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Abstract. Let M be a smooth closed oriented surface. Gaussian thermostats on M
correspond to the geodesic flows arising from metric connections, including those with
non-zero torsion. These flows may not preserve any absolutely continuous measure. We
prove that if two Gaussian thermostats on M with negative thermostat curvature are related
by a smooth orbit equivalence isotopic to the identity, then the two background metrics are
conformally equivalent via a smooth diffeomorphism of M isotopic to the identity. We also
give a relationship between the thermostat forms themselves. Finally, we prove the same
result for Anosov magnetic flows.
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1. Introduction
Let (M, g) be a closed oriented Riemannian surface and let A € C*°(SM,R) be a
smooth function on the unit tangent bundle = : SM — M. We concern ourselves with
the dynamical system governed by the equation

Vi¥ = A, 9)J 7
where J : TM — T M is the complex structure on M induced by the orientation.

This equation defines a flow ¢, (y (0), y (0)) := (v (¢), y (t)) on SM which reduces to the
geodesic flow when A = 0. The flow models the motion of a particle under the influence
of a force orthogonal to the velocity and with magnitude A. Its generating vector field is
F = X + AV, where X is the geodesic vector field on SM and V is the vertical vector field.
The system (M, g, A) is called a thermostat.

If A does not depend on velocity, that is, if it corresponds to a function on M, then ¢,
is the magnetic flow associated with the magnetic field Ap,, where 1, is the area form of
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(M, g). When X depends linearly on velocity, that is, when it corresponds to a 1-form on
M, we instead obtain a Gaussian thermostat, which is reversible in the sense that the flip
(x,v) = (x, —v) on SM conjugates ¢, with ¢_; (just as in the case of geodesic flows).
The resulting flows are interesting from a dynamical point of view because, in contrast to
geodesic or magnetic flows, they may not preserve any absolutely continuous measure (see
[DPO07]). Gaussian thermostats also appear in geometry as the geodesic flows of metric
connections, including those with non-zero torsion (see [PW08]). We thus think of them
as dissipative geodesic flows.

We are interested in rigidity results for thermostats satisfying the Anosov property. By
[Ghy84, Theorem A], these flows are topologically orbit equivalent to the geodesic flow
of any metric with constant negative curvature on M via a Holder homeomorphism which
is in fact isotopic to the identity. In particular, this tells us that the flows of thermostats
are transitive and topologically mixing, so the idea is that the richness of the chaotic orbits
should allow one to recover information about the system.

The set-up is as follows. Given two thermostats (M, g, A) and (M, g, 1) on the same
surface M, we assume there is a smooth orbit equivalence ¢ : SM — SM whichis isotopic
to the identity. Here, SM is the unit tangent bundle with respect to the metric g on M, and
orbit equivalence means that oriented orbits are mapped to oriented orbits, that is, there
exists ¢ € C®°(SM, R-o) such that ¢, F = cF.In particular, ¢ is a conjugacy if c is iden-
tically 1. There is a natural identification of SM with SM by scaling the fibres via the map

s:SM — §M, s(x, v) = (x, v/[|vll)- (L1.1)

By saying that ¢ is isotopic to the identity, we mean that s o ¢ : SM — SM is isotopic to
the identity in the usual sense.

Question 1.1. If both thermostat flows are Anosov, what is the relationship, if any, between
(g, ) and (2, 1)?

The work in [GLP25] gives an answer when A = A = 0 and ¢ is a conjugacy: g and g
must be isometric via an isometry isotopic to the identity. Rather than assuming a smooth
conjugacy isotopic to the identity, they work with the equivalent condition that the metrics
have the same marked length spectrum. This equivalence also holds for magnetic flows
(using [GR23, Theorem 1.1]). However, while the notion of marked length spectrum still
makes sense for any thermostat (each non-trivial free homotopy class on M contains a
unique closed thermostat geodesic by [Ghy84, Theorem A]), equality of marked length
spectra only guarantees a Holder continuous conjugacy.

Still with ¢ as a conjugacy, the paper [Gro99] deals with the mixed case where
(M, g, )) is a magnetic system and (M, g, 0) is geodesic, but at the cost of additional
assumptions: g has negative Gaussian curvature, M has the same area with respect to g
and g, and neither X nor its first derivative are too big. The conclusion is then that g and g
are isometric via an isometry isotopic to the identity and that > = 0.

More recently, progress has been made in [Mar23, Mar24] to understand a deformative
version of our question in the purely magnetic case, framed through the lens of marked
length spectrum rigidity.
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1.1. Main results. Beyond its physical motivation, the magnetic case represents the first
step towards the broader goal of understanding thermostats: it corresponds to the case
where . = A has Fourier degree 0 (see §2.1.4). Our first result is the following theorem.

THEOREM 1.2. Let (M, g, A) and (M, g, X) be two Anosov magnetic systems. If there
is a smooth orbit equivalence isotopic to the identity between them, then there exists a
smooth diffeomorphism W : M — M isotopic to the identity such that ¥*g = >/ g for
some f € C°°(M, R). Moreover, if the orbit equivalence is a conjugacy and f = 0, then
A = 0ifand only if A = 0.

We note that finding a relationship between A and A in the general magnetic case remains
an open question. A key similarity between geodesic and magnetic flows is that they
preserve the Liouville measure on SM. As we will explain, this allows most of the key
arguments from the paper [GLP25] to also go through in the magnetic case.

For this reason, the main emphasis of this paper is instead on Gaussian thermostats.
These correspond to the case where A = A_1 + A or, equivalently, A = £{0 for some
1-form 6 on M, where

(£10)(x, v) = O (v) (12)

denotes the restriction to SM of smooth differential forms (so that we may see them
as functions on SM). We will denote a Gaussian thermostat (M, g, ) by (M, g, 6) to
highlight its particular form.

One can also study Gaussian thermostats using an external vector field E. This is the
vector field on M uniquely characterized by 6, (v) = g, (E(x), Jv), that is, the vector field
dual to x6, where * is the Hodge star operator of the metric g.

As we allow A to have Fourier degree 1, we introduce the possibility of new dynam-
ical features absent from the geodesic and magnetic cases. For instance, by [DP07,
Theorem A], a Gaussian thermostat preserves an absolutely continuous invariant measure
on SM if and only if %0 is exact. This means in particular that the Liouville measure may
no longer be preserved and it allows for fractal Sinai—Ruelle-Bowen measures.

The thermostat curvature of (M, g, 0) is the quantity

K = 7*(Kg — divy, E), (1.3)

where K, is the Gaussian curvature of (M, g). If K < 0, then the flow is Anosov by
[Woj00, Theorem 5.2], in analogy with the geodesic case. Note that equation (1.3) is a
particular case of the more general definition

K:=7*K, — HA + 2> + FVa (1.4)

used for any thermostat (M, g, 1).
This leads us to our next main result.

THEOREM 1.3. Let (M, g, 0) and (M, g, é) be two Gaussian thermostats with K, K <o0.
If there is a smooth orbit equivalence isotopic to the identity between them, then there is
a smooth diffeomorphism \ : M — M isotopic to the identity such that *§ = e*/ g for
some f € C®°(M, R). Moreover, if x0 or %0 is closed, then *(w*é — 0) is exact.
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As shown in Lemma 4.6, the scaling map defined in equation (1.1) yields a smooth
orbit equivalence isotopic to the identity between the Gaussian thermostats (M, g, 6) and
(M, e2f g, 0 + x df), with a time-change by e/ . This implies that the conformal factor in
our main result is optimal and that it is necessary to leave room for an exact difference when
relating the 1-forms. However, it is unclear at this stage whether the closedness condition
is really necessary to establish this last relationship.

Ideally, one would like to extend this result to the general Anosov case. The only
place where we use the negative thermostat curvature is in showing that the Gaussian
thermostats satisfy the attenuated tensor tomography problem of order 1 (see §2.3.2).
We do not have this issue in the purely magnetic case, which is why we were able to
simply assume the more general Anosov property in Theorem 1.2. Removing the negative
thermostat curvature assumption should also allow one to mix the magnetic case with
Gaussian thermostats, that is, to take A = A_1 + A9 + Aj.

