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Abstract
As a novel type of catalytic Janus micromotor (JM), a double-bubble-powered Janus micromotor has a distinct
propulsion mechanism that is closely associated with the bubble coalescence in viscous liquids and corresponding
flow physics. Based on high-speed camera and microscopic observation, we provide the first experimental results
of the coalescence of two microbubbles near a JM. By performing experiments with a wide range of Ohnesorge
numbers, we identify a universal scaling law of bubble coalescence, which shows a cross-over at dimensionless
time t̃ = 1 from an inertially limited viscous regime with linear scaling to an inertial regime with 1/2 scaling. Due
to the confinement from the nearby solid JM, we observe asymmetric neck growth and find the combined effect
of the surface tension and viscosity. The bubble coalescence and detachment can result in a high propulsion speed
of∼0.25 m s−1 for the JM. We further characterise two contributions to the JM’s displacement propelled by the
coalescing bubble: the counteraction from the liquid due to bubble deformation and the momentum transfer during
bubble detachment. Our findings provide a better understanding of the flow dynamics and transport mechanism in
micro- and nano-scale devices like the swimming microrobot and bubble-powered microrocket.

Impact Statement
Recent advance of a microbubble-powered micromotor, also known as a bubble-propelled microrocket, has
attracted wide interest due to its fast speed and potential functions based on bubble dyanmics. Unlike the
common single-bubble case, this novel double-bubble-powered Janus micromotor has a distinct propulsion
mechanism that is closely related to the bubble coalescence process. This study presents the first experiment
of the double-bubble-powered Janus micromotor, and our study identifies a universal scaling law containing
an inertially limited viscous regime manifesting linear scaling when dimensionless time t̃ < 1 and a 1/2 scal-
ing of the inertial regime located at t̃ = 1–1000. We also reveal how the interaction between the bubble and
Janus micromotor causes a high propulsion speed of ∼0.25 m s−1 and a two-stage displacement after bubble
coalescence. These results provide valuable information to better understand the flow physics and improve
propulsion efficiency for microbubble propelled swimming devices.
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1. Introduction
The coalescence of bubbles or drops is an essential process involving rapid free surface flows and
topological transitions (Eggers et al. 2025; Kavehpour, 2015). Similar to the breakup of fluids (Jo &
Revankar, 2011), coalescence is prevalent in natural flows and industrial applications, and the dynamics
and evolution of these self-similar structures have attracted wide research attention. At the surface of
the ocean, both the coalescence of underwater bubbles into the atmosphere and the coalescence of sea
spray bubbles/drops influence the size distribution of sea surface aerosols. This aspect is considered
an important factor in global climate dynamics (Cochran et al. 2017; Constante-Amores et al. 2021;
Dubitsky et al. 2023; Shaw & Deike, 2021). In many industrial applications such as inkjet printing
(Lohse, 2022), emulsions (Lee et al. 2022) and oil recovery (Kavehpour, 2015), fine control of gener-
ated drops/bubbles relies on a good understanding of the flow physics during the coalescence process.
In biology, the coalescence of biomolecular condensates in living cells (Gouveia et al. 2022) is a funda-
mental mechanism of the coarsening behaviour and is highly important for cellular function; here, the
capillary effect combined with various microscopic interactions in complex and confined environments
becomes a challenge.

In addition to the above applications, microbubbles that can release surface energy and generate
strong hydrodynamic flow have been used as a vital component of novel micro- and nano-devices for
transport function and flow manipulation. For instance, these microbubbles can play an important role
in the propulsion and manipulation of emerging swimming microrobots (Nourhani et al. 2020; Wang
et al. 2022, 2024) based on bubble-powered catalytic colloids, known as bubble microrockets (Chamolly
et al. 2024; Li et al. 2016; Michelin et al. 2018). Unlike common single-bubble microrockets, two or
more bubbles can be generated when a higher concentration of fuel solution or a larger size catalytic
micromotor is used. In these scenarios, bubble coalescence is crucial for achieving high propulsion
efficiency, particularly when bubble coalescence reduces the surface area and releases surface energy.

The above applications have motivated studies on the fluid flow and microscale physics that govern
coalescence dynamics. At this scale, surface tension is typically the dominant effect in a wide variety of
coalescence contexts, such as in the multi-bubble-powered microrockets, because the capillary number
Ca (defined as the ratio of viscous force to interfacial force) and the Ohnesorge number Oh (defined
as the ratio of viscous time scale to inertial-capillary time scale) are both small. Early work focused
on the growth of the neck radius between two coalescing drops, where the surface tension induces a
very rapid coalescence motion with a typical Reynolds number Re (defining the ratio of inertial force to
viscous force) of up to 100 or even more. For a long time, this rapid growth of the neck was described
as an inertial dominant regime in which 1/2 scaling was used to characterise neck growth (Paulsen
et al. 2012; Thoroddsen et al. 2005). However, linear scaling has also been reported in experimental
and numerical studies (Aarts et al. 2005; Burton & Taborek, 2007; Yao et al. 2005). Reminiscent of
the exact solution in the viscous Stokes regime of Hopper (2006), this linear scaling should be rational
if the viscosity is sufficiently high. The so-called inertially limited viscous regime (ILV regime) at the
beginning of coalescence was proposed by Paulsen et al., and its typical linear scaling was established in
their coalescence experiments (Paulsen et al. 2012, 2014). Since then, viscous-to-inertial cross-over has
become the research focus. Negal’s group (Paulsen et al. 2011, 2012, 2014) established a framework to
describe the cross-over from a linear scaling of the inertially limited viscous regime to a 1/2 scaling of
the inertial coalescence regime for various drops. A universal coalescence scaling theory of the viscous-
to-inertial cross-over process for various drops was also identified by Xia et al. (2019). However, in the
meantime, Anthony et al. performed numerical simulations and reported that the results were sensitive
to the initial bubble contact conditions and the grid resolution, raising doubts on the existence of the
linear ILV regime (Anthony et al. 2017, 2020; Eggers et al. 2025). Nonetheless, for bubble coalescence,
especially in the applications of multi-bubble-powered microrockets, the scaling is not clear since the
neck growth is influenced by the confinement effect of the catalytic micromotor and the gas generation
from chemical reactions.
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The complexity of addressing coalescence dynamics originates not only from the singular regime of
the contact point of two bubbles, but also from the geometric confinement and the flow of the outer phase
fluid. The confinement could impose restrictions on the initial condition as well as hydrodynamic drag to
the outer phase flow (Eggers et al. 2025; Ryu et al. 2023). Unlike drop coalescence, the outer liquid phase
for bubble coalescence also plays a major role because the lubrication flow of the outer fluid confined
to a very small gap between the two bubbles becomes significant, even if its viscosity is not very high.
Clearly, the solid micromotor in the multi-bubble-powered microrockets inevitably introduces a strong
and asymmetric confinement effect that has not been effectively characterised in previous studies. These
previous studies have usually analysed the coalescence process far from a solid boundary. Moreover, in
the late coalescence process, surface deformation during the merging of two bubbles and the detachment
of the merging bubble from the micromotor may also significantly contribute to the propulsion efficiency,
whereas detailed experiments and analyses are still needed.

