
Euro. Jnl of Applied Mathematics (2023), vol. 34, pp. 1242–1268 c© The Author(s), 2022. Published by
Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution and reproduction, provided the original article is properly cited.
doi:10.1017/S0956792522000286

1242

Existence and stability of singular patterns in a
fractional Ginzburg–Landau equation with a

mean field

M I N G A O1,2, M A T T H I A S W I N T E R3, and W E N Y A N G1

1Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and
Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China

2University of Chinese Academy of Sciences, Beijing 100049, P. R. China
emails: gaomin202@mails.ucas.ac.cn, math.yangwen@gmail.com

3Department of Mathematics, Brunel University London, Uxbridge UB8 3PH, UK
email: matthias.winter@brunel.ac.uk

(Received 11 April 2022; revised 25 August 2022; accepted 27 August 2022; first published online 11 November 2022)

In this paper, we consider the existence and stability of singular patterns in a fractional Ginzburg–
Landau equation with a mean field. We prove the existence of three types of singular steady-state
patterns (double fronts, single spikes, and double spikes) by solving their respective consistency
conditions. In the case of single spikes, we prove the stability of single small spike solution for suffi-
ciently large spatial period by studying an explicit non-local eigenvalue problem which is equivalent
to the original eigenvalue problem. For the other solutions, we prove the instability by using the varia-
tional characterisation of eigenvalues. Finally, we present the results of some numerical computations
of spike solutions based on the finite difference methods of Crank–Nicolson and Adams–Bashforth.
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1 Introduction

In this paper, we consider pattern formation in a particular system of partial differential equa-
tions (PDEs) with fractional Laplacian, where a Ginzburg–Landau equation is coupled with a
mean field. We consider the following fractional amplitude equations with periodic boundary
conditions: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
At = −(−�)sA + A − A3 − AB, x ∈R, t> 0,

Bt = −σ (−�)sB −μ(−�)s(A2), x ∈R, t> 0,

A(x + L) = A(x), B(x + L) = B(x),

(1.1)

where

σ > 0, μ ∈R and L is the minimal period.
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Fractional Ginzburg Landau equation with a mean field 1243

We assume the exponent satisfies 1/2< s< 1. The fractional Laplacian (−�)s replaces the clas-
sical Laplacian as the infinitesimal generator of the underlying Lévy process and is defined by:

(−�)sφ(x) ≡ Cs

∫ ∞

−∞
φ(x) − φ(x̄)

|x − x̄|1+2s
dx̄, Cs ≡ 22ss�(s + 1/2)√

π�(1 − s)
.

By taking τ = 1/σ ,μ′ =μ/σ , equation (1.1) can be rewritten in the form:⎧⎨
⎩

At = −(−�)sA + A − A3 − AB, x ∈R, t> 0,

τBt = −(−�)sB −μ′(−�)s(A2), x ∈R, t> 0,
(1.2)

It is easy to see that the equation (1.2) is invariant if

A transforms to − A or if x transforms to − x.

Systems with a conservation law frequently arise as models in fluid mechanics, chemistry or
biology. The resulting solutions often describe various types of pattern formation. As a prototype
example, equation (1.1) arises in the study of the following PDE:

∂w

∂t
= (−�)s

[
γw − αw2 − w3 − (1 − (−�)s)

2 w
]

, (1.3)

where the terms inside the brackets are the same as in the Swift–Hohenberg equation [23]
with fractional Laplacian, supplemented with a symmetry-breaking quadratic term −αw2. The
symmetry-breaking term is necessary for the amplitude equations to become a system as in (1.1).
In case α = 0, we would obtain a Ginzburg–Landau equation without a mean field. Note that the
PDE (1.3) has the following essential features:

• It possesses conserved quantities. In a sense, it is a conservation law.

• It is a parabolic equation with fractional Laplacian at lowest order in w.

• It has the symmetry groups x → −x and x → x + x0 for all x0 ∈R.

• It arises in the perturbation analysis near a cubic bifurcation point in the supercritical case.

• The Fourier modes ei0x and e±ix are neutrally stable at the bifurcation point γ = 0, w = 0.

• For 0< γ < 1 and 1
2 < s< 1, the growth rate λ of mode k for (1.3) is given by:

λ= |k|2s[γ − (1 − |k|2s)2].

Note that λ= 0 for k = 0 and |k| = (1 ± √
γ )1/2s.

Extending the approach of [13] from the case s = 1 to 1
2 < s< 1 by suitable rescaling, we next

show that the equations (1.1) arise as amplitude equations of (1.3). To this end, we make the
ansatz

γ = ε2sγ1, T = ε2st, X = εx, (1.4)

and

w(x, t) = εsA(X , T)eix + εsA∗(X , T)e−ix + ε2sB(X , T)

+ ε2sC(X , T)e2ix + ε2sC∗(X , T)e−2ix + O(ε3s).
(1.5)
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1244 M. Gao et al.

Note that in the expansion of w, at leading order εs there is a large-scale oscillation A (and its
complex conjugate A∗). The mode B, which has been introduced at order ε2s, is constant on the
large spatial scale.

We substitute (1.5) into (1.3) and then solve the equations at successive orders of ε. First, in
order ε2s we derive

C = − α

(1 + 4s)2
A2.

Then, the following equations are established:⎧⎨
⎩AT = γ1A − (−�)sA −

(
3 − 2α2

(1−4s)2

)
|A|2A − 2αAB,

BT = −(−�)sB − 2α(−�)s(|A|2).
(1.6)

The equation (1.6) arises in order ε3s, where A is complex-valued. The equation (1.6) is shown
by equating terms of order ε4s. In this paper, we restrict our attention to the invariant subspace
in which A is real. Therefore, from now on, we consider the special case that A is real. By
rescaling A, B, T and X , we can make all coefficients in equation (1.6) equal to unity, and we
get (1.1).

Amplitude equations of the form (1.2) or conservative models of the form (1.3) have been con-
sidered in hydrodynamics in the case of the classical Laplacian. See for instance, [7]. We also
refer to [5] and [13], where (1.2) was derived from non-linear PDEs in the classical Laplacian
case which arise in thermosolutal convection, rotating convection or magnetoconvection, respec-
tively. Furthermore, in [4], the equation (1.2) was also derived in the study of secondary stability
of a one-dimensional cellular pattern for the classical Laplacian. A related kind of Ginzburg–
Landau equation, where the term (|A|2)xx in the B-equation is replaced by ∂x(|A|2) has been
studied by a number of authors in the classical Laplacian case, see [20], [21] and the references
therein. The most common patterns occurring in that setting are travelling pulses which arise in
the convection of binary fluids. In [24], a conserved variant of (1.3) for s = 1 has been consid-
ered which has the same linear dispersion relation but different non-linear behaviour. In this case,
the behaviour becomes chaotic. In recent years, fractional diffusion systems have been investi-
gated in fluid mechanics to model, analyse and compute the road to turbulence [3, 11, 22] and
also used in the study of pattern formation in reaction–diffusion systems, such as the fractional
Gierer–Meinhardt system, see [9, 15] and the references therein.

We shall study equation (1.2) with the following periodic boundary conditions which arise
from the expansion (1.4) and (1.5):

A(x + L) = A(x), B(x + L) = B(x), (1.7)

where L is the minimal period. Other boundary conditions may be more appropriate for other
modelling situations. We now present our two main results on the existence and stability of
stationary patterns for system (1.2).

Theorem 1.1. There exists an L̄> 0 such that for all L> L̄, system (1.2) admits the following
three types of steady-state solutions.
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Type I (Double-front solution). Assume that μ′ < 1. Then there exist (even) steady-state
solutions of (1.2) with the following asymptotic behaviour:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(x) ∼ cs√
1 −μ′

(
1 − ζs(

c
(
x − L

4

))2s

)
,

B(x) = −μ′A2(x) + μ′

L

∫ L
2

− L
2

A2(x)dx,

for 0< x<
L

2
,

where c is the positive root of the following algebraic equation:

c2s + 2μ′Iv∞
L

c2s−1 − (1 −μ′) = 0 and Iv∞ =
∫
R

(v2
∞(y) − 1)dy.