As pointed out above, there are still open questions regarding the rigidity of A for A of
Fourier degree 1. It is also unclear at this stage how much information is gained from
having a genuine conjugacy versus an orbit equivalence, and whether the conjugating
diffeomorphism ¢ itself must have some particular form as in the purely geodesic case
(see [GLP25, Corollary 1.3]).

After this work, a natural question is whether anything can be said for A of Fourier
degree > 2. As we show with the no-go Lemma 2.16, the current argument does not
work for these thermostats. However, there are interesting examples of such systems.
For instance, when A is the real part of a holomorphic differential of degree > 2, the
corresponding thermostat admits an interpretation as coupled vortex equations (see
[MP19, MP22]). It was also shown in [MP20] that the geodesic flow of an affine
connection on M is, up to a time-change, the flow of a thermostat with a function A of the
form A = A_3 4+ A_1 + A1 + A3. Just as Theorem 1.2 implies that an Anosov magnetic
system (M, g, A) with A # 0 cannot be smoothly conjugate to an Anosov geodesic flow
(M, g,0) with the same metric by a conjugacy isotopic to the identity, it would be
interesting to further categorize thermostats.

Finally, we note that Theorem A.5, which applies to thermostats, was placed in the
appendix to improve the overall exposition of the paper, but it represents a new result
related to the injectivity of the thermostat X-ray transform.

1.2. Strategy. Our main inspiration is the approach in [GLP25]. Indeed, we show that
a smooth orbit equivalence isotopic to the identity determines the complex structure of
the metric g up to biholomorphisms isotopic to the identity (Proposition 4.2). This allows
us to conclude that the two metrics g and ¢ must be conformally equivalent via a smooth
diffeomorphism of M isotopic to the identity.

To show that the orbit equivalence determines the complex structure, we rely on Torelli’s
theorem (Theorem 2.8), which tells us that it is enough to show that the period matrix
of the underlying Riemann surface is preserved. To be able to conclude that the resulting
diffeomorphism is isotopic to the identity, we use the fact that the argument can be repeated
on any finite cover.
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The period matrix is defined in terms of holomorphic 1-forms on M. We show with
Theorem 2.15 that these can always be associated to the first Fourier modes of certain
distributions Dy 4+ (SM) on SM satisfying a transport equation and with non-negative
Fourier modes (see §2.2.2). Asking for these distributions to only have non-negative
Fourier modes is a critical requirement for the rest of the argument, but it does not carry
over to the case of thermostats when A has Fourier degree > 2.

We then establish in Lemma 3.6 a pairing formula showing that the integral of any
holomorphic 1-form over a thermostat geodesic y on M (that is, the periods of the period
matrix) is the same as the integral over 771 (y) C SM of an associated 2-current invariant
by F and living in a certain subspace F(SM) (see §2.1.3). This pairing formula then tells
us that the smooth orbit equivalence preserves the period matrix.

At a high level, there are two main challenges and departures from [GLP25]: the first is
in handling a general orbit equivalence instead of a conjugacy, and the second is in dealing
with the fact that Gaussian thermostats may not be volume-preserving.

The presence of a non-zero divergence with respect to the Liouville volume form
manifests in several ways. First, instead of flow-invariant distributions, the right object
of study becomes solutions to the dual transport equation. This subspace is no longer
preserved by the pullback of the orbit equivalence, so we have to introduce the
space F(SM) of 2-currents mentioned above and establish a one-to-one relationship
with the distributions solving the transport equation (Lemma 2.3). We then have to
check that the wavefront set analysis is unaffected by factoring the correspondence
through this space (Lemma 2.4) and that Dy (SM) is mapped to Dtr,+(§M )
(Proposition 3.3).

Another complication due to the dissipation is in showing that any holomorphic 1-form
can be seen as the first Fourier mode of an element in Dy, 4 (SM), as previously mentioned.
The heavy lifting to address this issue is done in Appendix A. Furthermore, again due to
the divergence, we have to explain why Gaussian thermostats with negative thermostat
curvature satisfy the attenuated tensor tomography problem of order 1 (Theorem 2.12).

For the pairing formula previously described, we have replaced the role of the Liouville
form with that of a certain form defined in equation (2.2). Finally, to relate A with i, we
rely on new arguments which, at their core, involve the smooth Livsic theorem.

1.3. Organization of the paper. In §2, we introduce the background tools necessary for
the rest of the paper. Specifically, §2.1 provides a short introduction to the geometry and
vertical Fourier analysis of the unit tangent bundle. It also introduces the new objects
needed to deal with the divergence of the thermostats. In §2.2, we review the complex
geometry and harmonic analysis on a surface, while §2.3 delves into hyperbolic dynamics
and tensor tomography.

In §3, we explain how a smooth orbit equivalence acts on holomorphic differentials and
we establish the pairing formula needed to show that period matrices are preserved. We
then present the proofs of our main results in §4.

Appendix A delves into the question of finding distributional solutions, with prescribed
Fourier modes, of the relevant transport equation for a thermostat.
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2. Preliminaries

In what follows, (M, g) is a closed oriented Riemannian surface and we take an arbitrary
A € C®°(SM, R). Whenever we use additional assumptions, it will be clearly stated in the
result statements. We will sometimes need a second thermostat (M, g, A). All the objects
depending on the metric will then be labelled accordingly. Finally, we will denote by
P SM — SM a smooth orbit equivalence between the thermostats (M, g, 1) and
(M, g, A). Once again, we will specify when we assume it to be isotopic to the identity.

2.1. Unit tangent bundle of the surface. We review some basics concerning the unit
tangent bundle of M, that is, the three-dimensional manifold defined as

SM = {(x,v) e TM | |vllg =1},

together with its natural projection v : SM — M.

2.1.1. Geometry of SM. As previously, let X be the geodesic vector field on SM and
let V be the vertical vector field generating the circle action on the fibres. We define
H = [V, X]. Then, (X, H, V) is a positively oriented global frame for 7 (SM) with
respect to the Sasaki metric, the natural lift of g to SM. We set H := RH and V := RV.
We also note that the geodesic vector field splits into X = n4 + n—, where ny are the
raising and lowering Guillemin—Kazhdan operators given by

ne = +(X FiH). 2.1)

The Liouville 1-form o € C®°(SM, T*(SM)) is defined by the relations «(X) = 1 and
a(H) = a(V) = 0. It is invariant by the geodesic flow in the sense that Lxa = 0. The
2-form d« is non-degenerate on the contact plane H @ V and it satisfies ty do = 0. Hence,

w=—aA da

is a nowhere-vanishing volume form invariant by the geodesic flow. We call it the Liouville
volume form (and also use u to denote the induced Liouville measure on SM). It coincides
with the Riemannian volume form induced by the Sasaki metric on SM. From now on, the
L? space on SM is defined as L2(SM) == L*(SM, ).

We also define the 1-forms S,y on SM by the relations B(H) =1 = ¢ (V) and
BX)=B(V)=0=¢(X)=v(H). It is easy to check that do =y A B so that
uw=anBAY. Weset (RX)* :=Ra, H* :=Rp and V* := Ryr. We refer to [PSU23,
§3.5] for further details on the geometric structure of SM.

2.1.2. Appearance of the divergence. The key difference between thermostats and
geodesic or magnetic flows is that the generating vector field F might not preserve the
Liouville volume form w. Recall that the divergence of the vector field F with respect to
the volume form w is the function div, F € C*°(SM, R) uniquely characterized by

Lrp = div,F)p.

The following result is proved in [DP07, Lemma 3.2].
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LEMMA 2.1. Let (M, g, A) be a thermostat. Then, we have

Lru=VMu, Lyu=0, Lyu=0.

In the geodesic and magnetic cases, we have VA = 0, so the Liouville volume form is
preserved. Another way in which the divergence manifests itself is when calculating the
adjoint operators with respect to the L? inner product on SM:

F*=—(F+V), H*=-—H, V*=-V.

This is relevant when extending differential operators to act on the space of distributions.
Recall that any differential operator P with smooth real-valued coefficients acts on a
distribution u € D'(SM) by duality, that is, (Pu, ¢)psm) = (u, P*¢)p(su) for any
@ € C®(SM). The subspace of distributional solutions to the transport equation

D/ (SM) = {u € D'(SM) | (F + VA)u = 0}

thus corresponds to the distributions u € D'(SM) such that (u, Fo)p sy = 0 for all
@ € C®(SM). If V1 = 0, these are simply the distributions invariant by the flow.

