ALEXANDER POLYNOMIALS OF TWO-BRIDGE KNOTS

YASUTAKA NAKANISHI and MASAKI SUKETA

(Received 22 November 1992; revised 20 April 1993)

Communicated by J. H. Rubinstein

Abstract

For two-bridge knots, the authors give necessary conditions on coefficients of Alexander polynomials. 1991 Mathematics subject classification (Amer. Math. Soc.): 57M25. Keywords and phrases: Two-bridge knot, Alexander polynomial, Seifert matrix.

1. Introduction

A notion of two-bridge knot was introduced by Schubert [8]. In this note, we study Alexander polynomials of two-bridge knots. After the work of Seifert [9], the Alexander polynomial $\Delta(t)$ for a knot is a Laurent polynomial in $\mathbb{Z}\left[t, t^{-1}\right]$ characterized by the following two conditions: $\Delta\left(t^{-1}\right) \doteq \Delta(t)$ and $\Delta(1)= \pm 1$. Throughout this note, Alexander polynomials are written as $\Delta(t)=a_{0}-a_{1}\left(t+t^{-1}\right)+$ $a_{2}\left(t^{2}+t^{-2}\right)-\cdots+(-1)^{n} a_{n}\left(t^{n}+t^{-n}\right)\left(a_{n} \neq 0\right)$. In 1958, Murasugi [6] showed that the signs of coefficients of Alexander polynomials for alternating knots are alternating, and so all a_{i} 's are assumed to be non-negative. In 1979, Hartley [5] showed that the coefficients of Alexander polynomials for two-bridge knots satisfy the descending property: $a_{0}=\cdots=a_{i}>a_{i+1}>\cdots>a_{n}(>0)$ for a certain integer i. We give upper and lower bounds for a_{i} by a_{n} as follows.

THEOREM 1. $\left(\sum_{k=0}^{j}{ }_{2 n-2 k} C_{j-k} \cdot 2 n-k\right.$ $\left.C_{k}\right) a_{n} \geq a_{n-j}$.
Equality holds when the two-bridge knot is equivalent to $C(2,2, \ldots, 2,2)$.

THEOREM 2. $(4 n-2) a_{n}+1 \geq a_{n-1} \geq 2 a_{n}-1$.

THEOREM 3. If $a_{n} \neq 1$, then $\left(8 n^{2}-15 n+8\right) a_{n}+3 n-3>a_{n-2}$.

2. Seifert matrices of two-bridge knots

For convenience of calculation, we remove the condition that the a_{i} 's are positive. Therefore, we consider all a_{i} 's to have the same sign (possibly negative).

It is folklore that a two-bridge link can be written in Conway form [4] (1^{*}) $i j k \cdots l m$ using integers i, j, k, \ldots, l, m. In particular, a two-bridge knot can be written as $\left(1^{*}\right) i j k \cdots l m$ for certain even integers i, j, k, \ldots, l, m. For convenience, we use the form $C(i, j, k, \ldots, l, m)$ instead of the Conway form (1^{*}) $i j k \cdots l m$ to present a two-bridge knot. With this convention, a two-bridge knot can be written as $C\left(2 b_{1}, 2 b_{2}, \ldots, 2 b_{n}\right)$. It is then easy to see that the knot presented by $C\left(2 b_{1}, 2 b_{2}, \ldots\right.$, $2 b_{2 n}$) bounds a Seifert surface as in Figure 1, which is a plumbing of a b_{1}-full-twistedband, a $\left(-b_{2}\right)$-full-twisted-band, ..., and a ($-b_{2 n}$)-full-twisted-band.

Figure 1.
From this surface, we calculate a Seifert matrix as

$$
V=\left(\begin{array}{cccccc}
b_{1} & 1 & & & & 0 \\
& -b_{2} & & & & \\
& 1 & b_{3} & 1 & & \\
& & & -b_{4} & & \\
& & & & \ddots & \\
0 & & & & & -b_{2 n}
\end{array}\right)
$$