Here, v∞ satisfies (2.6).

Type II (Single-spike solution). Assume that

μ′ > 1, lim
L→∞

L(μ′ − 1)

μ′ =:
Iw∞
2β∞

<
(2s − 1)1− 1

2s Iw∞
2s

, (1.8)

where

Iw∞ =
∫
R

w2
∞(y)dy,

and w∞(y) is defined in (2.8). Then there exist steady-state solutions of (1.2) with the following
asymptotic behaviour:

A±(x) ∼ (c±)s√
μ′ − 1

ξs

1 + |c±x|1+2s
, B±(x) = −μ′(A±)2 + μ′

L

∫ L/2

−L/2
(A±)2dx,

where c− < c+ are the two roots of the following algebraic equation:

c2s − 2β∞c2s−1 + 1 = 0.

Type III (Double-spike solution). Assume that

μ′ > 1, lim
L→∞

L(μ′ − 1)

μ′ =:
Iw∞
2β∞

<
(2s − 1)1− 1

2s Iw∞
s

. (1.9)

Then there exist steady-state solutions of (1.2) with the following asymptotic behaviour:

A±(x) ∼ (c±)s√
μ′ − 1

[
ξs

1 + |c± (x + L
2

) |1+2s
− ξs

1 + |c±x|1+2s
+ ξs

1 + |c± (x − L
2

) |1+2s

]
,

B±(x) = −μ′(A±)2 + μ′

L

∫ L/2

−L/2
(A±)2dx,

where c− < c+ are the two roots of the following algebraic equation:

c2s − 4β∞c2s−1 + 1 = 0.
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Our next theorem classifies the stability of all the three types of solutions given in
Theorem 1.1.

Theorem 1.2. Suppose that L � 1 and τ > 0. Then, for the single-spike solution (Type II),
(A−, B−) is linearly stable, while (A+, B+) is linearly unstable. The double-front solutions
(Type I) and the double-spike solutions (Type III) are all linearly unstable.

Let us close the introduction by mentioning the new contribution of the current paper.
Particularly, in the proof of Theorem 1.2, to show that the double-front solution (Type I) is
unstable, the crucial point is to find a suitable test function. Following the approach of the clas-
sical case in [19], we have to verify that the test function indeed satisfies the required boundary
condition. Unlike in the classical case, we cannot use the ODE uniqueness theory to justify the
sign condition of the derivative at the end point. Instead, we utilise the integral representation
of the fractional Laplacian to achieve this goal. This part is inspired by the argument used for
deriving the version of Hopf boundary lemma for fractional Laplacian, see [12] for the details.
We remark that Type I double-front solutions have also been analysed in Section 3 of [18] in a
similar context.

The paper is organised as follows: in Section 2, we present some preliminary results which
are used in this paper. Further, Sections 3 and 4 are devoted to giving the proof of Theorem 1.1
and Theorem 1.2, respectively. In Section 5, we apply two numerical schemes to compute the
shapes of the stable steady-state solutions with s at some specific values, and some pictures of
simulations are presented. In last section, we give the concluding remarks.

Notations:
w∞ w∞ is the positive spike solution of (2.8).
Iw∞ The integral value of

∫
R

w2∞dx.
v∞ v∞ is the layer solution of the fractional Allen–Cahn equation satisfying (2.6).
Iv∞ The integral value of

∫
R

(v2∞ − 1)dx.
C a generic positive constant, which may change from line to line.

2 Preliminaries

2.1 Existence analysis

Consider the steady states of the equations (1.2):⎧⎪⎪⎨
⎪⎪⎩

−(−�)sA + A − A3 − AB = 0, x ∈R,

−(−�)sB −μ′(−�)s(A2) = 0, 〈B〉 = 0, x ∈R,

A(x + L) = A(x), B(x + L) = B(x),

(2.1)

where 〈B〉 is the average of the function B over the minimal period, defined by:

〈B〉 = 1

L

∫
I

B(x)dx.

Note that by adding a constant to B, (1.2) can be reduced to (2.1). Without loss of generality, we
may assume that the minimal period interval is I := [−L/2, L/2].
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From the equation (2.1), we obtain that

B(x) = −μ′A2(x) +μ′〈A2〉, 〈A2〉 = 1

L

∫
I

A2(x)dx. (2.2)

Substituting (2.2) into (2.1), we obtain⎧⎪⎨
⎪⎩

− (−�)sA − aA + bA3 = 0, −L

2
< x<

L

2
,

A(x) has minimal period L,

(2.3)

where

a =μ′〈A2〉 − 1, b =μ′ − 1. (2.4)

We consider a as a real parameter. Since (2.3) is an autonomous equation, we may assume
that A satisfies the following boundary, symmetry and monotonicity conditions:

A′
(

−L

2

)
= A′

(
L

2

)
= 0, A(x) = A(−x), A′(x)< 0, for 0< x<

L

2
. (2.5)

It is interesting to remark that a periodic solution A of (2.3) satisfying (2.5) for −L/2< x< L/2
can be extended in a unique way to a periodic function on the real line with minimal period L.

To describe the possible asymptotic behaviour of A as L → +∞, we introduce two standard
limiting equations. The first one is a forward front on R. Suppose that v∞ is the solution of the
following problem: ⎧⎨

⎩
− (−�)sv∞ + v∞ − v3

∞ = 0, v′∞ > 0, y ∈R,

v∞(0) = 0, v∞(y) → ±1, as y → ∞.
(2.6)

It has been proved in [1] that the solution v∞ is unique and by [1, Theorem 2.7] the following
result on its asymptotic behaviour holds

⎧⎪⎪⎨
⎪⎪⎩
v∞(y) = 1 − ζs

y2s
+ o

(
1

y2s

)
, as y → +∞,

v∞(y) = ζs

|y|2s
− 1 + o

(
1

y2s

)
, as y → −∞,

(2.7)

where ζs is a positive constant, depending only on s. There is an earlier result established for
slightly shifted boundary conditions, cf. equation (23) of [18]. Moreover, a similar exact result
for a piecewise linear kinetic function exists, cf. equations for w(x) at the end of Section 2 of
[26]. Reflecting the function v∞(y) with respect to the origin point, we can derive a backward
front solution to the fractional Allen–Cahn equation.

The second one is a single spike. We set w∞ as the solution of the following problem:⎧⎨
⎩

− (−�)sw∞ − w∞ + w3
∞ = 0, w∞ > 0,

w∞(0) = max
y∈R

w∞(y), w∞(y) → 0 as |y| → ∞.
(2.8)
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It has been shown in [8] that the solution w∞ is unique. In addition, by [8, Proposition 3.1] and
[16, lemma 3], the following result on its asymptotic behaviour holds:

w∞(y) = ξs

1 + |y|1+2s
(1 + o(1)), as |y| → +∞, (2.9)

where ξs is a positive constant, depending only on s.

2.2 Stability analysis

In this subsection, we study some preliminary properties of the linearised eigenvalue problem.
We show that the eigenvalues must be real. Moreover, we reduce the system of eigenvalue prob-
lems to a single eigenvalue problem. To study the linear stability of (1.2), we perturb (A(x), B(x))
as follows:

Aε(x, t) = A(x) + εφ(x)eλL,st, Bε(x, t) = B(x) + εψ(x)eλL,st, (2.10)

where λL,s ∈C, the set of complex numbers.
Since we have assumed that (1.2) is invariant under the transformation x → −x and x → x + L,

we may suppose the perturbation (φ(x),ψ(x)) has the same symmetry, and so we may assume
that

φ, ψ ∈XL,

where

XL =
{
φ ∈ Hs

(
−L

2
,

L

2

) ∣∣∣∣∣φ(x) = φ(−x), φ′
(

−L

2

)
= φ′

(
L

2

)
= 0

}

and Hs
(− L

2 , L
2

)
denotes the usual Sobolev space.