2.1.3. Divergence and smooth orbit equivalences. It is crucial to understand how the
divergence of a system interacts with smooth orbit equivalences.

The next result, which we have stated in a broader setting than the one we are studying
in this paper to highlight its generality, relates the divergences of two flows associated by
a smooth orbit equivalence.

LEMMA 2.2. Let N and N be two oriented manifolds endowed with nowhere-vanishing
volume forms w and [i, and nowhere-vanishing smooth vector fields Y and Y. Suppose that
¢ N - N is a smooth orbit equivalence between the flows generated by Y and Y. If we
write ¢>* = cY withc € C*°(N, R.q) and ¢* 10 = (det ¢p) 1t with det ¢ € COO(N, R), then

det qb) det ¢
+ -
o* ¢*c

In particular, if ¢ preserves the orientation, that is, det ¢ > 0, then

N - ~ det ¢ L~
¢ (c)¢p™(div,Y) = Y(ln ( e >> +divgY

div; Y.

(det p)p*(div,Y) = (

Proof. We compute

9" (Lyw) = ¢*(dyp)
= d(t1,9" (1)

detg
(St

d d
(;iqj) L+ ;ifd(tyﬁ)

d
det ¢ det¢ . 7\
() ey}
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However, we also have
¢*(Lyp) = ¢*(div, Y 1)
= ¢*(div, Y)$*
= ¢*(div,,Y)(det ¢) i,

so putting these together yields the desired result since fi is nowhere-vanishing. O

In the geodesic and magnetic cases, the pullback ¢* of the smooth orbit equivalence
¢ :SM — SM sends the space D .(SM) to Dt/r(gM ). More generally, however, the
divergence term V A appearing in the transport equation breaks this down.

Instead, a more useful perspective is to look at the following subspace of 2-currents (or
distributional 2-forms) on SM invariant by F:

F(SM) = {oc € D'(SM, A>’T*(SM)) | (o = do = 0}.

This set only depends on the foliation corresponding to F, that is, it is invariant under
time-changes, so we get a C-linear isomorphism ¢* : F(SM) — F(SM). The 2-form

W=l (2.2)

then allows us to establish a relationship with solutions to the transport equation.

LEMMA 2.3. The map L : D, (SM) — F(SM) given by u — uw is a C-linear isomor-
phism.

Proof. Using Cartan’s magic formula and Lemma 2.1, note that

duw) =du Nw+udw
=du A (ppn) +ulpp
=pduw)p +uVp
= (Fu+V@Q)u)u.
Therefore, the 2-current uw is closed if and only if (F + VA)u =0. Since F is

nowhere-vanishing, any 2-current o on SM satisfying tpo = 0 must be of the form
o0 = uw for some distribution u € D' (SM). O

Thanks to this identification, we can now define a map @ : D[ .(SM) — D{r(gM)
associated to the smooth orbit equivalence ¢ : SM — SM via the following diagram:

FsM) —25 7&m

LT lz_l 2.3)

D/(SM) --2-5 D (SM)

This point of view does not affect the wavefront set analysis. As a reminder, the wavefront
set WF(u) of a distribution u € D'(SM) describes the directions in 7*(SM) along which
the distribution is not smooth. It refines the notion of the singular support of u#, which
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only records the points in SM where u is singular. For a detailed introduction, we refer the
reader to [Hor03, Ch. 8].

LEMMA 2.4. If ¢ preserves the orientation, then, for all u € D (SM), we have
WF(®u) = WF(¢*u).
Proof. Letq € C®(SM, R-) be the function such that ¢*w = qg@. Then, we get

du=L""¢*Lu

=L™'¢" (uw)

=L (¢* wqa)

=q¢*u.
Since multiplication by the nowhere-vanishing function q is elliptic, we get the result by
elliptic regularity (see [Hor03, Theorem 8.3.2]). O

By the properties of wavefront sets under pullback operators (see [Hor03, Theorem
8.2.4] for instance), we thus obtain

WE(Pu) = d¢ ' (WF 1))

for all u € D{.(SM), where de' : T*(SM) — T*(§M) is the symplectic lift of ¢! to
the cotangent bundles given by

dp" (v, §) = (¢~ (V). d¢y 1 ,5), (. §) € T*(SM).
2.1.4. Vertical Fourier expansions. The space C*°(SM) breaks up as
C®(SM) = ®rezQ%k, S =1{u cC®(SM) | Vu = iku).

This decomposition is orthogonal with respect to the L? inner product on SM and with
C® being replaced by L2. For any u € C*°(SM), we shall write u = > ez Uk, Where the
kth Fourier mode uy € Q2 is given by

2
ug(x, v) :=%/O u(py(x, v))e ™ dr, (2.4)

with p; being the flow generated by V. More generally, any distribution u € D'(SM) can
be decomposed as u = ), ux, where each uy € D'(SM) is defined by

(ur, ) = (u, o_i)pr(smy, ¢ € C(SM)

and satisfies Vuy = ikuy.

If a distribution on SM only has finitely many non-trivial Fourier modes, we say that
it has finite Fourier degree. The smallest m € N such that u; = O for all |k| > m is then
called the Fourier degree of u.
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It is also worth noting that the ladder operators 4 in equation (2.1) take their name from
the fact that they act as raising/lowering operators on the Fourier decomposition, that is,

N+ Qp —> Qg

for all k € Z. In particular, we have (Xu); = n_ug+1 + nyur—; for any u € D'(SM).

2.2. Complex geometry. The conformal class of the Riemannian metric g and the
orientation of M induce a complex structure J : TM — TM on M, making it into a
Riemann surface which we denote by (M, J).

2.2.1. Complex structures. The Teichmiiller space of M, denoted by T (M), is the space
of complex structures on M modulo the equivalence relation that J ~ Jifand only if there
exists a diffeomorphism ¢ : M — M isotopic to the identity such that w*f = J. We will
denote such an equivalence class of complex structures by [J].

The mapping class group MCG(M) is defined as the quotient of orientation-preserving
diffeomorphisms on M modulo isotopy. They act on 7 (M) by pullback, and the quotient
space M(M) := T (M)/MCG(M) is the moduli space of complex structures on M. See
[FM12] for a thorough introduction.

Each complex structure J determines a canonical line bundle k = Tl’fOM and its
conjugate k¥ = TO”le over M. Locally, the sections of « have the form w(z) dz while
the sections of ¥ have the form w(z) dz. The dual of « is called the anti-canonical line
bundle and we identify it with ¥ by using the Hermitian inner product on « induced by
the Riemannian metric on M. We then denote this bundle by ¥ ~! so that the tensor powers
«®* make sense for all k € Z.

We will denote by H})(M , k®K) the space of J-holomorphic sections of the kth tensor
power of the canonical line bundle . Locally, its elements have the form w(z) dz* for
k> 0and w(z) dz ¥ fork < 0.

2.2.2. Fibrewise holomorphic distributions. Each subspace €2 of Fourier modes can
be identified with C*°(M, k®¥), the set of smooth sections of the bundle x®* [PSU23,
Lemma 6.1.19]. Indeed, we have a C-linear isomorphism

mf CO(M, k®) =
given by restriction to SM, that is, locally, for k > 0,
i (w d2h) (x, v) = w(x) (dz(v)*.

Note that the definition of ;" depends on the choice of the metric g. We denote by . its
L? adjoint. Locally, for k > 0, we have

(Thsu) (x) = (/ u(x, -)1//) dz*.
SeM

Once we extend the operators to distributions by duality, the projection onto the kth Fourier
mode is simply given by (271)_17r,:‘mpk acting on D' (SM).
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Under this identification, we can essentially think of the raising/lowering operators 14
as d and d operators thanks to the following result (see [PSU23, pp. 153—-154]).

LEMMA 2.5. For k > 0, the following diagram commutes.