In this study, we establish a double-bubble-powered micromotor based on a platinum-silica (Pt-
SiO2) Janus microsphere. When submerged in H2O2 solutions at a medium concentration (15 %), a
pair of bubbles can be simultaneously generated on the Pt surface due to the catalytic decomposition of
H2O2. Unlike common single-bubble-powered micromotors (Manjare et al. 2012; Wang & Wu, 2014;
Wang et al. 2022, 2024; Zhang et al. 2017), the presence of twin bubbles introduces a novel propulsion
mechanism that is closely related to the bubble coalescence process. In this double-bubble-powered
micromotor system, the translational motion of the micromotor is propelled by repeated bubble cycles.
These cycles include the generation, growth and coalescence of the bubble pair, and the final detachment
of the merging bubble. This double-bubble-powered micromotor provides a unique experimental set-up
for investigating bubble coalescence and subsequent bubble motion; here, the crucial factors such as
bubble size, micromotor size, liquid viscosity and reaction rate are adjustable. We focus on clarifying
the scaling law of bubble coalescence in this complex system. Based on the experimental results over a
wide range of Oh, we show a universal scaling law manifesting a cross-over from a linear scaling of the
inertially limited viscous regime to a 1/2 scaling of the inertial coalescence regime. We find that the con-
finement effect of the solid micromotor results in asymmetric growth of the neck region and a repulsion
to detach the coalescing bubble. To characterise the contribution to the propulsion of the micromotor,
we show the effects of releasing surface energy from bubble coalescence and the momentum transferred
during bubble detachment by a two-stage variation in the displacement from experimental observations.
The results provide a better understanding of the flow dynamics and the transport mechanism in micro-
and nano-scale swimming devices.

2. Experimental methods
In our experiment, the generation of microbubbles was achieved through the decomposition of H2O2 on
the Pt side of the Janus microsphere (2H2O2

Pt→ 2H2O +O2). An inverted microscope (Nikon Eclipse
Ti-U) equipped with a 20× objective (NA= 0.75) and ultrahigh-speed cameras (Phantom, V2512 and
TMX 7510) were used to record the coalescence process of the microbubbles, as shown in Figure 1a.
Hollow Janus microspheres (hJMs) were obtained by depositing a Pt layer (thickness of 20 nm) on the
hemisphere of the hollow glass microspheres (radius RJM ∼ 10–30 μm; the main component is SiO2).
More fabrication details can be found in the literature (Wang et al. 2022). In the experiment, the H2O2
solution was dripped onto a hydrophilic glass slide to form a liquid film with a thickness of∼500 μm,
and then the Janus particle was placed in the solution using a micropipette. The generation of single
or multiple microbubbles was controlled by varying the H2O2 concentration. When the H2O2 concen-
tration c was less than 10 %, only a single bubble formed on the JM surface. While for a higher H2O2
concentration, c∼ 15 %, usually two microbubbles were generated simultaneously on the Pt surface
(Figure 1a). If the two bubbles were in contact with each other, bubble coalescence began. Note that
the bubble coalescence occurred in an extremely short time according to the characteristic capillary
time τ =

√
ρRb

3/σ (where ρ is the liquid density, Rb is the bubble radius and σ is the bubble surface
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Table 1. Concentration, density, viscosity and surface tension in the experiments

Glycerol (V%) ρ (×10−3) kg m−3 μ(×10−3) Pa · s σ(×10−2) N m−1

0 % 1.02 0.98 7.25
20 % 1.06 4.23 6.79
30 % 1.09 7.86 6.48
40 % 1.12 12.30 6.27
50% 1.14 21.90 5.98
80% 1.21 179.50 5.96

Figure 1. (a) Schematic diagram of the experimental set-up. (b) Schematic diagram of the neck region of
two coalescing microbubbles with similar initial radii Rb. The neck radius Rn is defined as the minimum
radial distance measured from the z-axis to the neck profile. A zoomed-in schematic of the neck region
is shown in the dashed rectangle, where the curvature radius of the outer profile near the neck region is
defined as Rc. The velocities along the r-axis and z-axis directions are ur and uz, respectively.

tension; τ ∼ 10.5 μs for a microbubble with a radius Rb = 20 μm) in H2O2 solutions. Compared with a
recent experimental study of bubble coalescence (Soto et al. 2018), the capillary time τ in our case is
much shorter because of the decreased bubble size in a micromotor system. Thus, we needed to use
ultrahigh-speed cameras (Phantom, V2512, or TMX 7510) with higher frame rates (460 000 fps or 770
000 fps) to record the coalescence process. The image resolution was approximately 0.68 μm pixel−1.
To investigate the universal scaling of coalescence, glycerol was added to the H2O2 solution to adjust
the viscosity and surface tension of the fluids (Table 1). In the experiment, the glycerol concentration
ranged from 0% to 80%, and the viscosity μ and surface tension σ ranged from 0.98 to 179.50 mPa.s,
and from 0.0596 to 0.0725 N m−1, respectively.

