BULL. AUSTRAL. MATH. SOC. 46H20
VOL. 20 (1979), 247-252.

A theorem in Banach algebras
and its applications

V.K. Srinivasan and Hu Shaing

If A is a complex Banach algebra which is also a Bezout domain,

it is shown that for any prime p and a non-negative integer

n o, pn is not a topological divisor of zero. Using the above
result it is shown that a complex Banach algebra which is a

principal ideal domain is isomorphic to the complex field.

1: Introduction
The object of this paper is to show that if A 1is a Banach algebra

which is also a Bezout domain, then for any prime p , pn is not a

topological divisor of zero. As a corollary of the above theorem, it is
shown that a complex Banach algebra which is a principal ideal domain is
isomorphic to the field ( of complex numbers. A few applications are

given involving some concrete algebras.

Section 2 introduces a few definitions and theorems which are used in

Section 3. The main results are proved in Section 3.

2.

An integral domain A is a commutative ring with an identity 1 # 0 ,
which has no divisors of zero. A Bezout domain A 1is an integral domain

in which for every two elements g and b the greatest common divisor d

exists with

(2.1) d=ar + bs for some r and & in A4
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Every principal ideal domain is an example of a Bezout domain. There

are examples of Bezout domains which are not principal ideal domains.

For the main definitions and results in Banach algebras we refer to
Larsen [4], NaTmark [5], and Rickart [6].

DEFINITION 2.1. Let A be a complex Banach algebra with an identity
denoted by 1 , where A 1is not necessarily commutative. An element
a €A is called a left topological divisor of zero, if there exists a

sequence {zn} , 2Z_ €A , such that ”an =1 for all »n with HaZnH + 0

n
as n *» _ A right topological divisor of zero is similarly defined. A
topological divisor of zero is defined to be either a right or a left

topological divisor of zero.

The next theorem stated in the context of integral domains is a

modification of Theorem 1.6.2 given in Larsen [4] (p. 46).

THEOREM 2.1. Let A be a complex Banach algebra with an identity

1. If 4 <s an integral domain, the following conditions are equivalent:
(1) =z € 4 is not a topological divisor of zero;
(ii) the primcipal ideal (x) is closed in A ;

(i2i) there exists a constant K > 0 , such that for all
y €4,

(2.2) lzyll = &llyll .

THEOREM 2.2 (Rickart [6]1). Let A be a complex Banach algebra with
an identity 1. If A has no topological divisors of zero other than
the zero element, then A 1is isomorphic to the field U of complex
numbers.

The proof of the next theorem is obtained by using Theorem 2.1 and
Theorem 2.2.

THEOREM 2.3. Let A be a complex Banach algebra which is alsc an
integral domain. If for each a € 4 , a # 0, the ideal (a) 1is closed,
then A4 <is isomorphic to the complex field @

3.

The results stated in the introduction are now proved in this section.
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THEOREM 3.1 (Fundamental Theorem). Let A be a complex Banach

algebra which is also a Bezout domain. Let p be a prime element of A .
For any non-negative integer n , pn 18 not a topological divisor of zero
or, equivalently, the principal ideal (pn) 18 closed.

Proof. We consider three cases.

Case 1. For =n = 0 , the result is trivial since po = 7.

Case 2. For n =1 , we consider the principal ideal (p) . It is
easily seen using the Bezout property, that in a Bezout domain the ideal
(p) is maximal since p is a prime. Since a maximal ideal in a Banach
algebra is closed it follows that (p) 1is closed and hence, equivalently,

p 1is not a topological divisor of zero.

Case 3. For any positive integer »n , consider pn . As p 1is not a
topological divisor of zero by Case 2, it follows from Theorem 2.1 that

there exists a positive constant X (see (2.2)] such that
lpyll = Kllyll , for all y €4 .

Now for any arbitrary y €4 ,

-1 - 2 -2 .
(3.1) "yl = ™)1 2 &I Yl 2 KAl 2 . 2 KMyl

Since K' >0 , by Theorem 2.1 (ZiZ) it follows that pn is not a

topological divisor of zero. The proof is now complete.