Substituting (2.10) into (1.2) and considering the leading order part, we obtain the following
eigenvalue problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−(−�)sφ + (1 − B)φ − 3A2φ − Aψ = λL,sφ, −L

2
< x<

L

2
,

−(−�)sψ − 2μ′(−�)s(Aφ) = τλL,sψ , −L

2
< x<

L

2
,

λL,s ∈C, φ,ψ ∈XL, 〈ψ〉 = 0.

(2.11)

We shall prove that the single (small)-spike solution (A−, B−) of Type II is stable for all τ > 0
and all the other solutions of Type I, II or III are unstable for all τ > 0.

Let

ψ = −2μ′Aφ + 2μ′〈Aφ〉 + τλL,sψ̂ , (2.12)

where

〈ψ̂〉 = 0.

Equation (2.12) together with (2.11) implies

− (−�)sψ̂ − τλL,sψ̂ = −2μ′Aφ + 2μ′〈Aφ〉. (2.13)
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Substituting (2.2) and (2.12) into (2.11), we obtain that

− (−�)sφ − aφ + 3bA2φ − 2μ′〈Aφ〉A − τλL,sAψ̂ = λL,sφ, −L

2
< x<

L

2
, (2.14)

where a and b are given by (2.4). If τ = 0, then (2.14) becomes⎧⎪⎨
⎪⎩

− (−�)sφ − aφ + 3bA2φ − 2μ′〈Aφ〉A = λL,sφ, −L

2
< x<

L

2
,

φ ∈XL.

(2.15)

Our main result in this section is the following reduction lemma. It will be proved by
variational techniques.

Lemma 2.1. Concerning the system of eigenvalue problems (2.11), we have

(a) All eigenvalues of (2.11) are real.

(b) If all eigenvalues of (2.15) are negative, then all eigenvalues of (2.11) are negative.

(c) If (2.15) has a positive eigenvalue, then problem (2.11) also has a positive eigenvalue.

Lemma 2.1 implies that the stability of (2.11) is equivalent to the stability of (2.15).

Proof of Lemma 2.1. We shall prove the lemma point by point.

(a). Multiplying (2.14) by φ̄, the conjugate function of φ, and integrating over I , we obtain

λL,s

∫
I
|φ|2dx = −

∫
I

[∣∣(−�)
s
2φ
∣∣2 + a|φ|2 − 3bA2|φ|2

]
dx − 2μ′

L

∣∣∣∣
∫

I
(Aφ)dx

∣∣∣∣
2

− τλL,s

∫
I
(Aψ̂φ̄)dx.

(2.16)

Here, we have used the expansion of φ with respect to the eigen pairs of −� (subject to the
periodic boundary condition) to treat the integration involving the fractional Laplacian. Indeed,
following [2], we see that the k-th eigen function of −� satisfies the equation below:⎧⎨

⎩
(−�)sφk = λs

kφk in I ,

φk(x) = φk(x + l) on ∂I .

Since (−�)s is a self-adjoint operator, λs
k is a real number. Then, we have∫

I
φk(−�)sφkdx =

∫
I
φkλ

s
kφkdx =

∫
I
λs

k|φk|2dx =
∫

I
|λs/2

k φk|2dx =
∫

I

∣∣(−�)s/2φk

∣∣2 dx.

As a consequence, we can easily get that∫
I
φ(−�)sφdx =

∫
I
|(−�)

s
2φ|2dx.

Multiplying the conjugate of (2.13) by ψ̂ and integrating over I , we get∫
I
(Aψ̂φ̄)dx = 1

2μ′

∫
I
|(−�)

s
2 ψ̂ |2dx + τ λ̄L,s

2μ′

∫
I
|ψ̂ |2dx, (2.17)
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where we have used 〈ψ〉 = 0. Substituting (2.17) into (2.16) gives

0 = λL,s

∫
I
|φ|2dx +

∫
I

[∣∣(−�)
s
2φ
∣∣2 + a|φ|2 − 3bA2|φ|2

]
dx + 2μ′

L

∣∣∣∣
∫

I
(Aφ)dx

∣∣∣∣
2

+ τλL,s

2μ′

∫
I
|(−�)

s
2 ψ̂ |2dx + τ 2|λL,s|2

2μ′

∫
I
|ψ̂ |2dx.

(2.18)

Taking the imaginary part of (2.18), we obtain

λI ,s

(∫
I
|φ|2dx + τ

2μ′

∫
I
|(−�)

s
2 ψ̂ |2dx

)
= 0, (2.19)

where λL,s = λR,s + √−1λI ,s. As a consequence of (2.19), we get that

λI ,s = 0.

Therefore, λL,s is real.

(b). We introduce two quadratic forms, as follows:

L[φ] :=
∫

I

[∣∣(−�)
s
2φ
∣∣2 + a|φ|2 − 3bA2|φ|2

]
dx + 2μ′

L

(∫
I
|Aφ|dx

)2

, (2.20)

and

Lλ[φ] := L[φ] + τλ

2μ′

∫
I

(
|(−�)

s
2 ψ̂ |2 + τλ|ψ̂ |2

)
dx, (2.21)

observing that for τ ≥ 0 and λ≥ 0

L0[φ] = L[φ], L[φ] ≤Lλ[φ]. (2.22)

Note that if all eigenvalues of (2.15) are negative, then the quadratic form L[φ] is positive def-
inite, which together with (2.22) implies that Lλ[φ] is positive definite if λ≥ 0. Now, we shall
prove the second point by contradiction. Suppose λL,s ≥ 0 be an eigenvalue of (2.11), then by
(2.18) we obtain that

λL,s

∫
I
|φ|2dx +LλL,s [φ] = 0,

which is clearly impossible. Thus, we have shown that all eigenvalues of (2.11) must be negative.

(c). Suppose (2.15) has a positive eigenvalue. Then,

−μL,e = min
φ∈XL,

∫
I φ

2dx=1
L[φ].

has a positive valueμL,e > 0. We claim that (2.11) admits a positive eigenvalue. Fix λ ∈ [0, +∞),
we consider another eigenvalue problem:

−μ(λ) = min
φ∈XL,

∫
I φ

2dx=1
Lλ[φ]. (2.23)

In addition, since the operator (−(−�)s − τλL,s) is invertible, by (2.13) we can obtain

ψ̂ = (−(−�)s − τλL,s)
−1(−2μ′Aφ + 2μ′〈Aφ〉). (2.24)
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Substituting (2.24) into (2.21), then Lλ[φ] depends only on φ, and we can regard it as an energy
functional of φ. Hence, a minimiser φ of (2.23) satisfies the equation:

− (−�)sφ − aφ + 3bA2φ − 2μ′〈Aφ〉A − τλAψ̂ =μ(λ)φ, φ ∈XL, (2.25)

where ψ̂ ∈XL is given by (2.13). By (2.22), we have μ(λ) ≤μL,e. Moreover, since ψ̂ is contin-
uous with respect to λ in [0, ∞), we see that μ(λ) is also continuous in [0, ∞). Let us consider
the following algebraic equation:

h(λ) :=μ(λ) − λ= 0, λ ∈ [0, ∞).

By assumption, h(0) =μ(0) =μL,e > 0. On the other hand, for λ> 2μL,e,

h(λ) ≤μL,e − λ<−μL,e < 0.

By the intermediate value theorem, there exists a λL,s ∈ (0, 2μL,e) such that h(λL,s) = 0.
Substituting μ(λL,s) = λL,s into (2.25), we see that λL,s is an eigenvalue of (2.11). Thus, we have
shown the part (c) of Lemma 2.1 and it finishes the whole proof. �

3 Steady states: Proof of Theorem 1.1

In this section, we introduce three types of patterns for the solution A of (2.3) in detail.

Type I (Double-front solutions). Let μ′ < 1, then b< 0, a< 0. We rescale A as follows:

A(x) =
√

a

b
Hl

(
(−a)

1
2s x
)

.

where l = (−a)
1
2s L and Hl solves

−(−�)sHl + Hl − H3
l = 0,

with the following boundary and symmetry conditions:

H ′
l

(
− l

2

)
= H ′

l

(
l

2

)
= 0, Hl(y) = Hl(−y), H ′

l(y)< 0 for 0< y<
l

2
.