For convenience in describing the bubble coalescence process, we define the geometric coordinates
of the two coalescing microbubbles (with the same initial radius of Rb) near an hJM, as shown in
Figure 1b. To show the process, experimental snapshots of bubble coalescence using two identical bub-
bles (Rb = 21.3 μm and 22.3 μm, the difference in Rb is less than 5 %) in a glycerol-H2O2 solution (50 %,
Vglycerol / VH2O2) are shown in Figure 2a. The first four snapshots display the early coalescence process at
t = 0–6.51 μs until the neck region has grown to approximately Rn ∼ Rb/2. The neck growth then slows
(t = 10.58–19.26 μs), and the difference in neck growth between the near and far sides can be clearly
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Figure 2. (a) Experimental snapshots of the neck growth during microbubble coalescence near a JM.
The environmental fluid is 50 % glycerol-H2O2 solution. The JM radius is RJM = 22.6 μm, the bubble
radii are identical, and Rb = 21.3 μm and 22.3 μm. (b) Determining the neck radius Rn and the outer
curvature radius Rc from the experimental image. An overlap of the bubble profiles with a time interval of
4.34 μs is shown in the last plot of panel (b). To clearly show the temporal evolution, the near and far sides
of each profile are shifted outwards for a small distance. The full process of panel (a) can be viewed in
supplementary movie S1. (c) Zoomed-in images of the neck region at t= 0 μs and t= 2.17 μs. Neck radius
Rn is measured from the image based on the interfacial profile (red curve). The blue dash-dotted lines
denote the uncertainty of the image recognition. The yellow lines indicate the measured neck diameters
and the red dots represent the centre of the diameter. The right panel displays the increase of neck radius
Rn versus time.

observed due to the presence of the JM and its confinement effect. The merging of the two bubbles by
the surface tension of the neck region takes a much longer time (t = 19.26–412.31 μs); during this pro-
cess, the bubble deformation can transfer the energy resulting from a decrease in total surface energy
to the JM. Unsurprisingly, in the 80 % glycerol-H2O2 solution, the neck growth process was slower
because of the greater viscosity of the solution.

To analyse the detailed bubble coalescence process, we obtained the neck growth data from the exper-
imental images. The method is illustrated in Figure 2b. Briefly, we first identified the interfacial profile
of the coalescing bubbles, as shown in red in Figure 2b. The neck radius Rn is determined as the distance
between the centre and the boundary of the neck region. As a result, the temporal evolution of the neck
region and the outer curvature radius Rc can also be obtained, as shown in the last plot of Figure 2b. As
shown in Figure 2c, the zoomed-in images of the neck region at t = 0 μs and t = 2.17 μs demonstrate a
sudden neck growth since bubble coalescence. Here, the onset of bubble coalescence is determined with
an uncertainty of a half-frame interval of approximately 1.1 μs. The boundary of the neck can be clearly
observed in Figure 2c, and the neck radius Rn is measured from the image based on the interfacial profile
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(red curve). Due to the complex optical effect in the neck region and the limit of the optical resolution, we
estimate that the measurement uncertainty of the neck radius Rn is approximately ± 1 pixel = ± 0.68 μm.
The right panel of Figure 2c displays the measured Rn with error bars indicating the uncertainties.

3. Theoretical model and numerical simulation
3.1. Scaling law of the neck growth at the beginning of bubble coalescence
The early coalescence of two bubbles characterised by the neck formation between them is a classic prob-
lem in fluid dynamics (Case & Nagel, 2008; Paulsen et al. 2011, 2014; Soto et al. 2018; Thoroddsen et al.
2005). The typical Reynolds number, which is based on the speed of neck growth, i.e. Re = ρṘnRb/μ,
can reach 1–100, indicating a significant inertial effect. Here, Ṙn is the growth speed of the neck radius,
ρ is the fluid density and μ is the viscosity. The Ohnesorge number Oh= μ/

√
ρσRb is approximately

0.01–10 and indicates a stronger surface tension effect compared with the viscous effect. According to
the theory of Thoroddsen et al. (2005), which introduced the Laplace pressure based on the neck radius
Rn and the typical horizontal spacing δRn between the two bubbles, the ordinary differential equation
for the dimensionless neck radius can be expressed as follows:

dRn

dt
= A

√√√
(

1

1 −
√

1 − R2
n

− 1
Rn

), (3.1)

where A is a fitting parameter, the dimensionless neck radius is Rn = Rn/Rb and the dimensionless time
is t = t/τ normalised by the capillary time τ =

√
ρRb

3/σ (Soto et al. 2018; Thoroddsen et al. 2005).
The above approach suggests an Rn ∼ t1/2 relation (Thoroddsen et al. 2005) at early coalescence, which
has been experimentally verified by Soto et al. (2018). Nagel’s group also showed this inertial Rn ∼
t1/2 relation based on systematic investigations using various drops (Case & Nagel, 2008; Paulsen et al.
2011, 2014):

Rn

Rb
= B

√
t
τ
, (3.2)

where B is a dimensionless fitting parameter.
Nonetheless, as mentioned before, a different viscous scaling should begin with an inertially limited

viscous regime (Paulsen et al. 2012), which satisfies linear scaling in the Stokes regime if the viscosity
is sufficiently high. This linear behaviour was theoretically described by Hopper (2006) and was experi-
mentally and numerically examined (Aarts et al. 2005; Burton & Taborek, 2007; Yao et al. 2005). Thus,
viscous-to-inertial cross-over became a main research focus. Negal’s group (Paulsen et al. 2012, 2014)
established a framework to describe the cross-over from a linear scaling of the inertially limited viscous
regime to a 1/2 scaling of the inertial coalescence regime for various drops. Recently, Xia et al. (2019)
provided a theoretical derivation to reveal the universal coalescence scaling of the viscous-to-inertial
cross-over process for various drops starting from the Navier–Stokes (N-S) equation. Note that the sim-
ulation of Anthony et al. (2017, 2020) showed a 1/2 scaling of bubble coalescence and explained that
the linear ILV regime would not exist if the initial condition was a point contact. Hereafter, we introduce
the theoretical description for our experiment based on the work of Xia et al.