Let A be a unique factorization domain. For any non-zero non-unit

element a € A , let the prime factorization of a be

"1 "
(3.2) a=up” Py

where u 1is a unit, pl, ooy pm are distinct primes, and n n

1% e My

are positive integers. The relation (3.2) is equivalent to the following:
m n,

(3.3) (a) = N [ij) .
J=1

THEOREM 3.2 (A Gelfand-Mazur like theorem). Let A be a complex
Banach algebra, which is also a principal ideal domain. Then A is

isomorphic to the field U of complex nwmbers.
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Proof. 1In view of Theorem 2.3, it suffices to show that for any
a €4, a# 0, the ideal (a) 1is closed. If a 1is a unit, this is
trivial. For any non-zero non-unit element a with factorization (3.2)

we have

n.
Since each pj is a prime, by Theorem 3.1, ij) is closed and
consequently (a) is closed. This completes the proof of the theorem.

Not every unique factorization domain is a Bezout domain. In fact
it can be easily shown that a unique factorization domain with the Bezout
property is a principal ideal domain. The following conjecture still

remains open.

CONJECTURE. A complex Banach algebra which is also a unique

factorization domain is isomorphic to C .
The following partial answer to the above conjecture is noteworthy.

THEOREM 3.3. Let 4 be a complex Banach algebra which is also a
unique factorization domain. If for every prime element p € A , the ideal

(p) s closed, then A is isomorphic to (.

Proof. By hypothesis, for each prime element p € A , the ideal (p)

is closed. By Theorem 2.1 it follows that p 1is not a topological divisor

of zero. Using the Case 3 argument of Theorem 3.1, it follows that pn is

not a topological divisor of zero for any non-negative integer =n or

equivalently that [pn) is closed. Using the same kind of argument as in
Theorem 3.2, it follows that for any non-zero non-unit a € A , the ideal
(a) is closed, the result being trivial in the case of a unit. The result

now follows from Theorem 2.3.

APPLICATIONS. (1) 1ILet P(x) be the algebra of all complex
polynomials in one variable. Since it is a principal ideal domain under
the usual algebraic operations it follows that P(x) can not be made into
a Banach algebra under any norm. However a stronger result can be deduced
concerning P(x) . 1In any Banach space the spectrum of a bounded linear

operator mapping the space to itself is a compact subset of € and hence
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bounded. Each element f € P(x) can be regarded as a linear operator of

P(x) to itself by the following mapping:

Tf(g) = fg , for any arbitrary g € P(x)

If P(x) were to be a Banach space, it can not have elements with
unbounded spectrum. But P(x) has many elements with unbounded spectrum.

Hence P(x) can not even be made into a Banach space.

(2) Let Q@(x) be the algebra of all formal power series over the
field @ , taken under the usual algebraic operations. It is shown in
Hungerford [2] that ((x) is a principal ideal domain which is also a
local domain, in the sense that it has a unique maximal ideal. In view of
Theorem 3.2 it follows that @(x) can not be made into a Banach algebra
under any norm. It is also remarkable that every element of a(x) has a
bounded spectrum, which can be easily established. This example shows that
Theorem 3.2 can not be deduced from the spectral theorem, which says that

the spectrum of any element in a Banach algebra is a compact subset of ¢

(3) Let 9 be the collection of all complex sequences of the form

«©
a = {an}n=0 = (ao, Ays ovs G ...) . We define a multiplication on
by the rule:

for a = {a }°°

o]
0 S and b = {bn}n=0 the nth term (a.b)n of

the product a.b is defined by

n-1

(a.b), = tgo a,(b,_,b, . ) +aby if nz1,

and

(a.b)0 = aobo for n =0 .

£ taken under the above multiplication and usual addition and scalar
multiplication is an algebra, which is an integral domain (see [1]). Using
essentially the same kind of technique as in @(x) it can be shown that

£ is a principal ideal domain. It follows from Theorem 3.2 that  can

not be made into a Banach algebra under any norm.

REMARK 3.1, Srinivasan [7] has given a different proof of Theorem
3.2.
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