In this case, Hl looks like a backward front connected to a forward front. More precisely, we
need to introduce a front vl in a bounded interval which satisfies the following equation:⎧⎪⎪⎨

⎪⎪⎩
− (−�)svl + vl − v3

l = 0, v′
l > 0, − l

4
< y<

l

4
,

vl(0) = 0, v′
l

(
− l

4

)
= v′

l

(
l

4

)
= 0.

(3.1)

We remark that the existence of the forward front solution to (3.1) is ensured by [10,
Theorem 1.2]. Then, we have

Hl(y) =

⎧⎪⎪⎨
⎪⎪⎩
vl

(
y + l

4

)
, − l

2
< y ≤ 0,

vl

(
−
(

y − l

4

))
, 0< y<

l

2
.
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The consistency condition (2.4) becomes

a =μ′ 〈A2
〉− 1 = 2μ′(−a)1− 1

2s

L(1 −μ′)

(∫ l
4

− l
4

v2
l (y)dy + O

(
1

l2s

))
− 1

= 2μ′(−a)1− 1
2s

L(1 −μ′)

(
l

2
+ Iv∞ + O

(
1

(−a)L2s

))
− 1,

(3.2)

where

Iv∞ =
∫
R

(v2
∞(y) − 1)dy<+∞.

Therefore, if L � 1, (3.2) can be solved if and only if the equation:

c2s + 2μ′Iv∞
L

c2s−1 − (1 −μ′) = 0, where c2s = −a, (3.3)

has a positive solution. Indeed, it is not difficult to check that

f (x) = (1 −μ′) − x2s

x2s−1

is a strictly monotonically decreasing function for positive x. In addition, f (x) → +∞ as x → 0+

and f
(

(1 −μ′)
1
2s

)
= 0, and so we can always find a unique c ∈

(
0, (1 −μ′)

1
2s

)
such that

f (c) = 2μ′Iv∞
L(1 −μ′)

.

Type II (Single-spike solutions). Let μ′ > 1, A(x)> 0. Then, b =μ′ − 1> 0 and we must have
a> 0 in order to ensure that (2.3) has a solution. We rescale A as follows:

A(x) =
√

a

b
Hl(y), (3.4)

where

y = a
1
2s x, l = a

1
2s L. (3.5)

Then, Hl is the unique solution of the following ordinary differential equation:

−(−�)sHl − Hl + H3
l = 0, Hl(y)> 0, Hl(−y) = Hl(y),

satisfying

H ′
l

(
− l

2

)
= H ′

l

(
l

2

)
= 0, H ′

l(y)< 0 for 0< y<
l

2
.

In this case, we see that for l � 1,

Hl(y) = w∞(y) + O

(
1

l1+2s

)
,

where

w∞(y) = ξs

1 + |y|1+2s
(1 + o(1)).
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Now, we turn to check the consistency of our earlier calculation in (2.4). Substituting (3.4)
into (2.4) and by simple computations, we arrive at

c2s − 2β1
Lc2s−1 + 1 = 0, (3.6)

where

c = a
1
2s , β1

L = μ′

2L(μ′ − 1)

∫ cL/2

−cL/2
H2

cL(y)dy.

Since L � 1, we have

β1
L = μ′Iw∞

2L(μ′ − 1)

(
1 + O

(
1

(cL)1+2s

))
, (3.7)

where

Iw∞ =
∫
R

w2
∞(y)dy.

Equation (3.6) has a solution if

β∞ = lim
L→+∞

μ′Iw∞
2L(μ′ − 1)

= lim
L→+∞ β

1
L >

s

(2s − 1)1− 1
2s

, (3.8)

where we have used the theory of the existence of solutions to equation (3.6):

β1
L > min

c>0,1/2<s<1

(
c2s + 1

2c2s−1

)
= s

(2s − 1)1− 1
2s

and noted that (1.8) forces μ′ → 1.
Under the condition (3.8), we can easily obtain that equation (3.6) has two solutions. As a

consequence, we have obtained two single-spike solutions:

A± = (c±)s√
μ′ − 1

Hc±L(c±x), B±(x) = −μ′(A±)2 +μ′〈(A±)2〉

with c− < c+. We will call (A−, B−) the single (small)-spike solution and (A+, B+) the single
(large)-spike solution. This completes the proof of Type II solutions.

Type III (Double-spike solutions). Assume that μ′ > 1 and that A(x) changes sign. Similar to

Type II solutions, we rescale A(x) as in (3.4) and set y = a
1
2s x, l = a

1
2s L. Then, Hl(y) is the solution

of the following ODE:

−(−�)sHl − Hl + H3
l = 0, Hl

(
l

4

)
= 0,

and

H ′
l

(
− l

2

)
= H ′

l

(
l

2

)
= 0, Hl(y) = Hl(−y), H ′

l(y)> 0 for 0< y<
l

2
.

In this case, Hl looks like the superposition of two half solitons at the boundary points, both of
which are positive and a negative interior soliton. Note that as l � 1, then

Hl(y) = w∞
(

y + l

2

)
− w∞ + w∞

(
y − l

2

)
+ O

(
1

l1+2s

)
, − l

2
< y<

l

2
.
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It is easy to see that the consistency condition (2.4) implies

a =μ′〈A2〉 − 1 = μ′a1− 1
2s

L(μ′ − 1)

(
2
∫ ∞

−∞
w2

∞(y)dy + O

(
1

(a
1
2s L)1+2s

))
− 1. (3.9)

Therefore, for L � 1, (3.9) can be solved if and only if the equation

c2s − 2β2
Lc2s−1 + 1 = 0,

has a solution, where

β2
L = μ′Iw∞

L(μ′ − 1)

(
1 + O

(
1

(a1/2sL)1+2s

))
,

with

Iw∞ =
∫
R

w2
∞dy.

This is the case if

2β∞ = lim
L→+∞ β

2
L >

s

(2s − 1)1− 1
2s

and it is equivalent to (1.9).
Following a similar process as we discussed for Type II solutions, we can derive two solu-

tions (A±, B±). Here, (A−, B−) is called the double (small)-spike solution and (A+, B+) is called
the double (large)-spike solution. This completes the proof of existence of Type III solutions.
Thus, we have solved equation (1.2) with L � 1 in all three cases. As a consequence, we get
Theorem 1.1.

4 Proof of Theorem 1.2

In this section, we prove the linear stability or instability of solutions established in Theorem 1.1.
In particular, we shall apply the theory of the related non-local eigenvalue problems and the
variational characterisation of eigenvalues. Our approach is a generalisation of [19] from the
case s = 1 to 1

2 < s< 1.

4.1 Stability of single (small)-spike solution of Type II

In this section, we prove the stability of the single (small)-spike solution of Type II. Let A(x),
B(x) be the single (small)-spike solution of Type II obtained in Section 3. Then, as L → ∞, we
have

A(x) =
√

a

μ′ − 1
w∞(cx) + O

(
1

(cL)1+2s

)
, B(x) = −μ′A2 +μ′〈A2〉.

Here, the constant c = a
1
2s satisfies

c2s − 2β1
Lc2s−1 + 1 = 0, β1

L = μ′Iw∞
2L(μ′ − 1)

, as L → ∞.
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By Lemma 2.1, to prove the stability, we just need to consider the positive definiteness of L[φ],
defined by (2.20). By the rescaling (3.4) and (3.5), we see that L[φ] can be rewritten as:

L[φ] = a1− 1
2s

(∫
Ĩ

(∣∣(−�)
s
2 φ̃
∣∣2 + ∣∣φ̃∣∣2 − 3H2

l φ̃
2
)

dy + 2μ′

L(μ′ − 1)a
1
2s

(∫
Ĩ

Hlφ̃dy

)2
)

, (4.1)

where Ĩ := [−l/2, l/2] and φ̃(y) = φ(x). Thus, as L → ∞ we obtain the following quadratic form
in H1(R):

L∞[φ] = a1− 1
2s

(∫
R

(∣∣(−�)
s
2φ
∣∣2 + ∣∣φ∣∣2 − 3w2

∞φ
2
)

dy + β

(∫
R

w∞φdy

)2
)

, (4.2)

where

φ ∈X∞ := { f | f ∈ Hs(R), f (−y) = f (y)} and β = lim
L→∞

2μ′

L(μ′ − 1)a
1
2s

.