A schematic diagram of the neck region of bubble coalescence in our experiment is displayed in
Figure 1b. Since the evolution of the neck region is governed mainly by a more viscous fluid phase, we
establish equations to describe the fluid flows of the neck region. For the axisymmetric and quasi-steady
flow, the continuity equation and the momentum equations in the r direction can be exprssed as
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∂ur
∂z
+
∂ur
∂r
+

ur
r
= 0, (3.3)

ρ

(
uz
∂ur
∂z
+ ur
∂ur
∂r

)
= −∂p
∂r
+ μ(
∂2ur
∂z2 +

∂2ur
∂r2 +

∂(ur/r)
∂r

), (3.4)

where uz and ur are velocities in the z and r directions, respectively, and p is the pressure. In this axisym-
metric configuration, following the deduction of Xia et al. (2019) in which a Batchelor vortex was used
to address the velocity distribution in the neck region, an equation governing the flow during bubble
coalescence is obtained:

ρu2 − 2σ
(

1
Rc
− 1

Rn
+

2
Rb

)
+ μ

√
πu

Rc
= 0. (3.5)

The three terms on the left-hand side of (3.5) represent the inertial effect, the surface tension effect
and the viscous effect, respectively. The surface tension term 2σ

(
1
Rc
− 1

Rn
+ 2

Rb

)
can be approximated

as 2σ/Rc as Rc is the smallest length. Note that the self-similar geometric relationship indicates Rc/Rn ≈
tanθ/2 ≈ Rn/2Rb << 1, which also means Rc ∼ Rn

2/2Rb. Therefore, the governing equation is simplified
to be

ρu2 − 4σRb

R2
n

+
2
√
πμuRb

R2
n

= 0. (3.6)

Similar to the treatment of Paulsen et al. (2014) and Xia et al. (2019), by selecting a characteristic
length L = 2RbOh, velocity U = σ/μ and time scales T = 2RbOhμ/σ, a final dimensionless equation
can be established based on (3.6):

˙̃R2
n −

2

R̃n
2 +

√
π

˙̃Rn

R̃n
2 = 0, (3.7)

where the dimensionless neck radius is R̃n = Rn/2OhRb and the dimensionless time is t̃ = tσ/2μOhRb .
Using proper initial conditions R̃n = 0 and ˙̃Rn (t̃) = 0, we can solve (3.7) and obtain an implicit form of
the exact solution:

t̃ =

√
πR̃n

4
+

R̃n

8

√
8R̃n

2
+ π +

√
2π

32
ln(

√
8
π

R̃n +

√
8R̃n

2

π
+ 1). (3.8)

More information can be obtained from the dimensionless (3.7). By respectively neglecting the iner-
tial, surface tension and viscous term in (3.7), one can readily find the scaling of R̃n ∼ t̃, R̃n ∼ t̃1/3 and
R̃n ∼ t̃1/2. Nonetheless, considering that surface tension cannot be disregarded in our experiments since
Oh < 1, the presence of R̃n ∼ t̃ and R̃n ∼ t̃1/2 is expected. The former is known as the inertially limited
viscous regime for very small t̃ at the beginning of coalescence (Paulsen et al. 2014), and the latter
is more frequently observed in the literature (Paulsen et al. 2014; Soto et al. 2018; Thoroddsen et al.
2005; Xia et al. 2019) when the inertial effect becomes dominant. The R̃n (t̃)∼ t̃ relation in (3.8) con-

tains three terms: ˜t1 =
√
π R̃n (˜t1)

4 , ˜t2 = R̃n (˜t2)
8

√
8[̃Rn (˜t2)]2 + π and ˜t3 =

√
2π

32 ln(
√

8
π R̃n +

√
8R̃n

2

π + 1),
which are shown in Figure 3. The summation of the three terms is also displayed by empty circles in
Figure 3. At short times t̃ << 1, all curves follow the linear R̃n ∼ t̃ scaling, and the value of R̃n is mainly
determined by the first term ˜t1 =

√
π R̃n (˜t1)

4 . At long times t̃ >> 1, the value of R̃n is mainly determined

by the second term ˜t2 =
R̃n (˜t2)

8

√
8[̃Rn (˜t2)]2 + π, which indicates a scaling of R̃n ∼ t̃1/2. The cross-over

of the summation curve occurs near t̃ = 1. More specifically, the cross-over starts after the intersection
at t̃ =

√
π(π − 1)/32 ≈ 0.459 between the first and second terms. In addition, with increasing Rc, the

surface tension term in (3.5) may become trivial as Rc ≈ Rn. This analysis implies that the experimental
scaling when t̃ > 1 may be slightly smaller than the 1/2 prediction since (3.7) suggests a 1/3 scaling
when the surface tension effect is not important.
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Figure 3. Dimensionless R̃n (t̃)∼ t̃ relation (empty circles) obtained from (3.8) contains three parts, as
displayed by the blue solid curve, purple dashed curve and red dash-dotted curve.

It is necessary to discuss alternative theories regarding the scaling of neck growth. As mentioned
above, the simulation results from Anthony et al. (2017, 2020) showed a 1/2 scaling rather than a linear
scaling of neck growth. A fundamental difference between the two viewpoints is whether the initial
contact is a point contact or a Taylor–Culick-type bridge of finite size. The works of Anthony et al. have
shown that if the initial condition is a point contact featuring coalescence singularity, the neck growth
follows a 1/2 scaling. While if the contact is a Taylor–Culick-type bridge of finite size, the linear ILV
regime appears before the 1/2 inertial scaling. Nonetheless, the lack of resolution of the initial contact
condition has led to debate regarding the ILV regime, which will be further discussed based on our
experimental results in § 4.2.

3.2. Numerical simulation
To understand the evolution of neck growth in detail, we conducted a numerical analysis of the bubble
coalescence process. The numerical model of the bubble coalescence process consists of a particle
with two same size bubbles merging next to it. The radii of the JM and the bubble were both set as
20 μm, close enough to the dimensions observed in our experiments. Unliked in the experiments, the
particle was fixed to measure the forces induced by the coalescence process. The simulation domain
was initially fully occupied with solutions other than particles and bubbles, and its dimensions were set
as 180× 180× 120 μm, which were large enough to neglect the far-field effect from boundaries. For the
boundaries, the top and side boundaries were set as free stream boundaries (mixed boundary conditions),
while the bottom boundary was treated as a substrate (non-slip boundary condition). The first plot of
Figure 4 shows the initial locations of the JM and bubbles before the coalescence process occurs.

