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Certain questions about the range of finite embeddings of a finite amalgam were discussed
in [3]. Another pertinent question is the following.

If a finite reduced amalgam has both an infinite and a finite embedding, does it have a
maximal finite embedding such that all other finite embeddings are its homomorphic images']

We give a counter example to answer this question in the negative. The finite amalgam
considered will involve a group from the family of groups of the type (/, m;n,k) discussed by
Coxeter [2] having the following presentation:

(/, m; n, k) = gp {g, h; gl = hm = {ghf = (g-'hf = 1}. (1)

These groups may be regarded as factor groups of

gp {g,h;gl = hm = (ghT = l}, (2)

which is known to be finite if

1 1 1 «
« m n

and infinite otherwise.

When / = m = n = 3, then (2) becomes

G3 = ®>{g,h;g3=h3 = (gh? = \} (3)

•and is therefore infinite. It is shown in [1] that every element of G3 is expressible in the form

V(ghTlY(g-lKf (p, q, r integers).

Therefore the most general factor group of G3 is given by

{gh-y(g-'hy = \, (4)

which takes the form (gh~1g~1h)q = 1 when p = q. The relation (gh~1g~1h)q = 1 implies
(g~1h)3q = l. The group

(3, 3; 3, k) = gp {g, h; g* = h3 = {ghf = (g^hf =1} (5)

is finite of order 3k2 for every k ^ 2 and is a central quotient group of the group H3 given by

H3 = gp {g, h; g3 = h3 = {ghf = {ghrlg-lKf = 1}.

The relation (4) shows that there is no minimal normal subgroup of G3.
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Consider now the finite amalgam A formed by the groups

The free embedding of A is

F = gp {a, b, c; a2 = b2 = c2 = (ab)3 = (be)3 = (ca)3 = 1}.

Take bc = g, ca = h; then ba — gh. Then Fhas an alternative presentation:

F= gp {g, h, c; g3 = h3 = (gh)3 = (gc)2 = (ch)2 = c2 = 1}.

Since

c~ 1gc — c.bc.c = cb = (bc)~1 = g~l

and

c" 1hc = c.ca.c = ac(ca)~x = h~l,

F is a split extension of G3 by a cycle of order 2. Therefore F is an infinite embedding of A.
Also, for each integer k, the normal closure Nk of (g~lh)k in G3 is normal in F. The

relation (g~1h)k = 1 implies (efcea)* = 1. For k>2,Nk is tidy with respect to A, B, C. FINk,
therefore, embeds the amalgam A. But

FINk = gp {g, h, c; g3 = h3 = (gh)3 = (g-lhf = (gc)2 = (ch)2 = c2 = 1},

being an extension of (3, 3; 3, k) of order 3k2 by a cycle of order 2, is finite. Thus A has a
finite embedding, namely F/Nk. Since the element c normalises G3, all the finite embeddings of
A are determined by the normal subgroups of G3. As shown above, since G3 has no minimal
normal subgroup, A has no maximal finite embedding having each of the finite embeddings
FjNk as its homomorphic images.

The author is grateful to the referee of [3] for suggesting this problem.
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