COO(M, K®k) L} Qk
i l -
Lol
CO(M, k® @ k) —1 Qi
For k < 0, the operator 1t} also intertwines the operators d and 1.
As aresult, for k > 0, the operator 71,? gives us an identification
HY(M, c®) = @ Nker 1_.
We also introduce the following terminology.

Definition 2.6. A distribution u € D'(SM) is said to be fibrewise holomorphic if uy =0
forall k < O.

Equivalently, if we define the Szegd projectors S+ : D'(SM) — D'(SM) by

Syu = Z U, S_u:= Z U,

k>0 k<0

then a distribution  is fibrewise holomorphic if and only if S« = u. The projectors satisfy
the commutation relations

[S4, Xlu =nyu_1 —n_uo, [S—, XJu=n_u; —nyuo. (2.5)

We will be interested in the family of fibrewise holomorphic distributions that satisfy the
transport equation:

D} (SM) = {u € D'(SM) | (F + Viyu =0, Siu = u). (2.6)

2.2.3. Torelli’s theorem. The complex vector space H})(M , k) of J-holomorphic
1-forms has the same dimension as the genus of M (see [FK92, Proposition II1.2.7]).
Given a canonical basis {a;, b;} of the homology Hi(M; Z) on M, the following result
gives us the existence of a useful basis (see [FK92, Proposition, p. 63]).

PROPOSITION 2.7. There exists a unique basis {¢;} for H?(M, k) with the property

/ Sk = 8jk. 2.7)

Furthermore, the matrix T1(J) with (j, k)-entry
TIIINjr = / Sk
bj

is symmetric with positive definite imaginary part.
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The space of symmetric matrices with positive definite imaginary part and size given
by the genus of M is called the Siegel upper half-space H(M). We thus get a well-defined
period matrix map

: T(M) — H(M).

The following form of Torelli’s theorem tells us that period matrices capture a lot of
information about the complex structure.

THEOREM 2.8. Assume that M has genus > 2. If TI(J) = l_[(f), then there exists an
orientation-preserving diffeomorphism  : M — M such that y*J = J.

We refer to [FK92, Theorem II1.12.3] for a proof.

2.3. Hyperbolic dynamics. We now further assume that the flow of the thermostat
(M, g, A) is Anosov (or uniformly hyperbolic).

2.3.1. Definition. Recall that the Anosov property means that there exist a flow-invariant
continuous splitting
T(SM)=RF®E;®E,
and uniform constants C > 1 and 0 < p < 1 such that for all # > 0, we have
lderl gl < Co's  lldg—lEg, Il < Cp'. (2.8)

In the geodesic case, the contact form « is preserved, sokera = HPV = E; @ E,. Itis
then known that E;, NV = {0} = E, N'V. For a thermostat, we instead know by [DP07,
Lemma 4.1] that

RFEEHNNV={0}=RF®E,)NV. (2.9)

Here, RF @ Ej, are the weak stable and unstable subbundles. This implies that there
exist r¥, r'* € CO(SM, R) such that

Y =H+r'VeRF®E, Y'=H+r'VecRF®E,. (2.10)

In fact, the weak stable and unstable subbundles are C! (see [Has94, Corollary 1.8]), so
the functions r* and r* are also C! (and smooth along the flow since each subbundle
RF @ Ey is ¢;-flow-invariant). The Anosov property implies that r* # r" everywhere.
One may in fact show that r* < r¥, so the global frame (F, Y*, Y") is positively oriented.
See Figure 1.

LEMMA 2.9. Let (M, g, 1) be an Anosov thermostat. Then, the differentiable functions
rs, rt e CY(SM, R) uniquely characterized by equations (2.10) satisfy r® < r'.

Proof. Since r® # r" everywhere, it suffices to show the inequality at a single point. By
compactness, we can pick (x, v) € SM such that (V1) (x, v) = 0. Let us define

$(0) =do—(V(gi(x, v))).
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E&E,

FIGURE 1. The relevant subbundles of the tangent and cotangent bundles.

Differentiating with respect to ¢ and setting = 0, we obtain
£(0) = [F, VI(x, v).
Using that [V, F] = H 4+ V(A)V yields
z(0) = —H(x, v).

Since r¥(x, v) # r*(x, v), there is a unique constant ¢ € R such that V(x, v) + cX (x, v)
belongs to Es @ E,. Therefore, since E and E,, are uniformly repelling and attracting sets
on Es @ E,, respectively, we must have r*(x, v) < r*(x, v) at this point. O

Remark 2.10. When A =0 and K, <0, that is, in the geodesic case with negative
curvature, we have the stronger statement 7 < 0 < r* because [X, H] = 7*(Kg)V.

The dual subbundles are defined by
Ei(RFOE;)=0=E;(RF®E,).

One can check that E} and E} satisfy analogues of the estimates (2.8) for E} and E;,
with dg, replaced by (d(p,T )~ ! (inverse of the transpose). Translated to the setting of the
cotangent bundle, property (2.9) then becomes

E;NH" = {0} = E; NH". (2.11)
Further note that
Y =E/®E],
where
T ={(v.§) e T*(SM) | £(F(v)) = 0}
is the characteristic set of the operator F (usually defined without the zero section).
2.3.2. Tensor tomography. The tensor tomography problem is interesting in its own

right, particularly as it pertains to the injectivity of the X-ray transform for thermostats.
We will need the following property in the case n = 1.
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Definition 2.11. We say that a thermostat (M, g, A) satisfies the attenuated tensor
tomography problem of order n if having (F + VA)u = f with f,u € C*°(SM) and f
of Fourier degree n > 0 implies that u is of Fourier degree max(n — 1, 0).

The term ‘attenuated’ refers to the presence of the divergence VA in the transport
equation. Such a term appears for Gaussian thermostats and thermostats of higher Fourier
degree, but not for magnetic or geodesic flows.

The fact that geodesic flows satisfy the (attenuated) tensor tomography problem was
first proved in negative curvature in [GK80] for n > 0, and then generalized to the Anosov
case in [DS03] for n < 1, [PSU14] for n < 2 and [Guil7] for n > 2. It was also shown in
[DPO05] that Anosov magnetic flows satisfy the (attenuated) tensor tomography problem of
ordern < 1.

For thermostats of higher Fourier degree, the non-attenuated and attenuated versions
of the tensor tomography problem are different. In [DP07], it was proved that Gaussian
thermostats (potentially mixed with a magnetic component) satisfy the non-attenuated
tensor tomography problem of order n < 1. We instead need the following theorem.

THEOREM 2.12. Any Gaussian thermostat (M, g, 0) with K < 0 satisfies the attenuated
tensor tomography problem of order 1.

This result is a consequence of the work in [AR21]. Their argument relies heavily on
the negative thermostat curvature assumption. In particular, most of the heavy lifting is
done by [AR21, Theorem 3.1], where the Carleman estimates for Gaussian thermostats
with negative curvature are established (akin to the work in [PS23]).

THEOREM 2.13. Let (M, g, 0) be a Gaussian thermostat with K < —« for some k > Q.
For any integer m > 1 and parameter s > 0, we have

1
Do P P < = 3 kP Fu?

k>m k>m+1
forallu € C*(SM).

The rest of the argument is then relatively straightforward for our case, which is less
general than that tackled in [AR21]. We include it here for the sake of completeness, but
also to show how it can be simplified.

PROPOSITION 2.14. Let (M, g, 0) be a Gaussian thermostat with K < 0. Suppose that
f € C°°(SM) has finite Fourier degree and u € C*°(SM) satisfies (F + VA)u = f. Then,
the function u also has finite Fourier degree.

Proof. 'We follow the argument from [AR21, Theorem 5.1]. Let m’ > 0 be the Fourier
degree of f. Since (F + VA)u = f, we obtain

(Fu)g = —iAjup_1 +ir_qugyy forall [k| > m’ + 1.
As a result, there exists C > 0 such that

I(Fu)el? < C(lluk—11* + lugs11I*)  forall [k] > m' + 1.
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Pick « > 0 such that K < —«, fix s > eC/k and let m > max(2s + 1, m’ + 1). We can
apply Theorem 2.13 to get

D Pl < = 3 kP e I + i 1)
|k|=m [k|>m+1
C
<— k4 D> g2,
<= D (kI + 1>

[k|=m
Since m > 2s + 1, we note that
2541 1\
(k| + 1)>F = (1 + W) k| > < (1 + W) k| # < ek for all k| > m,
so that
eC
DR gl < = Y kP g%
KS
|k|>m |k|=m
It hence follows that
eC
(1 - —) DIk g l* < 0.
KS
[k|=m
However, we have 1 — eC/(ks) > 0 by design, so ux = O for all |k| > m. O]
Proof of Theorem 2.12. By Proposition 2.14, we know that u is of finite Fourier degree.