Here, for conciseness, we list only the main governing equations of the multiphase model. By assum-
ing incompressible fluids and neglecting the microscale gravity effect, the fluid flow of both liquid and
gas obeys the continuum and multiphase Navier–Stokes equations, which are written in the following
forms:

∇ · u = 0, (3.9)
∂ρu
∂t
+∇ · (ρuu) −∇ · (μ∇u) −∇u · ∇μ= −∇p + σκ∇α, (3.10)
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Figure 4. Left panel: vertical view of the temporal evolution of the bubble coalescence process at 0,
2.5, 4.5, 6.5, 10.5 and 19.5 μs. The numerical snapshots are in good agreement with the experimental
results shown in Figure 2(a). Right panel: the local flow field induced by the bubble coalescence process
at 6.5 μs.

where α is the volume fraction of the liquid phase and κ is the local curvature of the liquid–gas interface.
The first two terms on the left-hand side of (3.10) represent the inertial effect, and the third and fourth
terms represent the viscous effect resulting from the fluid viscosity evolution due to interface motion.
The terms on the right-hand side of the equation are the pressure gradient and surface tension force terms.
This form is the classical volume-of-fluid interface capturing approach used to describe the Navier–
Stokes equations for two immiscible fluids (Annaland et al. 2005). The evolution of the volume fraction
of the liquid and gas phases obeys the following advection equation:

∂α

∂t
+ u · ∇α = 0. (3.11)

By using the set of equations mentioned above, we can model the bubble coalescence process next
to the particle. This multiphase model was solved using the widely used interFoam solver from the
OpenFOAM open-source CFD package (Hrvoje 2009) and has been thoroughly validated for gas–liquid
multiphase simulation applications. The readers are referred to the theoretical manual of the OpenFOAM
for the details of numerical implementation.

Figure 4 shows the neck evolution snapshots obtained from the simulations. These simulations are
in good agreement with the experimental observations in Figure 2a. Similarly, we found a decrease in
neck growth as well as a difference in neck growth between the near and far sides.

4. Results
4.1. Neck growth in the whole bubble coalescence process
We first present the experimental results of the neck growth during the entire bubble coalescence process.
This experiment was performed using a Pt-SiO2 JM with radius RJM = 37.41 μm in 80 % glycerol-
H2O2 solution. The radii of the bubbles before coalescence were considered identical: Rb = 29.24 μm
and 29.92 μm. The surface tension of the solution was 59.6 mN m−1, which led to a capillary time
of τ = 23.38 μs. Here, the bubble coalescence takes a longer time (more than t = 36.89 μs) to finish, as
shown in Figure 5a, than the shorter duration of roughly t = 19.26 μs, as shown Figure 2a. In addition,
Figure 5a reveals the asymmetric neck growth between the near and far sides due to the confinement
effect of the JM, especially when Rn > Rb/2. In this section, we first focus on the neck growth on the
far side, and only experimental data from the far side are provided in Figures 5 and 6. The confinement
effect and the near-side data are discussed later in § 4.3.

The temporal variation in the neck radius Rn in 80 % glycerol-H2O2 solution is shown in Figure 5b,
in which one observes that the neck growth rate decreases with time. The experimental data are
compared with the theoretical model Rn

Rb
= B

√
t
τ

that predicts a 1/2 scaling as described in (3.2)
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Figure 5. (a) Snapshots of bubble coalescence in 80 % glycerol-H2O2 solution, which were obtained
from supplementary movie S2. (b) Growth of the neck radius Rn versus time t. A comparison of the
experimental data with the theoretical model Rn

Rb
= B

√
t
τ

is displayed in the inset, where the fit parameter
is B= 0.550. (c) Temporal evolution of the outer curvature radius Rc during bubble coalescence. The
inset shows the relation of Rc versus Rn, and a dashed line is plotted to highlight Rc < Rn in the early
coalescence.

(Case & Nagel, 2008; Paulsen et al. 2011). This 1/2 scaling of the inertial regime is shown by a fit-
ted solid curve in the inset of Figure 5b and effectively describes the tendency of the experimental data.
The fit parameter B in the theoretical model is approximately B= 0.550. We notice that the best fit to the
experimental tendency is usually within t/τ ≤ 1, which is roughly in accordance with the reported range
t/τ ≤ 0.5 from Thoroddsen et al. (2005) and Soto et al. (2018). Nonetheless, a slight deviation in the late
process occurs when t/τ >2; here, the increase of the experimental data becomes slower than the theo-
retical curve. Note that the neck coalescence process is finished when t/τ > 2 (t > 47 μs as τ = 23.38 μs),
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Figure 6. Neck growth is influenced by (a) bubble size and (b) fluid viscosity. In panel (a), the radii of
the identical bubbles are 26.9 μm (red triangles) and 17.2 μm (blue squares), and 50 % glycerol-H2O2
solution is used for both cases. In panel (b), the glycerol concentrations are 40 % (red triangles), 50
% (blue squares) and 80 % (green circles), corresponding to fluid viscosities ranging from 12.3 to
179.5 mPa.s. The bubble radii are all within 17.9 ± 1.5 μm. In addition, the neck growth behaviour of
non-identical bubbles is shown in panel (c). In panel (c), the red triangles represent data using identical
bubbles with Rb1 ≈ Rb2 = 22.2 ± 0.6 μm as a reference, and the blue squares represent data of non-iden-
tical bubbles with a larger bubble with Rb1 = 22.5 μm similar to the former case, and a smaller bubble
with Rb2 = 16.3 μm.

according to Figure 5a. Afterwards, a further increase in Rn reflects the coupling effect of bubble defor-
mation and the drag force due to surface tension from the near side. Ideally, the former effect should
promote an increase in Rn, which causes a larger Rn than the theoretical curve; however, the latter should
hinder the increase in Rn on the far side. Here, we observe a slower increase in Rn when t/τ > 2, which
is attributed to a stronger surface tension effect from the near side. The effect of the asymmetric neck
growth due to confinement of the JM is discussed in § 4.3.