Again for convenience of calculation, we rewrite b_{i} as $(-1)^{i+1} c_{i}(1 \leq i \leq 2 n)$. From [9], we calculate the Alexander polynomial as

$$
\Delta(t)=\operatorname{det}\left(t V^{\prime}-V\right)=c_{1} c_{2} \cdots c_{2 n}(t-1)^{2 n}+\sum_{k=1}^{n} \gamma_{k} t^{k}(t-1)^{2 n-2 k}
$$

where V^{\prime} is the transposed matrix of V and

$$
\gamma_{k}= \begin{cases}\sum_{*} c_{1} c_{2} \cdots \check{c_{i k 1}} \check{c_{i_{k 1}+1}} \cdots \check{c_{i_{k k}}} c_{i_{k k}+1}^{\sim} \cdots c_{2 n} & \text { if } k \neq n \\ 1 & \text { if } k=n\end{cases}
$$

Here \sum_{*} means the summation over all k-tuples $\left\{i_{k 1}, \ldots, i_{k k}\right\} \subset\{1, \ldots, 2 n-1\}$ satisfying $i_{k l}+1<i_{k l+1}(1 \leq l \leq k-1)$.

3. Proof of Theorem 1

We remark that the number of terms in the summation presenting γ_{k} is ${ }_{2 n-k} C_{k}$. On the other hand, $a_{n-j}={ }_{2 n} C_{j} \cdot c_{1} c_{2} \cdots c_{2 n}+\sum_{k=1}^{j}(-1)^{k}{ }_{2 n-2 k} C_{j-k} \cdot \gamma_{k}$ when $j \neq 0$, and $a_{n}=c_{1} c_{2} \cdots c_{2 n}$. Therefore,

$$
\begin{aligned}
& \left(\sum_{k=0}^{j}{ }_{2 n-2 k} C_{j-k} \cdot{ }_{2 n-k} C_{k}\right) a_{n}-a_{n-j}= \\
& \quad \sum_{k=1}^{j} 2 n-2 k C_{j-k}\left(\sum_{*} c_{1} c_{2} \cdots c c_{i_{k 1}}^{\sim} c_{i_{k 1}+1}^{\sim} \cdots \check{c_{i k k}} c_{i_{k k}+1}^{\sim} \cdots c_{2 n}\left(\prod_{s=1}^{k} c_{i_{k s}} c_{i_{k s}+1}-(-1)^{k}\right)\right)
\end{aligned}
$$

We remark that the signs of a_{n} and a_{n-j} are the same. Since $c_{i_{k}} c_{i_{k s}+1}$ and $c_{i_{k s}} c_{i_{s}+1}-$ $(-1)^{k}$ have the same sign, the value of the equation above has the same sign as that of a_{n}. Furthermore, equality holds when $c_{i}=(-1)^{i}(1 \leq i \leq 2 n)$ or $c_{i}=(-1)^{i+1}(1 \leq$ $i \leq 2 n)$. In both cases, the given two-bridge knot is equivalent to $C(2,2, \ldots, 2,2)$.

4. Proofs of Theorems 2 and 3

A simple proof of Theorem 2 can be given as an analogy of the following fact:

FACT. Let p_{1}, \ldots, p_{n} be positive integers with $p_{1} \cdots p_{n}=N$. Then $\sum_{i=1}^{n} p_{1} \cdots \check{p}_{i}$ $\cdots p_{n} \leq(n-1) N+1$.

Preparing for a proof of Theorem 3, we give an alternative proof of Theorem 2 as follows.

$$
\begin{aligned}
& (4 n-2) a_{n}-(-1)^{n-1}-a_{n-1} \\
& =(2 n-2) c_{1} c_{2} \cdots c_{2 n}+\sum_{i_{11}=1}^{2 n-1} c_{1} c_{2} \cdots c_{i_{11}}^{\breve{2}} c_{i_{11}+1}^{\sim} \cdots c_{2 n}-(-1)^{n-1} \\
& =\sum_{i_{11}=1}^{2 n-2} c_{1} c_{2} \cdots c_{i_{11}} c_{i_{11}+1} \cdots c_{2 n}\left(c_{i_{11}} c_{i_{11}+1}+1\right)+c_{1} c_{2} \cdots c_{2 n-2}-(-1)^{n-1} \\
& =\sum_{k=1}^{n-1} c_{1} c_{2} \cdots c_{2 k-1} \check{c_{2 k}} \cdots c_{2 n}\left(c_{2 k-1} c_{2 k}+1\right)+c_{1} c_{2} \cdots c_{2 n-2}-(-1)^{n-1} \\
& +\sum_{k=1}^{n-1} c_{1} c_{2} \cdots c_{2 k}^{2} c_{2 k+1}^{2} \cdots c_{2 n}\left(c_{2 k} c_{2 k+1}+1\right) \\
& =\sum_{k=1}^{n-1}\left(c_{1} c_{2} \cdots c_{2 k-2} \cdot c_{2 n-1} c_{2 n}-(-1)^{k}\right)\left(c_{2 k-1} c_{2 k}+1\right) c_{2 k+1} c_{2 k+2} \cdots c_{2 n-2} \\
& +\sum_{k=1}^{n-1} c_{1} c_{2} \cdots c_{2 k}^{2} c_{2 k+1} \cdots c_{2 n}\left(c_{2 k} c_{2 k+1}+1\right) .
\end{aligned}
$$

