ 1, then we have the composite bound

1(L(j) = �)1(M(j) = m) ≤ 1(Rj [�, m − 1])1(
Xj−� ≥ 5

6 or � = j
)
, (46)

so by inserting (46) into (45) and recalling (44), we find

E[d2
j ] ≤

n−2−j∑
m=1

j∑
�=0

(� + m)2
E

[
1(Dj [�, m])1(Rj [�, m − 1])1(

Xj−� ≥ 5
6 or � = j

)]
. (47)

The expected value on the right-hand side of (47) accounts for the probability that policiesπ∗
n and

π∞ differ when one renewal has occurred at time j−�, and no renewal will occur until time j+m.
For this to happen, we need at least one i ∈ {j − �+ 1, . . . , j +m} such that Xi ∈ [ξn−i+1, ξ ].
Since the Xis are uniformly distributed on [0, 1], the probability that Xi ∈ [ξn−i+1, ξ ] equals
ξ − ξn−i+1 and, by the monotonicity of the minimal fixed points in Lemma 3, we have the
upper bound ξ − ξn−i+1 ≤ ξ − ξn−(j+m)+1 for all i ∈ {j − � + 1, . . . , j + m}. Then, we can
estimate the right-hand side of (47) with Boole’s inequality, and obtain a constant C such that

E
[
1(Dj [�, m])1(Rj [�, m − 1])1(

Xj−� ≥ 5
6 or � = j

)]
≤ C(m − �)(ξ − ξn−(j+m)+1)(1 − p)�+m−1.

At this point, C = 6
5 would suffice, but subsequently C denotes a Hardy-style constant that may

change from line to line. If we use this last bound in (47), we obtain

E[d2
j ] ≤ C

n−2−j∑
m=1

j∑
�=0

(� + m)3(ξ − ξn−(j+m)+1)(1 − p)�+m−1,

so, if we change variable by applying the transformation r = j + m, we have

E[d2
j ] ≤ C

n−2∑
r=j+1

j∑
�=0

(� + r − j)3(ξ − ξn−r+1)(1 − p)�+r−j−1.
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If we now sum over 1 ≤ j ≤ n − 2, we obtain

E[�2
n] =

n−2∑
j=1

E[d2
j ] ≤ C

n−2∑
j=1

n−2∑
r=j+1

j∑
�=0

(� + r − j)3(ξ − ξn−r+1)(1 − p)�+r−j−1,

so if we interchange the first with the second sum and rearrange, we have

E[�2
n] ≤ C

n−2∑
r=2

(ξ − ξn−r+1)

{r−1∑
j=1

j∑
�=0

(� + r − j)3(1 − p)�+r−j−1
}
.

At this point, it is elementary to check that for all r the last double sum is bounded by the
constant

∑∞
u=1 u4(1 − p)u−1, and this completes the proof of our lemma.

9. Some perspective

We have pursued the proof of a specific central limit theorem, but some aspects of our
analysis may have useful implications for a wider class of Markov decision problems (MDPs).
For example, we took advantage here of the existence of a policy π∞ that could be viewed
heuristically as the ‘optimal policy at infinity’, and the temporal homogeneity of this policy
then gave us access to the machinery of Markov additive processes. Many MDPs offer similar
prospects.

To be sure, specialized efforts were needed to relate the finite horizon policy π∗
n to the

limiting policy, but the pattern used here does offer some general guidance. In almost any
MDP, the Bellman equation gives us good prospects for computing the value function, but to
extract the full value of those functions we need to develop a deeper understanding of their
geometry—and the geometry of the associated threshold functions. Here, the development of
such an understanding would have been stymied without the guidance provided by Figure 1.
If we view our analysis as a case study, then one message is that when facing a new MDP we
would almost always be wise to begin with the best numerical work that the problem allows.

Finally, the Bellman equation grants a natural place for induction in the analysis of many
MDPs, and here we have seen that such inductions can be greatly helped by various forms of
diminishing returns. Without the special properties represented by (7) and (16) our inductions
could not have moved forward. We anticipate that some aspect of this experience will be present
in the analysis of many other MDPs.
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