We also measured the temporal variation in the curvature radius Rc of the outer profile. The variation
in Rc reveals different behaviours during and after the coalescence process. As shown in Figure 5c,
we find a transition at approximately t ≈ 47 μs, from a smooth increase in Rc to a sharp increase.
Interestingly, this transition time is similar to the moment of t/τ = 2 mentioned above. The results in
Figure 5c shows the competition between Rn and Rc in the surface tension term 2σ

(
1
Rc
− 1

Rn
+ 2

Rb

)
of

(3.5), in which the transition is clearly displayed for the first time to the best of our knowledge. Before
t = 2τ, the increase in both Rn and Rc is governed by the coalescence dynamics. After t = 2τ, the evo-
lution is influenced by other effects, such as bubble deformation. In this stage, Rc increases to infinity
accompanied by bubble deformation that flattens the outer profile. The bubble deformation may cause
surface wave propagation after coalescence (Gilet et al. 2007; Soto et al. 2018). Unfortunately, due to
the much smaller bubble size in our experiment than in Soto’s experiment, we did not observe clear
propagation of the surface deformation waves.

In our theoretical analysis (§ 3.1), a simplification of the surface tension term 2σ
(

1
Rc
− 1

Rn
+ 2

Rb

)
as

2σ/Rc was made based on the assumption of Rc < Rn. We can verify this point since both neck radius
Rn and outer curvature radius Rc were measured in the experiments. In the inset of Figure 5c, we thus
plot the curve of Rc versus Rn. A dashed line is drawn in this plot to highlight that the relation Rc < Rn
is valid during the coalescence process. The cross-over occurs at Rc = Rn ≈ 23 μm when t ≈ 48 μs∼ 2τ.
After that, Rc rapidly increases to infinity and has a much faster rate than that of Rn. The result of
Rc in Figure 5c indicates a clear boundary separating the dynamics of bubble coalescence and bubble
deformation at approximately Rc = Rn when t ≈ 2τ. This can be correlated with the beginning of the
deviation from the theoretical curve in Figure 5b.

The neck evolution is also influenced by many factors, including bubble size and fluid viscosity. We
compare the experimental data of the neck radius using different generated bubbles in Figure 6a. Here,
the radii of the identical bubbles are 26.9 μm and 17.2 μm, respectively, and 50 % glycerol-H2O2 solution
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is used for both cases. The two curves in Figure 6a show similar neck growth behaviour before t = 15.2 μs
independent of the bubble size. Therefore, consistent normalised behaviour at t/τ < 1 in the inset of
Figure 6a is observed. Notably, the deviation of the experimental data from the theoretical curve in a
glycerol solution at a low concentration (i.e. low viscosity) is opposite to the result of the high glycerol
concentration case in Figure 5b. We suspect that competition between viscosity and surface tension
dominates this different increasing behaviour of Rn. In low viscosity solutions, bubble deformation is
faster leading to faster expansion of Rn; thus, the dragging of the surface tension from the near side can
be overcome.

The effect of fluid viscosity is illustrated in Figure 6b, in which by changing the glycerol concentration
from 40 % to 80 %, the fluid viscosity is varied from 12.3 to 179.5 mPa.s. However, as the typical capil-
lary time scale τ does not change with fluid viscosity, we observe similar bubble coalescence behaviour
in Figure 6b. Note that the bubble radii of the three curves in Figure 6b are all within 17.9 ± 1.5 μm,
and the surface tension decreases slightly from 0.0627 to 0.0596 N m−1 (Table 1). These data here again
demonstrate that the capillary time τ can effectively describe the temporal evolution of the neck.

In practice, the two coalescing bubbles are usually not identical. In Figure 6c, we show the neck
growth behaviour for non-identical bubbles in the same 50% glycerol-H2O2 solution. In the case of non-
identical bubbles, the radius of the larger bubble is 22.5 μm and that of the smaller bubble is 16.3 μm.
The experimental data of the identical bubbles whose radii (Rb = 22.2 μm) are similar to those of the
larger bubble are provided by the red triangles in Figure 6c as a reference. The size difference causes
pressure difference between the two bubbles, whereas we do not observe the acceleration of the neck
growth caused by the pressure difference. This occurs because coalescence is governed mainly by local
flows.

4.2. Universal scaling of neck growth
For a long time, the key issue in the study of the neck growth during bubble coalescence has been
identifying its universal scaling. As analysed in the theoretical part in § 3.1 (also see Figure 3), we
expected a linear scaling of the inertially limited viscous regime at the beginning of the coalescence and
a cross-over to a 1/2 scaling of the inertial regime. To verify this, we introduce the dimensionless forms
R̃n = Rn/2OhRb and t̃ = tσ/2μOhRb based on the Ohnesorge number Oh and plot the dimensionless
results of R̃n ∼ t̃ in Figure 7. To avoid undesired influences in the late coalescence process such as the
surface tension singularity near Rn = Rc and the confinement effect of the JM, only the data when Rn <
Rc are plotted in Figure 7.

In Figure 7, we clearly observe a two-stage universal scaling of the neck growth, covering a wide
range of Oh from approximately 0.01 to 1.35. The cross-over is approximately located at t̃ = 1. The
linear scaling indicating the inertially limited viscous regime is clearly displayed when t̃ < 1, where the
dimensionless neck radius is also approximately R̃n < 1. After the cross-over at t̃ = 1, we observe the
1/2 scaling of the inertial regime located at t̃ = 1–1000, in which the neck radius increases from R̃n

= 1 to 30. This experimental result provides a complete demonstration of the universal scaling of the
neck growth during bubble coalescence, which is in good agreement with the theory of (3.8) (dashed
line in Figure 7). The cross-over can be more easily observed for higher Oh, i.e. Oh > 0.3, because of
the stronger viscous effect. Interestingly, our scaling result of bubble coalescence is consistent with the
scaling of drop coalescence reported by Paulsen et al. (2012) and Xia et al. (2019). For both bubbles
and fluids, the interface evolution during coalescence is dominated by the flow of a more viscous phase
near the neck.