The study of (4.2) is equivalent to the study of the following non-local eigenvalue problem:

Lβφ := L0φ − β

(∫
R

w∞φdy

)
w∞ = λ0φ, φ ∈X∞, (4.3)

where

L0φ = −(−�)sφ − φ + 3w2
∞φ.

Lemma 4.1. Concerning the linear operator L0, we have the following conclusions:

(a) Ker{L0} = {
cw′∞(y)|c ∈R

}
.

(b) L0 has a unique (principal) positive eigenvalue ν1 > 0. The associated eigenfunction φ0(y)
is positive and even after a translation if necessary.

(c) L0
(

1
2

(
w∞(y) + y

s w′∞(y)
))= w∞(y).

Proof. We shall prove the Lemma 4.1 point by point.

(1). For the point of (a), we refer the readers to [8, Theorem 3].
(2). The proof of (b) follows by the variational characterisation of the eigenvalues:

− ν1 = inf
φ∈Hs(R),φ �≡0

∫
R

(
|(−�)

s
2φ|2 + |φ|2 − 3w2∞φ2

)
dy∫

R
φ2dy

. (4.4)

Let φ = w∞, we have∫
R

(
|(−�)

s
2 w∞|2 + |w∞|2 − 3w4

∞
)

dy = −2
∫
R

w4
∞dy< 0.

Thus, ν1 > 0. In fact, ν1 is the unique positive eigenvalue. By the variational characterisation
(4.4) of ν1, we see that the corresponding eigenfunction can be chosen to be positive. Since w∞
is even, the eigenfunction can also be chosen to be even. Indeed, suppose φ is not even, then we
write
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φ(y) =
{
φ1(y), y ≥ 0,

φ2(y), y< 0.

If ∫
{y≥0}

(
|(−�)

s
2φ|2 + φ2 − 3w2∞φ2

)
dy∫

{y≥0} φ2dy
<

∫
{y<0}

(
|(−�)

s
2φ|2 + φ2 − 3w2∞φ2

)
dy∫

{y<0} φ2dy
, (4.5)

we may choose

φe(y) =
{
φ1(y), y ≥ 0,

φ1(−y), y< 0.

Then, ∫
R

(
|(−�)

s
2φe|2 + φ2

e − 3w2∞φ2
e

)
dy∫

R
φ2

e dy
<

∫
R

(
|(−�)

s
2φ|2 + φ2 − 3w2∞φ2

)
dy∫

R
φ2dy

,

and thus the function φ is not the eigenfunction of the principal eigenvalue. This is a contradic-
tion. Similarly, we arrive at a contradiction if the reverse inequality of (4.5) holds. If we have
equality in (4.5), then we can construct an even eigenfunction φe from the eigenfunction φ in the
same way as above with the same eigenvalue. Since the principal eigenfunction is unique and an
even eigenfunction exists, the eigenfunction has to be even.

(3). By simple computations, we have

L0w∞ = 2w3
∞.

On the other hand, setting wλ(y) = w∞(λy), we have

−(−�)swλ(y) = −λ2s(−�)sw∞(λy) = λ2s(w∞(λy) − w3
∞(λy)).

Then

−(−�)sw∞(λy) − w∞(λy) + w3
∞(λy) = (λ2s − 1)(w∞(λy) − w3

∞(λy)).

Differenting the above equality at λ= 1 gives

−(−�)s(yw′∞) − yw′∞ + 3w2
∞(yw′∞) = 2s(w∞ − w3

∞),

which implies

L0

(
1

s
yw′∞

)
= 2(w∞ − w3

∞).

Hence,

L0

(
1

2

(
w∞ + 1

s
yw′∞

))
= w∞, L−1

0 w∞ = 1

2

(
w∞ + 1

s
yw′∞

)
.

�

Next, we study Lβ . Since Lβ is a self-adjoint operator, the eigenvalues of Lβ must be real.
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Theorem 4.1. Let Lβ be defined in (4.3). Then

(a) The eigenvalue problem (4.3) has an eigenfunction φ ∈X∞ with positive eigenvalue if and
only if β < 4s

(2s−1)Iw∞ . Moreover, for 0<β < 4s
(2s−1)Iw∞ , this positive eigenvalue is simple and

isolated.

(b) If β = 4s
(2s−1)Iw∞ , then the eigenvalue problem (4.3) has a zero eigenvalue with eigenfunction

φ0 = w∞ + 1
s yw′∞(y).

(c) If β > 4s
(2s−1)Iw∞ , then there exists C> 0 such that

∫
R

(∣∣(−�)
s
2φ
∣∣2 + ∣∣φ∣∣2 − 3w2

∞φ
2
)

dy + β

(∫
R

w∞φdy

)2

≥ C

∫
R

φ2dy. (4.6)

Proof. We shall divide the proof into three parts.

(1). By Lemma 4.1, ν1 is the only positive eigenvalue of L0 and the corresponding eigenfunc-
tion φ0 is positive and belongs to X∞. For fixed λ0 > 0, λ0 �= ν1, (L0 − λ0)−1 exists in X∞. For
β > 0 and λ0 > 0, we may rewrite (4.3) as:

φ = β

(∫
R

w∞φdy

) (
(L0 − λ0)−1w∞

)
. (4.7)

Assume first that (4.7) holds. Multiplying (4.7) by w∞ and integrating over R gives∫
R

w∞φdy = β

(∫
R

w∞φdy

) ∫
R

(
(L0 − λ0)−1w∞

)
w∞dy. (4.8)

Now we claim that ∫
R

w∞φ dy �= 0.

We prove the conclusion by contradiction. Suppose that∫
R

w∞φdy = 0.

Then, (4.3) implies that

L0φ = λ0φ, λ0 > 0, φ ∈X∞.

Using Lemma 4.1, we know that φ is positive, it follows that∫
R

w∞φ dy �= 0.

This is a contradiction. Therefore, (4.8) implies

ρ(λ0) := β

∫
R

(
(L0 − λ0)−1w∞

)
w∞dy − 1 = 0, λ0 > 0. (4.9)

On the other hand, suppose that (4.9) holds. For the positive root λ0 of (4.9), we set

φw = (L0 − λ0)−1w∞.
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By (4.9), we have

β

(∫
R

w∞φw dy

)
= β

∫
R

(
(L0 − λ0)−1w∞

)
w∞dy = 1,

and therefore λ0 �= 0 and φw > 0 solve (4.7). Thus, for β > 0 problem (4.3) has a positive eigen-
value if and only if the algebraic equation (4.9) has a positive root. We now discuss (4.9). It is
not difficult to check that ρ(λ)< 0 for λ> ν1. Thus, we only need to consider λ ∈ (0, ν1). In this
case,

ρ ′(λ) = β

∫
R

(
w∞(L0 − λ)−2w∞

)
dy = β

∫
R

(
(L0 − λ)−1w∞

)2
dy> 0.

On the other hand, as λ→ ν−
1 , ρ(λ) → ∞. Thus, (4.9) has a positive real root if and only if

ρ(0)< 0. Now, we compute ρ(0). By part (c) of Lemma 4.1, we have

ρ(0) = β

∫
R

(L−1
0 w∞)w∞dy − 1 = β

∫
R

1

2

(
w∞ + 1

s
yw′∞

)
w∞dy − 1

= β

2

∫
R

(
w2

∞ + y

2s
(w2

∞)′
)

dy − 1 = (2s − 1)β

4s

∫
R

w2
∞dy − 1 = (2s − 1)βIw∞

4s
− 1.