We remark that the signs of a_{n} and a_{n-1} are the same. Since $c_{1} c_{2} \cdots c_{2 k-2} \cdot c_{2 n-1} c_{2 n}$ and $c_{1} c_{2} \cdots c_{2 k-2} \cdot c_{2 n-1} c_{2 n}-(-1)^{k}$ have the same sign, $c_{2 k-1} c_{2 k}$ and $c_{2 k-1} c_{2 k}+1$ have the same sign, $c_{2 k} c_{2 k+1}$ and $c_{2 k} c_{2 k+1}+1$ have the same sign, and the value of the equation above has the same sign as that of a_{n}. Therefore $(4 n-2)\left|a_{n}\right|+1 \geq\left|a_{n-1}\right|$. Furthermore equality holds when $c_{i}=(-1)^{i}(1 \leq i \leq 2 n-1$ or $2 \leq i \leq 2 n)$ or $c_{i}=(-1)^{i+1}(1 \leq i \leq 2 n-1$ or $2 \leq i \leq 2 n)$.

$$
\begin{aligned}
a_{n-1}-2 a_{n}+1= & (2 n-2) c_{1} c_{2} \cdots c_{2 n}-\sum_{i_{11}=1}^{2 n-1} c_{1} c_{2} \cdots c_{i_{11}} c_{i_{11}+1} \cdots c_{2 n}+1 \\
= & \sum_{k=1}^{n-1}\left(c_{1} c_{2} \cdots c_{2 k-2} \cdot c_{2 n-1} c_{2 n}-1\right)\left(c_{2 k-1} c_{2 k}-1\right) c_{2 k+1} c_{2 k+2} \cdots c_{2 n-2} \\
& +\sum_{k=1}^{n-1} c_{1} c_{2} \cdots \check{c}_{2 k} c_{2 k+1} \cdots c_{2 n}\left(c_{2 k} c_{2 k+1}-1\right)
\end{aligned}
$$

Again we use the fact that the signs of a_{n} and a_{n-1} are the same: Since $c_{1} c_{2} \cdots c_{2 k-2}$. $c_{2 n-1} c_{2 n}$ and $c_{1} c_{2} \cdots c_{2 k-2} \cdot c_{2 n-1} c_{2 n}-1$ have the same sign, $c_{2 k-1} c_{2 k}$ and $c_{2 k-1} c_{2 k}-1$ have the same sign, and $c_{2 k} c_{2 k+1}$ and $c_{2 k} c_{2 k+1}-1$ have the same sign, the value of the equation above has the same sign as those of a_{n} and a_{n-1}. Therefore, we have

$$
\left|a_{n-1}\right| \geq 2\left|a_{n}\right|-1
$$

Furthermore, equality holds when $c_{i}=1(1 \leq i \leq 2 n-1$ or $2 \leq i \leq 2 n)$ or $c_{i}=-1$ ($1 \leq i \leq 2 n-1$ or $2 \leq i \leq 2 n$). The proof of Theorem 2 is complete.