The error bars based on the measurement uncertainties (see § 2) are plotted in Figure 7. Since the
deviations between the experimental data and the linear scaling when t̃ < 1 are within the range of error
bars, we believe that our experiment indeed shows a linear regime before the well-accepted inertial
1/2 regime. Our experimental results imply that the initial contact between two bubbles in our cases
is Taylor–Culick type rather than point contact. We agree that the debate on the ILV regime has not
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Figure 7. Universal scaling of neck growth. The experimental data are shown by different symbols, and
the theoretical prediction of (3.8) is displayed by the red dashed curve. The scaling values of 1 when t̃
< 1 and 1/2 when t̃ > 1 are respectively marked in the figure.

been resolved since higher resolution experimental evidence is needed to clarify how the initial contact
condition influences the scaling law, as predicted by Anthony et al. (2017, 2020).

4.3. Asymmetric growth caused by confinement
The asymmetric growth of the far and near side of the neck is a prominent feature of the coalescence
dynamics in our double-bubble-powered micromotor system, which cannot be observed in the common
bubble coalescence process in an unconfined case. We first compare the experimental data in a 50 %
glycerol solution with the numerical simulation results, and similar asymmetric growth behaviour is
captured, as shown in Figure 4. The comparison in Figure 8a demonstrates a good agreement between the
numerical results and the experimental data when the bubble sizes are similar. We observe a noticeable
deviation between the far and near sides at approximately t ∼ 4 μs, which is much earlier than the typical
capillary time of τ = 12.3 μs in this case. At t ∼ τ, the difference between the two sides are as follows:
Rn_far – Rn_near ≈ 15.0 – 11.3= 3.7 μm. Based on the simulation results of the outer curvature radii of the
far and near sides (Rc_far = 9.6 μm, Rc_near = 5.9 μm), the pressure difference can be calculated according
to the Laplace equation,

pn_ f ar − pc_ f ar = σ(
1

Rn_ f ar
− 1

Rc_ f ar
), pn_near − pc_near = σ(

1
Rn_near

− 1
Rc_near

). (4.1)

Thus, the pressure difference between the near and far sides is estimated to be pc_near – pc_far ≈
σ(1/Rn_far – 1/Rc_far – 1/Rc_near + 1/Rc_near)= 2.7 kPa by assuming pn_near = pn_far. These results reflect
the confinement effect on the near side due to the presence of the JM solid particle. In Figure 8(c), the
velocity field near the neck region is highlighted to show the faster velocity decay on the near side than
on the far side.

We further investigated the behaviour of the neck evolution on the near side. The numerical results
obtained by varying the solution viscosity are shown in a double-logarithmic plot in Figure 8b. The
solutions used were 20 %, 50 % and 80% glycerol-H2O2 solutions. It is not surprised that the evolution
of the neck on the near side is hindered by the confinement of the solid JM, which thus manifests a scaling
slower than the 1/2 tendency (3.2) of the far side. Asymmetric neck growth, especially the growth of
the neck on the near side, involves complicated and coupled effects such as confinement from the solid
JM on the near side of the neck, pressure differences caused by different outer curvature radii of the far
and near sides, and tangential flow around the asymmetric neck. Due to the above difficulty, additional
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Figure 8. (a) Evolution of the far and near sides of the neck radius as a function of time in 50 %
glycerol-H2O2 solution. The solid symbols are experimental data from Figure 2 with bubble radii of
Rb = 21.3 μm and 22.3 μm, and the red and blue dash-dotted curves are simulation results on the far
and near sides, respectively. (b) Log-log plot of the neck evolution on the near side showing an approx-
imately 1/3 behaviour marked by the dashed line. (c) Velocity contour map near the neck region (in 50
% glycerol-H2O2) during coalescence. The position of the two bubbles is fully covered in white, and the
part of the JM on top of each plot is covered in grey.

research is needed to elucidate the dynamics of the neck growth on the near side. Interestingly, we
observe an approximately 1/3 scaling roughly at t/τ = 0.1–1 (Figure 8b). For the low viscosity case (20
%), our simulation shows that the 1/3 scaling appears at the beginning of the simulation (t ≈ 0.5 μs and
t/τ ≈ 0.04), different from the common 1/2 scaling shown in Figure 5b. While for the high viscosity
case (80 %), the neck growth is much slower than 1/3 scaling at the beginning when t/τ < 0.1, and 1/3
scaling appears in the intermediate regime at approximately t/τ ∼ 0.5. With increasing viscosity, the
appearance of the 1/3 regime is gradually delayed. We speculate that the growth slower than 1/3 scaling
for higher viscosity cases (50 % and 80 %) when t/τ < 0.1 reflects the hydrodynamic hinderance due to
the confinement of the solid JM, whereas the acceleration to 1/3 scaling is caused by the surface tension
from the far side with larger Rn, which still needs further investigation. At a later stage when t/τ ≥ 1, as
the gap between the neck and the JM decreases, all curves of neck growth in Figure 8b flatten due to the
confinement effect.

4.4. Deformation and detachment of the microbubbles after coalescence
For the bubble propulsion of a Janus micromotor, the coalescence of two bubbles and the detachment
of the coalescing bubble provide the energy for the forward motion of the Janus microsphere. Bubble
coalescence can release extra surface energy, and bubble detachment can transfer momentum to the
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Figure 9. (a) Experimental snapshots during bubble detachment shown at moments A to G. The origi-
nal JM centre is marked by an orange dash-dotted line. Bubble deformation and detachment (at moment
D) both contribute to the JM’s propulsion. (b) Propelled displacement of the JM sJM during bubble coa-
lescence and detachment obtained from the experiment. A theoretical curve of the displacements solved
from (4.1). The corresponding moments A–G of the snapshots are marked in panel (b). (c) Acceleration
of the JM versus time.