Suppose, for the sake of contradiction, that u is of degree k > 1. Then, using the equation
(F +VXu = f, we have

1
(7]+ + (l + —))\1V>uk =M+ +MV+irdDur =0

k
and
1
(77_ + <l + z))\_lv>u_k =M=+ 12V —ir_pDu_; =0.
By [AZ17, Proposition 6.1], it follows that u1; = 0, which is a contradiction. O]

Finally, the proofs of our results rely on the possibility of lifting arbitrary holomorphic
1-forms to solutions of the transport equation. As explained in Appendix A, where we have
relegated most of the work on this front, this is again related to the injectivity of the X-ray
transform for thermostats.

THEOREM 2.15. Let (M, g, A), with A of Fourier degree < 1, be an Anosov thermostat.
For any holomorphic (respectively anti-holomorphic) 1-form t on M, there exists a
distribution u € H='(SM) with uy =0 for all k <0 (respectively k > 0) such that
(F+VMu=0andu; = m{t (respectivelyu_ = n*, 7).

Proof. Let us treat the case where the 1-form 7 is holomorphic. The anti-holomorphic
case is completely analogous. Using Lemma 2.5, we know that 7't € € is in the kernel
of n_. We can hence apply Theorem A.5, which tells us that there exists v € H~!(SM)
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with vg = 0 such that (F + VA)v = 0and v_; + vy = r{'z. Since 7't € Q1, we actually
have v_; = 0. We project the distribution v onto its positive Fourier modes to get
u:==S,v= Zkzl vg. For all k € Z, we then get

((F + VMg = nyug—1 + n-sg41 + ik(Ajug—1 + doug + A-jug41) = 0,
which entails that (F + VA)u = 0. O]

We note that we cannot hope to get such a result for an arbitrary A € C*°(SM, R).

LEMMA 2.16. Suppose that A = Ay + A—p, Where m > 2 and n_Xi_,, = 0. Since A_p,
has isolated zeroes, there exists a € Q21 with n—_a = 0 and A_ypa # 0. Then, there is no
u e H-Y(SM) with uy = 0 forall k < 0 such that (F + VA)u = 0and u; = a.

Proof. Suppose that such a distribution u exists. For any k € Z, we must have
0= ((F+ VMuwk = nyur—1 + n-ttk+1 + ik(Amttk—m + A-mUktm)-

Therefore, applying this identity to k = —m + 1, we get A_,;a = A_,u; = 0, which is a
contradiction. O

3. Action on holomorphic differentials

We have seen that by passing through a specific type of 2-currents instead of directly using
the pullback ¢*, the linear map & : Dy (SM) — D{r(gM ) defined through the diagram
(2.3) sends distributional solutions to the transport equation of one thermostat to those
of the second. In this section, we want to show that ® can also be seen as acting on
holomorphic differentials from one complex surface to another when A is of Fourier degree
< 1 and the attenuated tensor tomography problem of order 1 is satisfied.

3.1. Action on fibrewise holomorphic distributions. ~We start by studying the action of
@ on the subspace D{r’ 1 (SM) defined in equation (2.6). This will require some microlocal
analysis.

We introduce C C {(v, §) € T*(SM) | £&(F(v)) = 0}, the closed cone enclosed by E}
and E} in the half-space {(v, £) € T*(SM) | £(V(v)) > 0}. See Figure 1.

LEMMA 3.1. Let (M, g, ) be an Anosov thermostat. If u € D;H_(SM), then we have
WF(u) C C and uy € Qi forall k € Z.

Proof. The argument is essentially the same as that of [GLP25, Lemma 2.5]. Let us give
the details.

By definition, each u € Dy, , (SM) satisfies S;u = u. Using the wavefront set descrip-
tion of the Schwartz kernel of S} (see [Guil7, Lemma 3.10]), we thus get

WF(u) = WF(S;u) C {(v, §) € T*(SM) | £(V (v)) = 0}
Given that (F + VA)u = 0, elliptic regularity tells us that
WFu) C X.
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By propagation of singularities for real principal type differential operators (see [Hor09,
Theorem 26.1.1]), we further know that WF(«) is invariant by the symplectic lift to
T*(SM) of the flow {¢;};cr. Given the Anosov property, the maximal flow-invariant
subset of T*(SM) contained in £ N {(v, &) € T*(SM) | £&(V(v)) > 0} is precisely C, so
this gives us the first claim.

For the second claim, recall that u; = (Zn)’ln,fm{*u. The pushforward operator g
only selects the wavefront set in (RX)* @& H* (see [FT99, Proposition 11.3.3]), which is
empty given that C N (RX)* & H*) = {0} by property (2.11). Therefore, u; € Q. O

We will also need the following lemma with the same proof as [GLP25, Lemma 3.3].

LEMMA 3.2. Let (M, g, \)and (M, g, )1) be Anosov thermostats. Suppose that there exists
a smooth orbit equivalence ¢ : SM — SM isotopic to the identity between them. Then, ¢
preserves the natural orientation of the weak unstable subbundle RF & E,, namely that
given by the global frame (F, Y"), where Y" is defined in equation (2.10).

Armed with this, we can show that ® maps fibrewise holomorphic distributional
solutions to the transport equation of one thermostat to those of the second. For this step
of the proof, however, we restrict to thermostats where A has Fourier degree < 1 and the
attenuated tensor tomography problem of order 1 is satisfied.

PROPOSITION 3.3. Let (M, g, 1) and (M, g, X), with » and A of Fourier degree < 1,
be Anosov thermostats satisfying the attenuated tensor tomography problem of order 1.
Suppose there exists a smooth orbit equivalence ¢ : SM — SM isotopic to the identity
between them. Then, the map © defined through the diagram (2.3) yields a C-linear
isomorphism

®: D, (SM) - D, (SM).

Proof. Since d¢ " maps connected sets to connected sets, E;* to E ¥ and E to E *.do T (C)
must be one of the four cones depicted on the right of Figure 1 (inside the characteristic set
i). It follows that d¢ ' (C) = +C because any other cone would entail that ¢ reverses
the orientation, which is impossible since it is assumed to be isotopic to the identity.
If dp' (C) = —C, then ¢ would flip the orientation of the weak unstable leaves, which
contradicts Lemma 3.2. Therefore, dd)T(C) C.

Let u € D{H_(SM) and u := du. By Lemma 3.1, we know that WF(u) C C. By
Lemma 2.4, we thus know that WF (1) = d¢T(WF(u)) c C. Then, S_ii € C°°(SM) and,
since (1’7 + \7):)12 = 0, we also have that

(F+V)S_i=[F+ VxS li
= (4 + MV +ikDio — (- + 2oV — ikl
Since (M, g, A) satisfies the tensor tomography problem of order 1 by assumption, it
follows that S_u is of Fourier degree 0. Hence, u is fibrewise holomorphic. The fact that

® is an isomorphism is then clear as it admits an inverse, namely the map associated to
(¢~ 1)* by the diagram (2.3). -
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3.2. Extension operator. Next, we show how ® can be seen as acting on holomorphic
differentials from one complex surface to another. Let us start by noting that the map

« 1 Dy (SM) — H)(M, k) (3.1)

is well-defined. Indeed, if u € D{r’+(SM), then Xu + V(Au) = (F + VA)u = 0, which
means that (Xu)g =0 and hence n_u; =0. By Lemma 2.5, this is equivalent to
5ﬂ1*u =0.

Thanks to Theorem 2.15, we know that the map (3.1) is surjective. We can thus define a
right-inverse

e1: H)(M, k) — D (SM)

such that 7, o e = id HOM )" We call it an extension operator. We may then define the
map

W HYM, ) — HJQ(M, )
by the following commutative diagram.