Therefore, ρ(0)< 0 if and only if

β <
4s

(2s − 1)Iw∞
.

(2). Part (b) follows from part (c) of Lemma 4.1.
(3). Let

λ0 = min
φ∈X∞

∫
R

(
|(−�)

s
2φ|2 + |φ|2 − 3w2∞φ2

)
dy + β

(∫
R

w∞φdy
)2

∫
R
φ2dy

= min
φ∈X∞

∫
R

(−Lβφ)φdy∫
R
φ2dy

.

By the conclusion (a), we know that Lβ has no positive real eigenvalues since β > 4s
(2s−1)Iw∞ .

Thus, λ0 ≥ 0. We prove λ0 > 0 by contradiction. Suppose λ0 = 0, then we have a φ0 ∈XL such
that

−(−�)sφ0 − φ0 + 3w2
∞φ0 − β

(∫
R

w∞φ0 dy

)
w∞ = 0,

∫
R

φ2
0dy = 1.

Using (c) of Lemma 4.1, we see that

−(−�)sφ̃0 − φ̃0 + 3w2
∞φ̃0 = 0,

where

φ̃0 = φ0 − β

(∫
R

w∞φ0dy

)(
1

2

(
w∞ + 1

s
yw′∞

))
.

By (a) of Lemma 4.1, we have

φ̃0 = φ0 − β

(∫
R

w∞φ0dy

)(
1

2

(
w∞ + 1

s
yw′∞

))
= cw′∞,

for some constant c.
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Since φ0 ∈X∞, it follows that φ0(−y) = φ0(y). Checking the parity of both ends of the above
equation, we obtain c = 0, then

φ0 = β

(∫
R

w∞φ0dy

)(
1

2

(
w∞ + 1

s
yw′∞

))
. (4.10)

Multiplying (4.10) by w∞ and integrating over R, we have(
1 − β

∫
R

1

2
w∞

(
w∞ + 1

s
yw′∞

)
dy

) ∫
R

φ0w∞dy = 0.

We recall that ∫
R

1

2
w∞

(
w∞ + 1

s
yw′∞

)
dy = (2s − 1)Iw∞

4s
.

Since β > 4s
(2s−1)Iw∞ , then we have

∫
R

w∞φ0 dy = 0 and hence φ0 = 0. This is a contradiction.
Therefore, λ0 > 0. �

Corollary 4.1. Let A be the single (small)-spike solution of Type II. Then there exists c0 > 0 such
that for L sufficiently large and φ ∈XL, we have

L[φ] ≥ c0

∫
I
φ2dx, (4.11)

where L[φ] is defined by (2.20).

Proof. Note that

β = lim
L→∞

2μ′

L(μ′ − 1)a
1
2s

= lim
L→∞

4β1
L

cIw∞
>

4s

(2s − 1)Iw∞
,

where β1
L is defined in (3.7). In addition, the last inequality holds since c<

(2s−1)β1
L

s and
(2s−1)β1

L
s

is the point such that f (c) = c2s − 2β1
Lc2s−1 + 1 achieves its minimal value. Then, (4.11) follows

from (4.6) of Theorem 4.1 and (4.1). �

From Lemma 2.1 and Corollary 4.1, we see that for L sufficiently large, the single (small)-spike
solution of Type II is linearly stable for any τ > 0.

4.2 Instability of other solutions

In this subsection, we will show that the other solutions are linearly unstable. By the
Lemma 2.1, we just need to consider problem (2.15). To show instability, all we need to show is
that the following minimisation problem admits a negative value for a certain test function:

−μL,e = min
φ∈XL,

∫
I φ

2dx=1

[∫
I

(
|(−�)

s
2φ|2 + aφ2 − 3bA2φ2

)
dx + 2μ′

L

(∫
I

Aφdx

)2
]
< 0,

(4.12)

https://doi.org/10.1017/S0956792522000286 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000286


1260 M. Gao et al.

which is equivalent to

−μL,e = min
φ∈Hs(I),

∫
I φ

2dx=1

[∫
I

(
|(−�)

s
2φ|2 + aφ2 − 3bA2φ2

)
dx + 2μ′

L

(∫
I

Aφdx

)2
]
< 0.

(4.13)
Thus, it is enough to find a φ ∈ Hs(I) such that∫

I

(
|(−�)

s
2φ|2 + aφ2 − 3bA2φ2

)
dx + 2μ′

L

(∫
I

Aφdx

)2

< 0.

We now consider the three types of solutions separately, with L � 1.

1. Double-front solutions of Type I. First of all, we consider the double-front solution and
show that it is unstable. In this case, we choose our function such that

φ′(0) = φ′
(

L

2

)
= 0, φ(x) = φ

(
L

2
− x

)
for 0< x<

L

2
. (4.14)

The last equality implies that φ
(
x + L

4

)
is an even function in

[− L
4 , L

4

]
, and so we can extend φ(x)

evenly to [−L/2, 0]. In this case, ∫
I

Aφdx = 2
∫ L/2

0
Aφdx,

and

L[φ] =
∫

I

(
|(−�)

s
2φ|2 + aφ2 − 3bA2φ2

)
dx = 2

∫ L
2

0

(
|(−�)

s
2φ|2 + aφ2 − 3bA2φ2

)
dx

= 2(−a)1− 1
2s

∫ l/4

−l/4

(
|(−�)

s
2 φ̃|2 − φ̃2 + 3v2

l φ̃
2
)

dy,

where vl is defined by (3.1) and

φ̃(y) = φ(x), y = (−a)
1
2s

(
x − L

4

)
. (4.15)

Let ϕl be such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− (−�)sϕl − 2ϕl = 0, − l

4
< y<

l

4
,

ϕl(−y) = ϕl(y), ϕ′
l

(
l

4

)
= −v′′

l

(
l

4

)
.

In fact, v′′
l

(
l
4

)
< 0, which we shall prove in Lemma 4.2 below.

Set

φ̃(y) = v′
l(y) + ϕl(y).

It is easy to check that φ(x), defined by (4.15), satisfies (4.14). We compute

−(−�)sφ̃ + φ̃ − 3v2
l φ̃ = −(−�)sv′

l + v′
l − 3v2

l v
′
l − (−�)sϕl + ϕl − 3v2

l ϕl = 3(1 − v2
l )ϕl.
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Then,

L[φ] = 2(−a)1− 1
2s

∫ l/4

−l/4

(
|(−�)

s
2 φ̃|2 − φ̃2 + 3v2

l φ̃
2
)

dy

= −6(−a)1− 1
2s

∫ l/4

−l/4
(1 − v2

l )ϕlφ̃dy< 0,

since

1 − v2
l > 0, ϕl > 0, φ̃ > 0.

By (4.12), this shows that the double-front solution is unstable.

Lemma 4.2. Let vl be defined in (3.1). Then, v′′
l

(
l
4

)
< 0.

Proof. By standard elliptic regularity theory, we can show that vl is smooth enough. We set

ψ(x) = v′
l

(
x + l

4

)
.

Then, it is easy to verify that

(−�)sψ + (3w2
l (x) − 1)ψ = 0, ψ(x) = −ψ(−x), x ∈R, (4.16)

where wl = vl

(
x + l

4

)
. With the above setting, it suffices to show thatψ ′(0)< 0. We shall prove it

by contradiction. Suppose that ψ ′(0) = 0, combining with the fact that x = l/4 is a local maximal
point of vl, we conclude ψ ′′(0) = 0.

Using the definition of the fractional Laplacian and the fact that ψ is an odd function, we
derive that

1

Cs
(−�)sψ(x) =

∫
�0

{(
1

|x − y|1+2s
− 1

|x − yλ|1+2s

)
[ψ(x) −ψ(y)]

}
dy

+
∫
�0

2ψ(x)

|x − yλ|1+2s
dy +

∫
R\(�0∪�λ0 )

ψ(x) −ψ(y)

|x − y|1+2s
dy

= I1 + I2 +
∫
R\(�0∪�λ0 )

ψ(x) −ψ(y)

|x − y|1+2s
dy,

(4.17)

where

�0 =
{

y ∈R, − l

2
< y< 0

}
and �λ

0 =
{

y ∈R, 0< y<
l

2

}
.