Janus microsphere. However, an experimental video (supplementary movie S3) reveals more details
on the correlation of the release of the surface energy and momentum transfer. Figure 9 displays some
snapshots from supplementary movie S3, in which a dash-dotted line is used to mark the original position
of the JM. We can see that bubble deformation after coalescence plays an important role in transferring
the released surface energy to the JM, as shown at moments B and D in Figure 9a. At t = −6.7 μs in
Figure 9a, the surface deformation wave rapidly travels along the coalescing bubble surface and reaches
the two side apexes. The coalescence causes bubble deformation in the direction perpendicular to the
JM’s propulsion direction. The surface wave of the bubble interface then transfers the impact to the
JM when the deformation turns in the direction along the JM’s propulsion. This impact also results in
detachment between the coalescing bubble and the JM, as shown at moment D in Figure 9a.
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Therefore, according to Figure 9b, the propulsion of the JM has two sources. The JM’s displacement
s can be divided into two parts: sJM = s1 + s2, in which s1 is the displacement that is produced during
the bubble deformation from B to D before detachment, and s2 is the displacement that is produced after
bubble detachment by momentum transfer, as shown from D to G. We define the beginning time t = 0
μs at the moment D of bubble detachment. When t < 0, a small displacement is clearly observed and
corresponds to the JM’s movement from B to D in the first stage in Figure 9a. The slopes ds1/dt (from B
to D) and ds2/dt (from D to E) are quite different, indicating a switch in the main propulsion mechanism
before and after bubble detachment.

The generation of this first displacement s1 is attributed to the counteraction from the fluids in
response to the deformation of the coalescing bubble. The coalescence and deformation process mainly
exerts a repulsion force on the fluid on the bubble side, thus, the counteraction from the fluid propels
the coalescing bubble and the JM as a whole to the side of the JM. During the first stage, the apparent
propulsion speed of the JM according to the slope ds1/dt is approximately 0.1 m s−1; in contrast, the mass
centre of the coalescing bubble does not substantially shift. We also show the acceleration a= d2sJM /dt2
in Figure 9c, which manifests two positive peaks of accelerations. The first positive peak (at moment B)
is caused by the propulsion in the first stage. The kinematic energy of the JM is a portion of the surface
energy released from bubble coalescence, i.e. mJMa1 × s1 = ε × 4πσ (2Ri

2 – Rcoa
2), where Ri is the ini-

tial bubble radius, Rcoa is the bubble radius after coalescence and ε is the energy transfer efficiency. Our
calculation shows that a1 = 27451 m2 s−1 and ε is approximately 0.03, since part of the surface energy
is transferred to the surrounding liquid flow and lost by viscous dissipation. During the later period (C
to D) in stage 1, the surface wave of bubble deformation needs approximately τ/4 (τ = 4.1 μs here) to
propagate from the two side apexes to the contact point with the JM.

The second displacement s2 of the JM is caused by bubble detachment, which is a process of momen-
tum conservation. The tendency of s2 in Figure 9b can be approximately modelled using the ordinary
differential equation describing the force balance,

mJM s̈2 = − fd_JM , (4.2)

where mJM is the mass of the JM and f d_JM = 6π μ RJM ṡJM (Soto et al. 2018) is the drag force exerted on
the JM. Equation (4.2) can be solved by using proper initial conditions from the experimental results, i.e.
s2(t = 0)= 2.7 μm, ṡ2(t = 0) = 0.6 m s−1. The measured displacements are compared with the solution of
(4.2) in Figure 9b. We find that (4.2) is only effective within t < 20 μs after detachment and, after that, the
experimental propulsion is lower than the theoretical prediction. This deviation is not surprising, since
the unsteady flows near the JM and bubble are not accounted for in (4.2). Although we have not measured
the flow field to determine the effect, the deviation is potentially attributed to the additional drag force
caused by the bubble–fluid interaction. The acceleration a2 at the beginning of stage 2 is even greater
than a1, and we find that a2 = 67432 m2 s−1; this result reflects a stronger bubble–JM interaction during
bubble detachment, which involves the effect of surface wave propagation. This bubble–JM interaction
exerts a transient force of 4.34 × 10−6 N on the JM. After the detachment of the bubble at t = −6.7 μs,
a negative peak of the acceleration of a2 =−56315 m2 s−1 appears, which is caused by the liquid drag
force.

5. Conclusions
In summary, we investigated the coalescence of microbubbles using a double-bubble-powered micromo-
tor based on a Pt-SiO2 Janus microsphere and investigated how bubble motion influences the propulsion
of the micromotor. We found that the universal scaling law based on (3.8) could effectively describe all
experimental data for a wide range of Ohnesorge numbers Oh= 0.01–1.35, by varying the liquid vis-
cosity, bubble size and surface tension. This dimensionless scaling law indicates a cross-over from an
inertially limited viscous regime manifesting linear scaling when t̃ < 1 to a 1/2 scaling of the inertial
regime located at t̃ = 1–1000. For comparison, previous scaling Rn

Rb
= B

√
t
τ

from (3.2) was applied for
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the bubble coalescence process to capture the inertial behaviour of the neck growth. By monitoring
the evolution of the curvature radius Rc of the outer profile, we proposed that the transition of Rc
from a smooth increase to a sharp increase could effectively separate the neck coalescence and fur-
ther deformation processes. Interestingly, this transition approximately occurred at Rc = Rn. In addition,
we discussed the asymmetric neck growth due to boundary confinement from the JM, which is a promi-
nent phenomenon in the application of bubble-propelled micromotors. We observed an approximate 1/3
behaviour of the neck evolution on the near side. The deviation from this 1/3 behaviour at a later stage
reflects the effect of the surface tension from the far side, which is more significant when the viscosity
is lower.

The double-bubble-powered micromotor can harness energy from the bubble coalescence process
and achieve propulsion from the bubble–liquid interaction. We found that the JM’s propulsion can be
divided into two stages: in the first stage, the counteraction from the liquid due to bubble deformation
results in a forward motion of the JM–bubble dimer; in the second stage, the JM is further propelled by
momentum transfer during bubble detachment, whose displacement can be approximately modelled by
a kinematic equation. We also highlight the high average propulsion speed of the JM during these two
stages, which is approximately 0.25 m s−1. The results from this study provide physical insights into the
design of fast and efficient bubble-powered microrockets.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/flo.2025.11.
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