D, . (SM) —2= D}, , (SM)

T l (3.2)

HY(M, i) --*-» HUM, )

3.3. Period preservation. The following result shows that the induced mapping of
holomorphic differentials we have just defined preserves additional structure.

PROPOSITION 3.4. Let (M, g,)) and (M, g, 5»), with A and A of Fourier degree < 1, be
Anosov thermostats satisfying the attenuated tensor tomography problem of order 1. Then,
the C-linear map

U HYM, k) — HJQ(M, )

is an isomorphism. It preserves periods in the sense that, for all [y] € H{(M; Z) and

T E H?(M, K), we have
/ T :/ Y.
(] [v1

Recall that there is a push-forward map 7, : C®(SM, Q*(SM)) — C®(M, Q' (M))
given by integration along fibres. It satisfies dm, = m.d (see [BT82, Proposition 6.14]),
and it extends to currents. By [BT82, Proposition 6.15], we have the projection formula

/ o :/ 4O (3.3)
7 l(y) Y

for any smooth oriented curve y on M and any 2-form ¢ on SM.
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LEMMA 3.5. Let (M, g, A) be a thermostat and let w be the 2-form on SM defined in
equation (2.2). For any u € D'(SM), we have

(@) = 5 % (T tstt + 1),

Proof. Tt suffices to establish the claim for u € C*°(SM). Recall that  := tpu. A quick
computation then yields

wo=BAY+raAPB. 3.4

Note that 7*u, = o A B, where u, is the area form on M.
Pick x € M and take w € S, M. Then, by definition, we have

Ty (uw)x (w) =/ Ly (Uw),

SyM

where w € T(SM) is a lift of w under dxr. We take w = (w, 0), that is, no component in
the vertical subbundle V = ker d=r. Then, since ¢ (w) = 0, we get

s (o) (w) = / (B,

Sx

Given that t38(x v) = gx(w, Jv), we obtain

n*(uw)x(Jw)=/ ng(w, Ju(x, ) ¢

Sx

2
=/ cos(t)u(ps(x, w)) dt
0

2
_1 / " + e ulp(x, w)) dt
2 Jo

=ma(u—_1+uplx, w),

where in the last equality, we used equation (2.4). In terms of 1-forms, since we have
Uy = (2n)_1n2‘ﬂk*u, we proved that

—* i (Uw) = %(ﬂ-mu + Tislt).
We conclude by applying * to both sides. [

We can then integrate this identity, applied to solutions of the transport equation, over
closed thermostat geodesics to obtain the following result.

LEMMA 3.6. Let (M, g, X) be an Anosov thermostat and let y be a closed thermostat
geodesic. For any u € D,.(SM), the pairing (m~Y(y), uw) is well defined and

1
/ 1 uw = 7 / *(TT_ 14U + T 51).
7H(Y) [r]
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Proof. By the wavefront set calculus, the pairing (m~Y(y), uw) is well defined whenever
N*(~'(y)) N WE(u) = ¢ (3.5)

(see [Hor03, Corollary 8.2.7] for instance). Since V C T(r! (y)), the conormal bundle
N*(~!(y)) consists of a line contained in (RX)* @ H*. Lemma 3.1 and property (2.11)
then tell us that the intersection with WF(u) is indeed empty. It follows that the pairing
(m~Y(y), uw) is well defined and extends the pairing computed for u € C*°(SM).

We can then apply the projection formula (3.3) and Lemma 3.5. By Lemma 2.3, the
2-current uw is closed if u € D{r(SM), SO *(m_14u + mi,u) is also closed given that
m.d = dm,, which implies that its integral only depends on the homology class [y]. [

As £1x = —V ¢y, for any u € D'(SM), we may write
* (T 15l + T15lt) = D (15l — T141).

Therefore, if T € H?(M, k), [yl € HI(M;Z) and y is any thermostat geodesic whose
homology class is [y ], Lemma 3.6 gives us

2i/ el(t)a)zf T. (3.6)
7 1(y) [v]

We can now tackle the proof of Proposition 3.4.

Proof of Proposition 3.4. Let [y] € H{(M; Z) and let y, y be two thermostat geodesics
with respect to (M, g, A) and (M, g, X), respectively, whose homology class is [y]. Since
¢ is isotopic to the identity, we know that [¢ (7~ (7))] = [7 "' (y)] in Hy(SM; Z,).

We claim that the pairing (c/)(n_l()?)), e1(t)w) is well defined. In light of condition
(3.5) and Lemma 3.1, which tell us that WF(e t) C C, it is enough to show that

N*@p @~ (7)) nc = (o). (3.7)

We have seen in the proof of Proposition 3.3 that d¢' (C) = C, so combining this
observation with the property

N*(¢@ ™ 7)) = ¢ (N* (' 7))
allows us to rewrite condition (3.7) as
N*@ ' 7)) NC = {0}.

Again, since Vc T(SM ), we know that the conormal bundle N*( ~' (7)) consists of a
line in (RX ) ® H*, so it trivially intersects the closed cone C, as desired.

The 2-current e (7)w is closed by Lemma 2.3. By the Hodge decomposition theorem,
we may hence write e1(7)w = o + df for some harmonic 2-current o and 1-current f
with WF(f) = WF(e;t). Thanks to the wavefront set condition, the same argument as
for ej(t)w then shows that both pairings (n_l(y), df) and (d)(n_l(;?)), df) are well
defined. They must be equal to O since df is exact. We thus get

/ el (1w =f o :/ o =f e1(t)w,
T l(y) 7 l(y) ¢(x~L(7)) ¢ 1([7))
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where in the second equality, we have used the facts that o is harmonic and that
7' )] = ¢~ (7)) in Hy(SM; Z).
We can now use equation (3.6) and unravel the definitions to obtain

/ T = 21’/ e1(nw
[v] 7 (y)
=2i / e1(Nw = 2i / o*(e1(t)w)
o1 (7) 7=L(p)

=2i/ d>(elt)c?)=/ m*CD(elr):/ v, O
7=1(p) [v] [v]

4. End of the proofs

4.1. Torelli’s theorem. The work from the previous section, when combined with
Torelli’s theorem, tells us that a smooth orbit equivalence isotopic to the identity
determines the class [J] in the moduli space M (M) of complex structures on M.

PROPOSITION 4.1. Let (M, g, X) and (M, g, 5\), with A and X of Fourier degree <1,
be Anosov thermostats satisfying the attenuated tensor tomography problem of order 1.
If there exists a smooth orbit equivalence isotopic to the identity between them, then
[J]1= [.7 1 in M(M). Equivalently, there exists a diffeomorphism v : M — M such that
w*fz J and y*g = e*1 g for some f € C°(M, R).

Proof. By Proposition 3.4, the map W : H?(M ,K) —> HJQ(M , k) is a period-preserving
C-linear isomorphism. This means that (M, J) and (M, J ) have the same period matrix.
Indeed, given a canonical basis {aj, b;} of the homology H{(M;Z) on M, let {{;} be
a basis for H?(M, k) such that property (2.7) is satisfied. Then, {W¢;} is a basis for
HJQ(M , k) such that property (2.7) is also satisfied, and

(MW)) i = /b o = /b Wi = () je.

Since the surface M must be of genus > 2, Theorem 2.8 tells us that there exists an
orientation-preserving diffeomorphism v : M — M such that y*J = J. O

In this section, we want to show something stronger, namely, that the class of the
complex structure J is determined in Teichmiiller space 7 (M).

PROPOSITION 4.2. Let (M, g, ) and (M, 3, ).) be either:

(a) two Anosov magnetic systems; or

(b) two Gaussian thermostats with K, K <0.

If there exists a smooth orbit equivalence isotopic to the identity between them, then
[J]1= [7 1in T (M). Equivalently, there exists a diffeomorphism v : M — M isotopic to
the identity such that w*f: J and y*g = >/ g for some f € C®(M, R).

The reason we need to specify the nature of the two thermostats, as opposed to
Proposition 4.1 which deals with general Anosov thermostats of Fourier degree < 1, is
that our proof relies on the following technical lemma (see [GLP25, Lemma 3.8]).
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LEMMA 4.3. Let J and J be two complex structures on M compatible with orientation
such that [J] # [J] in T (M). Then, there exists a finite cover M’ — M such that the lifts
[J'1, [J] € T(M') are not in the same MCG(M')-orbit.