LEMMA 4. The following value has the same sign as that of a_{n} :

$$
\begin{aligned}
E= & \left(n(2 n-1)+(2 n-2)^{2}+(2 n-4)(n-1)\right) a_{n} \\
& -(2 n-2)(-1)^{n-1}+\epsilon(n-1)-a_{n-2}, \\
\text { where } \quad \epsilon= & \begin{cases}-1 & \text { if } a_{n}<0 \text { and } n \text { is odd, } \\
+1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof. It can be seen that

$$
E=(2 n-2)\left((2 n-2) a_{n}+\gamma_{1}-(-1)^{n-1}\right)+(2 n-4)(n-1) a_{n}-\gamma_{2}+\epsilon(n-1)
$$

Here the first term $(2 n-2) a_{n}+\gamma_{1}-(-1)^{n-1}$ has the same sign as that of a_{n} from the proof of Theorem 2. Therefore, it is sufficient to show that the following value has the same sign as that of $a_{n}: F=(2 n-4)(n-1) a_{n}-\gamma_{2}+\epsilon(n-1)$.

$$
\begin{aligned}
& F=(2 n-4)(n-1) a_{n}-\sum_{* 2} c_{1} c_{2} \cdots c_{i_{21}}^{\sim} c_{i_{21}+1}^{\sim} \cdots \check{c_{22}} c_{i_{22}+1}^{\sim} \cdots c_{2 n}+\epsilon(n-1) \\
& =(2 n-4)(n-1) a_{n}-\sum_{* *} c_{1} c_{2} \cdots c_{2 k_{1}-1}^{\sim} \check{c_{2 k_{1}}} \cdots c_{2 k_{2}-1}^{\check{\sim}} c_{2 k_{2}}^{\ulcorner } \cdots c_{2 n}+\epsilon(n-1) \\
& -\sum_{* * *} c_{1} c_{2} \cdots \check{c_{i 11}} c_{i_{21}+1}^{\sim} \cdots \check{c_{22}} c_{i_{22}+1}^{\sim} \cdots c_{2 n} \\
& =(n-2)(n-1) a_{n} / 2-\sum_{* *} c_{1} c_{2} \cdots c_{2 k_{1}-1}^{\sim} c_{2 k_{1}}^{\sim} \cdots c_{2 k_{2}-1}^{\sim} c_{2 k_{2}} \cdots c_{2 n}+\epsilon(n-1) \\
& -\sum_{* * *} c_{1} c_{2} \cdots c_{i_{21}}^{\ulcorner } c_{i_{21}+1}^{\vee} \cdots c_{i_{22}}^{\sim} c_{i_{22}+1}^{\sim} \cdots c_{2 n}\left(c_{i_{21}} c_{i_{21}+1} c_{i_{22}} c_{i_{22}+1}-1\right) \text {. }
\end{aligned}
$$

Here, $\sum_{* 2}$ means the summation over all pairs i_{21} and i_{22} satisfying $i_{21}+1<i_{22}$; $\sum_{* *}$ means the summation over all pairs k_{1} and k_{2} satisfying $k_{1}<k_{2}$; and $\sum_{* * *}$ means the summation over all pairs i_{21} and i_{22} satisfying $i_{21}+1<i_{22}$ with one of i_{21} and i_{22} is even.

It can be seen that the last term

$$
\sum_{* * *} c_{1} c_{2} \cdots \stackrel{c_{i_{21}}}{\sim} c_{i_{21}+1}^{\sim} \cdots \check{c_{22}} \check{\sim} c_{i_{22}+1}^{\sim} \cdots c_{2 n}\left(c_{i_{21}} c_{i_{21}+1} c_{i_{22}} c_{i_{22}+1}-1\right)
$$

has the same sign as that of a_{n}. Therefore it is sufficient to show the following value has the same sign as that of a_{n} :

$$
G=(n-2)(n-1) a_{n} / 2-\sum_{* *} c_{1} c_{2} \cdots c_{2 k_{1}-1} c_{2 k_{1}}^{2} \cdots c_{2 k_{2}-1}^{\sim} c_{2 k_{2}} \cdots c_{2 n}+\epsilon(n-1)
$$

For convenience of calculation, we rewrite $c_{2 k-1} c_{2 k}=d_{k}$, and then we have $a_{n}=$ $d_{1} d_{2} \cdots d_{n}$, and