In the following, we shall denote yλ as the opposite point of y, i.e. yλ = −y.
Let x = −δ and we divide �0 into the following subregions:

�0 = Bη ∪�R,η ∪ D ∪ E,

where

Bη = {−η≤ y ≤ −2δ}, D = {−Rc ≤ y ≤ −Rc + 1},
�R,η = {−R ≤ y ≤ −η} \ D, E =�0 \ (D ∪�R,η ∪ Bη),
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with Rc ∈ (η+ 2, R) is chosen such that ψ has strictly positive lower bound in D. For sufficiently
small δ and η, we shall estimate I1 in the above regions successively as follows:

(i). For y ∈ D, ψ(y) is bounded away from 0 and ψ(x) is sufficiently small, and so there exists
a constant C> 0 independent of δ such that

ψ(x) −ψ(y)<−C.

Applying the Mean Value Theorem, we obtain

1

|x − y|1+2s
− 1

|x − yλ|1+2s
= 1

| − x + y|1+2s
− 1

|x + y|1+2s
= 2(1 + 2s)|x|

ξ 2+2s
= 2(1 + 2s)δ

ξ 2+2s
,

where ξ ∈ (|x − y|, |x − yλ|). Then, we have

∫
D

(
1

|x − y|1+2s
− 1

|x − yλ|1+2s

)
(ψ(x) −ψ(y)) dy ≤ −c1δ, (4.18)

for some c1 > 0. We will show that this actually is the dominating term as compared to the
integrals in the other subregions of �0.

(ii). For y ∈ Bη,∣∣∣∣∣
∫

Bη

(
1

|x − y|1+2s
− 1

|x − yλ|1+2s

)
(ψ(x) −ψ(y)) dy

∣∣∣∣∣≤ Cδ

∫
Bη

δ3 + |y|3
|y|2+2s

dy ≤ c1

4
δ, (4.19)

where we have used the fact that

|ψ(x)| ≤ Cδ3 and |ψ(y)| ≤ Cy3

provided δ and η are small.

(iii). For y ∈ E, in the region Aδ := {−2δ ≤ y ≤ 0}, we have

∣∣∣∣∣
∫

Aδ

ψ(x) −ψ(y)

|x − y|1+2s
dy

∣∣∣∣∣=
∣∣∣∣∣
∫

Aδ

ψ ′(x)(x − y) + ψ
′′(x)
2 (x − y)2 + O(|x − y|3)

|x − y|1+2s
dy

∣∣∣∣∣
=
∫

Aδ

O(δ)

|x − y|2s−1
dy = O(δ3−2s),

and ∣∣∣∣
∫

Aδ

ψ(x) −ψ(y)

|x − yλ|1+2s dy

∣∣∣∣= O(δ3−2s).

Together with the fact that ψ(y) is uniformly bounded, we derive that if R is sufficiently large
then ∣∣∣∣∣

∫
E

(
1

|x − y|1+2s
− 1

|x − yλ|1+2s

)
(ψ(x) −ψ(y)) dy

∣∣∣∣∣
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≤
∣∣∣∣∣
∫

E\Aδ

(
1

|x − y|1+2s
− 1

|x − yλ|1+2s

)
(ψ(x) −ψ(y)) dy

∣∣∣∣∣ (4.20)

+
∣∣∣∣∣
∫

Aδ

(
1

|x − y|1+2s
− 1

|x − yλ|1+2s

)
(ψ(x) −ψ(y)) dy

∣∣∣∣∣≤ c1

4
δ.

(iv). For y ∈�R,η, we are able to choose large enough R, such that ψ(x) −ψ(y) ≤ 0 for �R,η.
It is possible since ψ(y) is bounded away from 0 and ψ(x) → 0 as δ→ 0. It follows that∫

�R,η

(
1

|x − y|1+2s
− 1

|x − yλ|1+2s

)
(ψ(x) −ψ(y)) dy ≤ 0. (4.21)

Combining (4.18), (4.19), (4.20) and (4.21), we arrive at an estimate on I1:∫
�0

(
1

|x − y|1+2s
− 1

|x − yλ|1+2s

)
(ψ(x) −ψ(y)) dy ≤ −c1

2
δ. (4.22)

To estimate I2, by direct computation, we have∫
�0

1

|x − yλ|1+2s
dy = O(δ−2s).

Consequently, noticing that the first and second derivatives of ψ vanish at 0, we deduce that∫
�0

2ψ(x)

|x − yλ|1+2s
dy = O(δ3−2s). (4.23)

Finally, since ψ(y) is uniformly bounded at infinity, for l large enough we obtain that∣∣∣∣∣
∫
R\(�0∪�λ0 )

ψ(x) −ψ(y)

|x − y|1+2s
dy

∣∣∣∣∣≤ C

∫
|y|>R

1

|x − y|1+2s
dy ≤ c1

4
δ. (4.24)

On the other hand, we have

(3w2
l − 1)ψ(x) ≤ O(δ3). (4.25)

Combining (4.22), (4.23), (4.24) and (4.25), we arrive at

(−�)sψ + (3w2
l − 1)ψ ≤ −c1

8
δ,

for sufficiently small δ, which contradicts to equation (4.16). Thus, we must have ψ ′(0)< 0. �

2. Single (large)-spike solution of Type II. Let (A(x), B(x)) = (A+, B+) be the single (large)-
spike solution of Type II. It is easy to see that

−μL,e = min
φ∈Hs(Ĩ),

∫
Ĩ φ

2dx=1
a1− 1

2s

[∫
Î

(
|(−�)

s
2φ|2 + φ2 − 3H2

l φ
2
)

dy + βL

(∫
Î

Hlφdy

)2
]

,

(4.26)
where

βL = 2μ′

c+L(μ′ − 1)
.
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Observing that

lim
L→+∞ βL = lim

L→+∞
2μ′

c+L(μ′ − 1)
= lim

L→+∞
4β1

L

c+Iw∞
<

4s

(2s − 1)Iw∞
,

where β1
L is defined in (3.7) and we have used

c+ >
(2s − 1)β1

L

s
.

By Theorem 4.1, for 0<β < 4s
(2s−1)Iw∞ , there exists a unique principal eigenvalue λ0 > 0 and a

corresponding eigenfunction φ0(y) ∈X∞ satisfying the following eigenvalue problem:

−(−�)sφ0 − φ0 + 3w2
∞φ0 − β

(∫
R

w∞φ0dy

)
w∞ = λ0φ0.

It is known that φ0(y) = O
(

1
l1+2s

)
for |y| ≥ l, and so by a simple computation we can show that

φ0(c+x) makes (4.26) negative.

3. Double-spike layer solutions of Type III. By Lemma 4.1, the eigenvalue problem:

−(−�)sφ0 − φ0 + 3w2
∞φ0 = λ0φ0, φ0 ∈ H2(R)

has an eigenvalue λ0 > 0 with a corresponding eigenfunction φ0.
We now set

φ(x) = φ0

(
a

1
2s

(
x + L

2

))
+ φ0

(
a

1
2s

(
x − L

2

))
+ φ0(a

1
2s x), x ∈ I .

Then, we calculate∫
I

A(x)φ(x)dx

= a
1
2 − 1

2s√
μ′ − 1

∫ l
2

− l
2

(
w∞

(
y + l

2

)
− w∞(y) + w∞

(
y − l

2

))

×
[
φ0

(
y + l

2

)
+ φ0(y) + φ0

(
y − l

2

)]
dy + O

(
1

l1+2s

)

= a
1
2 − 1

2s√
μ′ − 1

∫ l
2

− l
2

(
w∞

(
y + l

2

)
φ0

(
y + l

2

)
+ w∞

(
y − l

2

)
φ0

(
y − l

2

))
dy

− a
1
2 − 1

2s√
μ′ − 1

∫ l
2

− l
2

w∞(y)φ0(y)dy + O

(
1

l1+2s

)

= a
1
2 − 1

2s√
μ′ − 1

(∫
R

w∞(y)φ0(y)dy −
∫
R

w∞(y)φ0(y)dy

)
+ O

(
1

l1+2s

)
= O

(
1

l1+2s

)
.