Indeed, when lifting thermostats to finite covers, the Anosov property and negative
thermostat curvature are preserved; however, satisfying the attenuated tensor tomography
problem of order 1 is not preserved a priori.

Proof Proposition 4.2. Suppose, for the sake of contradiction, that [J] # [J~ 1in T(M).
By Lemma 4.3, there exists a finite cover p : M’ — M such that the lifts [J'] and [f/ ] are
not in the same MCG(M')-orbit.

Since the smooth orbit equivalence between the flows of (M, g, A) and (M, g, 1) is
isotopic to the identity, it can be lifted to a smooth orbit equivalence isotopic to the identity
between the flows of (M, p*g, Ao dp) and (M, p*g, A o dp).

In case (a), we know that the lifted Anosov magnetic flows on M’ are again Anosov
because the cover is finite. They hence satisfy the (attenuated) tensor tomography problem
of order 1. In case (b), we know that the lifted Gaussian thermostats also have negative
thermostat curvature since the property is local. By Theorem 2.12, we thus conclude that
they satisfy the attenuated tensor tomography problem of order 1.

We can then apply Proposition 4.1 to obtain a contradiction. O

Proposition 4.2 gives us most of Theorems 1.2 and 1.3. All that is left is studying the
rigidity of the function A in each case.

4.2. Rigidity of the magnetic field. Since A € C*°(SM, R) does not depend on velocity
in the magnetic case, we will think of it as living in C*°(M, R).

LEMMA 4.4. Let (M, g, )) be an Anosov magnetic system. Then, the 2-form w on SM
defined in equation (2.2) is exact.

Proof. By equation (3.4), we have
w = —da + 7 (Ag).

By the Gauss—Bonnet theorem and the fact M must be of genus > 2, we know that
/ Kopg =2mx (M) <0,
M

s0 [Kguq] #0in HZ(M; R) = R. It follows that we may write A, = cKg g + do for
some 1-form o on M and constant ¢ € R. The constant c is explicitly given by

1
Cc = W Ad )\,Ma. (41)

However then, since dy = —m*(K,j14), we obtain

¥ (Ma) = cn*(Kgpiy) +dn*o = d(—cy + %0),
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which allows us to write w = dt for the 1-form
T=—a—cy+7%0 4.2)
as desired. ]

Knowing how to find primitives of @ in the magnetic case then unlocks the following
(compare to [Pat06, Lemma 4.1]).

PROPOSITION 4.5. Let (M, g, 1) and (M, g, 1) be two Anosov magnetic systems with
the same background metric g. Suppose that there is a smooth conjugacy ¢ : SM — SM
isotopic to the identity between them. Then, we have [iua] = *[Auy] in H2(M ; R).
Moreover, ). = 0 if and only if . = 0.

Proof. Define t as in equation (4.2) to be a primitive of w. Contracting it with F yields
T(F)=—1—cn*r+¢0. 4.3)

Recall that the restriction map ¢ is defined in equation (1.2). Moreover, we know that
the Anosov magnetic flows are transitive and ¢ is isotopic to the identity, so ¢*u = u.
Since qb*f = F, contracting ¢*u = u with F yields ¢*w = @. This can be rewritten as
¢*(dt) = dt, which in turn implies

d(¢*t — %) = 0.

Since 7* : H! (M;R) — H! (SM; R) is an isomorphism, there exist a closed 1-form ¢ on
M and a function f € C*°(SM, R) such that

o't — T =n*p +df.
Contracting with F yields
T(F)ogp=7(F)+ g+ Ff.
By equation (4.3), we thus get
—1+ (—cn*A+L10)op=—1—Cn* 4+ L10+ Lig+ Ff,
which simplifies to
(—ct*A 4+ 010) 0 ¢ = —Cn* A + 015 + 1o + F f. (4.4)

If we integrate with respect to p, we obtain (since ¢*u = )

c/ n*(k)[x:é/ T* ).
SM SM

We thus have ¢? = & by equation (4.1), which shows that the cohomology classes of Aug
and X/La in H2(M; R) are the same up to a sign.

If A =0, we may take o = 0, and we know that ¢ = 0 thanks to equation (4.1). It
follows that ¢ = 0. Let 7 be a closed magnetic geodesic for (M, g, A) of period T and
letT = (v, f/) C SM. Equation (4.4) allows us to write
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T
/0 0@ + o) (F @) di =o.

By the smooth LivSic theorem [dILMM86, Theorem 2.1] and [DP0S, Theorem B], this
means that o + ¢ is exact. Since ¢ is closed, we get do = 0, which in turn implies that
n= 0, as desired. O

We can now conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. If two Anosov magnetic systems (M, g, A) and (M, g, ):) are
related by a smooth conjugacy ¢ : SM — SM isotopic to the identity, Proposition 4.2
yields a diffeomorphism ¥ : M — M isotopic to the identity such that ¥*§ = €2/ g for
some f € C*(M, R).

If ¢ is a conjugacy and f =0, the map ¢ odyy : SM — SM gives us a smooth
conjugacy isotopic to the identity between the Anosov magnetic flows (M, g, ¥*X) and
(M, g, A). Thus, Proposition 4.5 tells us that [w*(i)ua] = +[Aug] in H2(M; R) and that
A = 0if and only if 2 = 0. O

4.3. Rigidity of the thermostat 1-form. Given the conclusion of Proposition 4.2, it
behooves us to understand the behaviour of thermostat flows under a conformal rescaling
of the metric.

LEMMA 4.6. Let (M, g, ) be a thermostat and define a conformal rescaling § = e /' g
of the metric for some f € C*°(M, R). Then, the scaling map s : SM — SM defined in
equation (1.1), which in this case is simply (x, v) — (x, e/ v), satisfies

ssX=e [ (X =0 (xdf)V), sV =V.

In particular, the map s represents a smooth orbit equivalence isotopic to the identity from
the thermostat (M, g, A) to the thermostat

M. 8. e/ (os™h) = Ei(xdf)), (4.5)
with a time-change s, F = e~/ F.

Proof. The first statement is proved in [CP25, Lemma B.1]. The conclusion then follows
from the calculation

sy F =5, X+ (Ao s_l)s*V
=e X —0xdf)V)+(hos HV. O
In what follows, let 6 be the 1-form on M satisfying €160 = A_1 + A;. If A is of Fourier
degree < 1, we may more succinctly write the thermostat (4.5) as
(M, e >/ g, el no+ €16 — *df)).
PROPOSITION 4.7. Let (M, g, A) and (M, g, 5»), with A and A of Fourier degree < 1,

be two Anosov thermostats. Suppose there is a smooth orbit equivalence ¢ : SM — SM
isotopic to the identity between them. If x0 or x0 is closed, then x6 — %0 is exact.
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Proof. By Lemma 2.1, we have div, F = VA = —£;(x0), so an application of Lemma 2.2
gives us

- . ~ det
$ (8" (L x0)) = ,GA) — F( 1 (L22)),
Pp*c
where ¢ € C*°(SM, R ) is such that d),jf = cF. Therefore, if 7 is a closed thermostat
geodesic for (M, g, 5) of period T and I := (y, y) C SM, we have

T T
/O ¢ (cti 3T (1)) dr = /0 0O (T (1)) dr.

Without loss of generality, suppose that d(x6) = 0. Then, since ¢ is isotopic to the identity
and integrals of 1-forms over curves are independent of the parametrization, we have

T - T 5 -
fo 6" (clr (=0 (F(1)) di = /0 L0 E @) d.

Putting these together, we conclude that

T
/ 6 (x0 —#0)([T (1)) dt = 0.
0

An application of the smooth LivSic theorem [dILMM86, Theorem 2.1] and [DP07,
Theorem B] allows us to conclude that x§ — %0 is exact, as desired. O]

We can now conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. 1f two Gaussian thermostats (M, g, 0) and (M, g, 5) with negative
thermostat curvature are related by a smooth orbit equivalence isotopic to the identity,
then Proposition 4.2 tells us that there exists a diffeomorphism 1 : M — M isotopic to
the identity such that *g = ¢/ g for some f € C°(M, R).