From now on, we consider the following two cases: (i) n is even, and (ii) n is odd.
(i) Suppose that n is even. We remark that
(A)

$$
\begin{aligned}
& (n / 2-1) a_{n}-\sum_{k=1}^{n / 2} d_{i_{1}} d_{i_{2}} \cdots d_{i_{2 k-1}}^{\sim} \check{d_{i_{2 k}}} \cdots d_{i_{n}}+1 \\
& =\sum_{k=1}^{n / 2}\left(d_{1,} d_{i_{2}} \cdots d_{2 k-2} \cdot d_{i_{n-1}} d_{i_{n}}-1\right)\left(d_{i_{2 k-1}} d_{i_{2 k}}-1\right) d_{i_{2 k+1}} d_{i_{2 k+2}} \cdots d_{i_{n-2}}
\end{aligned}
$$

has the same sign as that of $a_{n}=d_{1} d_{2} \cdots d_{n}$, for any permutation i of $\{1,2, \ldots, n\}$ that is, $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=\{1,2, \ldots, n\}$.

CLAIm 1. The set of all pairs k_{1} and k_{2} satisfying $1 \leq k_{1}<k_{2} \leq n-1$ can be divided into $n-1$ disjoint families of subsets $S=\left\{\left(i_{1}, i_{2}\right),\left(i_{3}, i_{4}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}$ satisfying $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=\{1,2, \ldots, n\}$.

The proof of Claim 1 is illustrated in Fig. 2 for the case of $n=10$. We consider $n-1$ disjoint families of subsets: $\{(1, n),(2, n-1),(3, n-2), \ldots,(n / 2,(n+2) / 2)\}$, $\{(2, n),(3,1),(4, n-1), \ldots,((n+2) / 2,(n+4) / 2)\},\{(3, n),(4,2),(5,1), \ldots,((n+$ $4) / 2,(n+6) / 2)\}, \ldots$, and $\{(n-1, n),(1, n-2),(2, n-3), \ldots,((n-2) / 2, n / 2)\}$. This division satisfies the condition.

Figure 2.

For each subset, we consider an equation as in (A), which has the same sign as that of a_{n}. From this fact, it is seen that G has the same sign as that of a_{n}.
(ii) Suppose that n is odd. We remark that
(B) $\quad \begin{aligned} & ((n-1) / 2-1) a_{n}-\sum_{k=1}^{(n-1) / 2} d_{i_{1}} d_{i_{2}} \cdots d_{i_{2 k-1}}^{\sim} \tilde{d}_{i_{2 k}} \cdots d_{i_{n}} \\ & =\sum_{k=1}^{(n-3) / 2}\left(d_{i_{1}} d_{i_{2}} \cdots d_{i_{2 k-2}} \cdot d_{i_{n-2}} d_{i_{n-1}}-1\right)\left(d_{i_{2 k-1}} d_{i_{2 k}}-1\right) d_{i_{2 k+1}} d_{i_{2 k+2}} \cdots d_{i_{n-3}} \cdot d_{i_{n}}-d_{i_{n}}\end{aligned}$ for any permutation i of $\{1,2, \ldots, n\}$. Here,

$$
\sum_{k=1}^{(n-3) / 2}\left(d_{i_{1}} d_{i_{2}} \cdots d_{i_{2 k-2}} \cdot d_{i_{n-2}} d_{i_{n-1}}-1\right)\left(d_{i_{2 k-1}} d_{i_{2 k}}-1\right) d_{i_{2 k+1}} d_{i_{2 k+2}} \cdots d_{i_{n-3}} d_{i_{n}}
$$

has the same sign as that of a_{n}.

CLAIM 2. The set of all pairs k_{1} and k_{2} satisfying $1 \leq k_{1}<k_{2} \leq n-1$ can be divided into n disjoint families of subsets $S=\left\{\left(i_{1}, i_{2}\right),\left(i_{3}, i_{4}\right), \ldots,\left(i_{n-2}, i_{n-1}\right), i_{n}\right\}$ satisfying $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=\{1,2, \ldots, n\}$.

The proof of Claim 2 is illustrated in Fig. 3 for the case of $n=9$. We consider n disjoint families of subsets: $\{1,(2, n),(3, n-1), \ldots,((n+1) / 2,(n+3) / 2)\}$, $\{2,(3,1),(4, n), \ldots,((n+3) / 2,(n+5) / 2)\},\{3,(4,2),(5,1), \ldots,((n+5) / 2,(n+$ $7) / 2)\}, \ldots$, and $\{n,(1, n-1),(2, n-2), \ldots,((n-1) / 2,(n+1) / 2)\}$. This division satisfies the condition.