Therefore, ∫
I

Aφdx = O

(
1

l1+2s

)
and

∫
Ĩ

Hlφ̃dy = O

(
1

l1+2s

)
,
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where φ̃(y) = φ(x), y = a
1
2s x. Hence,

1

a1− 1
2s

L[φ] ≤
∫

Ĩ

[
|(−�)

s
2 φ̃|2 + φ̃2 − 3H2

l φ̃
2
]

dy +
2μ′

(∫
Ĩ Hlφ̃dy

)2

L(μ′ − 1)a
1
2s

≤
∫

Ĩ

[
|(−�)

s
2 φ̃|2 + φ̃2 − 3H2

l φ̃
2
]

dy + O

(
1

l2+4s

)

= 2
∫
R

[
|(−�)

s
2φ0|2 + φ2

0 − 3w2
∞φ

2
0

]
dy + O

(
1

l1+2s

)

= −2ν1

∫
R

φ2
0dy + O

(
1

l1+2s

)
< 0.

Therefore, we have μL,e > 0, and it shows that the double-spike solution of Type III is unstable.
At this point, we have completed the whole proof of Theorem 1.2.

5 Numerical computations

We present the results of numerical computations for the shapes of the single-spike solutions for
s = 0.60, 0.75, 0.90, 0.99. We implemented two different numerical schemes in Matlab. Both
are based on parabolic problems such that the stable steady-state solutions are obtained as long-
time limits. The numerical schemes use finite difference methods, in particular, a combination of
the methods of Crank–Nicolson [6] and Adams–Bashforth.

Scheme 1. To compute the shape of the single-spike solutions, we implemented a code for
the first equation of (1.2) using the Crank–Nicolson method for the linear terms and the Adams–
Bashforth method for the non-linear terms. We consider the problem in the spatial interval �=
(−20π , 20π ). We substitute B(x) = −μ′(A2)(x) +μ′ ∫

�
A2 dx/|� into the first equation and solve

it with periodic boundary conditions. For the parameter values, we take 0.12s as the diffusion
constant of −(−�)sA and μ′ = 1.001. We take into account 210 Fourier modes. The time step is
0.01.

Scheme 2. To verify that the steady-state solutions computed by Scheme 1 are also long-time
limits of the full system (1.2), we implemented a code for the full system (1.2). For the first
equation, we used the Crank–Nicolson method for the linear terms and the Adams–Bashforth
method for the non-linear terms, in the same way as for Scheme 1. For the second equation, we
used the same discretisation method for both fractional Laplacians so that the numerical scheme
satisfies the conservation law exactly which lead us to choosing the forward Euler method. We
took a small value for τ , namely τ = 0.1. The other parameters are the same as in Scheme 1.
Again, we take into account 210 Fourier modes. The time step has to be taken smaller than in
Scheme 1 in order to avoid numerical instability. We chose 0.001 for s = 0.60, 0.75, 0.0005 for
s = 0.90 and 0.0003 for s = 0.99.

We have chosen as initial values A(x) = 2
1+x2 and B(x) = 0.

The following figure shows the shapes of the spikes obtained by using Scheme 1 based on
the reduced system for the first equation of (1.2). These shapes have been confirmed as long-
time limits of the full system by using Scheme 2. Numerically, in both schemes, the solutions
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FIGURE 1. Spiky steady states of (1.2) for μ′ = 1.001, τ = 0.1 achieved as long-time limits of Scheme 1
with initial conditions A(x) = 2

1+x2 and B(x) = 0. Spiky steady states for (1.2) have been presented for the
parameter values s = 0.60, 0.75, 0.90, 0.99. We have shown A(x) on the left and B(x) on the right, both
restricted to the interval −10< x< 10. The maximum values of the spike pattern A(x) increases with s, and
we have computed the maximum values as 3.52, 10.73, 14.31, 15.68.

converge to the same spike profile. Since the shapes for Scheme 2 are indistinguishable from
those of Scheme 1, they have not been included.

We observe from Figure 1 that for increasing values of s the spikes become narrower and their
spatial decay becomes faster, in agreement with Theorem 1.1.

For s = 0.51 in both schemes, the solutions converge to the homogeneous steady state A = 1,
B = 0. Scheme 1 gives an error of the order 10−3 due to the use of the trapezoidal rule for
integration. Scheme 2 does not use any numerical integration, and the error is of the order 10−10.

We further investigated the threshold value of s for which the solution converges to a spike
solution or the homogeneous steady state A = 1, B = 1. Using both Scheme 1 and Scheme 2, we
found that for s = 0.58 or below we get a homogeneous steady state but for s = 0.59 or above a
spike solution is formed. The computations have to be done carefully near the threshold, since
the solution can stay for a long time in a state which looks like a spike solution before it either
contracts to a homogeneous steady state or approaches an exact spike solution. This threshold is
in qualitative agreement with the theoretical result in (1.8). Since the value of Iw∞ is unknown,
further quantitative comparisons are not possible. We leave this as an open problem for future
research.

In summary, we have computed the spike solutions and the homogeneous steady states
A = 1, B = 0 as long-time limits of the parabolic problem (1.1), using two different numeri-
cal schemes for μ′ = 1.001. For s = 0.59 or above, the solutions converge to a spike solution
which indicates that the spike solution exists in this parameter range and is stable. For s = 0.58
or below, the solutions convergence to the homogeneous steady state A = 1, B = 0 which indi-
cates that in this parameter range the homogeneous steady state is stable. From Theorem 1.1, we
know that the spike solution does not exist in this parameter range. We have found qualitative
agreement between the theoretical threshold predicted in (1.8) and the numerical results.

The threshold (1.8) is a typical feature of the Ginzburg–Landau equation with a mean field,
and it is ultimately a consequence of the consistency condition (2.2). We also found that by
using consistency condition (2.2), the numerical computations can be simplified substantially
and included (2.2) in Scheme 1.
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6 Conclusion

We summarize the results of this paper, draw some conclusions and give an outlook.
We have considered the existence and stability of three types of singular patterns in a frac-

tional Ginzburg–Landau system with a mean field which has been derived from a fractional fluid
mechanics model with symmetry-breaking term.

The expansion for the amplitude equations given in (1.4) and (1.5) uses an interesting scaling.
In particular, the scaling of time has a fractional order of the small parameter ε which comes
from the fractional Laplacian. However, the scaling of space does not have a fractional order
of the small parameter. Alternatively, scalings can be chosen which have the small parameters
distributed between the temporal and spatial terms. We remark that it is possible to define a new
small parameter: ε̃= ε2s, whereby the fractional scaling will move from t to x. It is also possible
to split it: T = ε̃2st and X = ε̃1/

√
2sx. Any arbitrary split such that ε2s

x = εt would work.
There are a lot of studies on the derivation of amplitude equations for fractional-order partial

derivatives in the recent decades, see [14, 17, 25] for instance. We expect the results of the
current article could provide some new insights to stimulate the development of this direction in
the future.

The periodic patterns investigated are the most basic ones, namely double fronts, single spikes
and double spikes. It is an important question to understand which of these patterns is pre-
ferred by the model equations and will persist in the dynamical behaviour. This motivates the
study of stable vs. unstable solutions. It turns out that one of the single-spike solutions is stable,
whereas the other solutions are all unstable. We can conclude that in this model spiky patterns
are preferred over front patterns.

The methods used in this paper are extensions of [19]. We find it interesting that it was
possible to generalise the approach in [19] to the fractional Laplacian setting. Although many
qualitative properties remain the same, we have observed that the asymptotic behaviour for
increasing spatial period changes throughout the analysis.

It will be interesting to extend the results of this study from one space dimension to several
spatial dimensions. Another possible direction for future work is the investigation of pattern
formation in systems of PDEs with different types of fractional terms.
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