It remains to show that, if either 0 or 0 is closed, then a»r(t//*é’~ — 0) is exact. The map
¢ odyr yields a smooth orbit equivalence isotopic to the identity between the Anosov
Gaussian thermostats (M, ezfg, w*é) and (M, g, 0). By Lemma 4.6, we may assume
without loss of generality that f = 0. Proposition 4.7 then allows us to conclude. O

Acknowledgements. 1 would like to thank my supervisor, Gabriel Paternain, for suggest-
ing this project and guiding me while working on it. This research was supported by a
Harding Distinguished Postgraduate Scholarship.

A. Appendix. Solutions to the transport equation as extensions
A key ingredient that we use in this paper is Theorem 2.15: it allows us to extend any
holomorphic 1-form t on M (seen as a function on SM) to a fibrewise holomorphic
distribution u € D'(SM) satisfying the transport equation (F + VA)u = 0. We say that
the distribution u is an extension of 7 in the sense that | = nl*r.

This can be seen as part of a larger theme, which is to find distributional solutions of
the transport equation (F + VA)u = 0 with some prescribed Fourier modes. The problem
is closely related to the study of the surjectivity of the adjoint of the X-ray transform for
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thermostats, which in turn is key to understanding the injectivity of the X-ray transform
operator itself.

As an example, the following extension result generalizes [PSUI14, Theorem 1.4],
[Ain15, Theorem 1.6] and [AZ17, Theorem 1.7], which cover the cases of geodesic flows,
magnetic systems and Gaussian thermostats, respectively.

THEOREM A.l. Let (M, g, 1) be an Anosov thermostat. For any f € C*°(M), there exists
u € H~Y(SM) such that (F + V)\)u = 0 and ug = 7* f.

Their arguments crucially rely on the Pestov identity (see [DP07, Theorem 3.3]).

THEOREM A.2. Let (M, g, L) be a thermostat. Then, we have
IVFul|> = |FVull> = (KVu, Vu) + || Fu|)? (A1)
forallu € C*°(SM).

Recall that the thermostat curvature K is defined in equation (1.4). In all three papers,
the proofs also introduce the following property.

Definition A.3. Leta € [0, 1]. A thermostat (M, g, 1) is a-controlled if
IFull®> — (Ku, u) > o Ful?
for all u € C®°(SM).

They then show that geodesic flows, magnetic systems and Gaussian thermostats are
a-controlled for some o > 0 whenever they are Anosov. However, using the Pestov identity
(A.1) for thermostats, the same proof as in [AZ17, Theorem 3.1] goes through for the more
general case.

THEOREM A.4. Let (M, g, 1) be an Anosov thermostat. There exists o > 0 such that
IFul® — (Ku, u) > a(| Full* + [lull?)
forallu € C*°(SM). In particular, (M, g, 1) is a-controlled.

The rest of the argument in [AZ17] can then also be recycled to prove Theorem A.1.

The next theorem is again in the spirit of extending functions with low Fourier degree: it
deals with functions induced from 1-forms on M. The result requires a technical condition,
which is that the smooth 1-form 6 being considered needs to be solenoidal in the sense
that 56 = 0. Here, § is the co-differential with respect to the metric g acting on 1-forms,
that is, § = — % dx. If we write £160 = a_1 + a1 € Q_1 @ 21, then §6 = 0 if and only if
nya_1 + n—a; = 0 (see [PSU14]).

THEOREM A.5. Let (M, g, L) be an Anosov thermostat. If a € Q_1 @ Q satis-
fies nya—_1+n—ay =0, then there exists u € H™Y(SM) with ug=0 such that
(F+VMu=0andu_1 4+ u; = a.

This is a generalization of [PSU14, Theorem 1.5], [Ainl5, Theorem 1.7] and [AZ17,
Theorem 1.8], which again deal with geodesic flows, magnetic systems and Gaussian
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thermostats, respectively. While the condition ug = 0 is not explicitly stated there, it
follows directly from their proofs, as they construct solutions of the form u = VTh +a
for some h € L?(SM), where the projection operator 7, defined below in equation (A.2),
kills the Fourier modes of degree < 1.

However, adapting the proofs requires some care. We will need the following lemma.

LEMMA A.6. For any A € C*°(SM), the L*> norms of its Fourier modes {\i}iez are
rapidly decaying in the sense that, for all « € N, we have

sup [ AxllLeesank® < +oo.
keZ
Proof. For any point on SM, let U C SM be an open neighbourhood admitting smooth

coordinates (x, 8) € R? x S! such that V = 9. The Sobolev embedding theorem gives us
a constant C > 0 such that

Iallzoowy <€ D IIDPaill o, forallk € Z.
1B1=2

Here, we use the multi-index notation 8 = (81, B2, 83) € N3 and D? = Bfll 8522 853.

Using the explicit formula (2.4) on U, we may write

1 2 .
Ae(x, 0) = —/ A(x, 0 4+ e ™ gz,
27 0
Therefore, still on the domain U, we can see that
DP i = (DP ).

By compactness, we can cover SM with a finite number of such open sets {U;}. Then,
we get

Akl oo smy = max Akl w;)

<max C Z ||(D‘3)»)k||L2(Uj)
|B1=<2

<C YDl p2suy-
1B1=2

Since the L? norms of the Fourier modes of a smooth function are rapidly decaying, we
obtain the desired result. U

The following lemma has the same proof as [AZ17, Lemma 4.1]. The argument relies
on the Pestov identity and Theorem A 4.

LEMMA A.7. Let (M, g, A) be an Anosov thermostat. Then, there exists a constant C > 0
such that

lull grsary < CINV Fullp2csan

forallu € @ =1 u-
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Next, we define the projection operator 7 : C*°(SM) — @l k=2 $2 by

Tu:= Y u. (A.2)

|k|=2

We also define Q : C*°(SM) — @\k\zz Qras Q =TVF.

LEMMA A.8. Let (M, g, \) be an Anosov thermostat. Then, there exists a constant C > 0
such that

”u”Hl(SM) = C“Q””Lz(SM)
forallu e @\k\zl Q.

Proof. 1In this proof, we will let C > 0 be a constant which can change from line to line to
simplify the notation.
Letu € @l k|1 Q. From the definition of Q, we have

IV Full> = [|(Fu)1 1> + 1(Fu)—1 11> + | Qul*.
From Lemma A.7, we know that
”"‘”Hl(SM) < C||VFM||L2(5M),

so it remains to show that ||(Fu)+1|| < C||Qu].
By Theorem A.4 and the Pestov identity (A.1), we have

IV Full> > |Full®> + «ll FVul® + ol Vul®.
Therefore, we obtain

1Qul® = | Vul® = a Y kP [lucll. (A3)
keZ

It also gives us

|Qu|?> > a|FVul|?
> al(FVu)|* + al|(FVu)_|?

2 2
=«|2in_uy — Z kzk_k+1uk +al| —2ingu_n — Z k2)»_k_1uk
keZ keZ

Therefore,

‘21'77“2 — 3" R g < C1lQul

keZ

and

2inpu—+ ) Khg—ruk| < CllQul.

keZ
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By the reverse triangle inequality, we get

Z K*A_gr1uk|| < C|lQul
keZ

12n-uz |l —

and

12n4uall = | D Krirur| < CllQull.
keZ

By the triangle inequality, the Cauchy—Schwarz inequality, Lemma A.6 and property (A.3),
we obtain

Z A 11

<Y KAkl oosan lug |

keZ keZ
12 12
< (Z k2||ui1||ioo(w)) (Z k2||uk||2)
keZ keZ
1/2

< c( > k2||uk||2)

keZ
< C|| Qul.

This gives us
[n-uall < C|Qull and |Inyu—z| < C||Qu].

The result then follows because

I(Fuy || = Hnuz + 3 Ak

keZ
< ln—wall + > klA—igrllzoscsm luxl
keZ
< C|Qu|
and
ICFu—1ll = | neu— + ) ikhgug
keZ
< lngu—all + > kA1 llzoecsanllukl
keZ
< CllQul. O

The rest of the proof of Theorem A.5 then goes exactly as in [AZ17].
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