Figure 3.

For each subset, we consider an equation as in (B), where

$$
\sum_{k=1}^{(n-3) / 2}\left(d_{1_{1}} d_{i_{2}} \cdots d_{2 k-2} \cdot d_{i_{n-2}} d_{i_{n-1}}-1\right)\left(d_{i_{2 k-1}} d_{i_{2 k}}-1\right) d_{i 2 k+1} d_{i_{2 k+2}} \cdots d_{i_{n-3}} d_{n}
$$

has the same sign as that of a_{n}.

Therefore, we can arrange G as follows:

$$
G=\left(\text { terms with the same sign as that of } a_{n}\right)-\sum_{i=1}^{n} d_{i}+a_{n}+\epsilon(n-1)
$$

It is sufficient to show that $a_{n}-\sum_{1<i<n} d_{i}+\epsilon(n-1)$ has the same sign as that of a_{n}. Since $a_{n}=d_{1} d_{2} \cdots d_{n}$ and all d_{i} 's are integers, we can see this immediately. Now we see that G has the same sign as that of a_{n}. The proof of the lemma is complete.

From the lemma, it follows that $\left(8 n^{2}-15 n+8\right)\left|a_{n}\right|+(3 n-3) \geq\left|a_{n-2}\right|$. Furthermore, equality holds when $c_{i}=(-1)^{i}(1 \leq i \leq 2 n)$ or $c_{i}=(-1)^{i-1}(2 \leq i \leq 2 n+1)$. Since we suppose $a_{n} \neq \pm 1$, equality never holds. The proof of Theorem 3 is complete.

5. Remarks

5.1. The conditions in Theorems 1 and 2 are not sufficient. For example, a_{n-1} must be odd if a_{n} is odd. The condition in Theorem 3 may be improved after some effort. In the proof, we use a result corresponding to a theorem in the theory of 1 -factor-decompositions for a complete graph. If we can create a similar result for a complete hyper-graph, we can apply it to estimate a_{n-j}.
5.2. There was a conjecture that the coefficients in the Alexander polynomial for a two-bridged knot have a convex property: $2\left|a_{n-j}\right| \geq\left|a_{n-j-1}\right|+\left|a_{n-j+1}\right|$. But this is false. For the two-bridge knot $S(47,13)$ in Schubert form (which is the knot 9_{26} in [7]), the Alexander polynomial is $t^{6}-5 t^{5}+11 t^{4}-13 t^{3}+11 t^{2}-5 t+1$. Furthermore for the two-bridge $\operatorname{knot} S(79,49)$ in Schubert form $\left(=10_{44}\right)$, the Alexander polynomial is $t^{6}-7 t^{5}+19 t^{4}-25 t^{3}+19 t^{2}-7 t+1$. Thus we raise the following question:

QUESTION. For an arbitrary pair of integers N and j with $1 \leq j \leq n-1$, does there exist a two-bridge knot such that $\left|a_{n-j-1}\right|+\left|a_{n-j+1}\right|-2\left|a_{n-j}\right| \geq N$?

The answer is affirmative when n is sufficiently greater than N and j. For example, we take integers $c_{i}=(-1)^{i+1}(i=1,2, \ldots, 2 M)$. If M is sufficiently greater than N and j, then the two-bridge knot corresponding to the above c_{i} 's is as required:

$$
\begin{gathered}
\left|a_{n}\right|+\left|a_{n-2}\right|-2\left|a_{n-1}\right|=7 M^{2}-16 M+8>M(M \geq 2) \\
\left|a_{n-1}\right|+\left|a_{n-3}\right|-2\left|a_{n-2}\right|=32 M^{3} / 3-54 M^{2}+244 M / 3-36>M(M \geq 3)
\end{gathered}
$$

and so on. But we can see that for this case $2\left|a_{1}\right| \geq\left|a_{0}\right|+\left|a_{2}\right|$.

References

[1] G. Burde, 'Das Alexanderpolynom der Knoten mit zwei Brücken', Arch. Math. 44 (1985), 180-189.
[2] ——, 'Faserbare Knoten mit zwei Brücken', preprint.
[3] G. Burde and H. Zieschang, Knots (Gruyter, Berlin, 1985).
[4] J. H. Conway, 'An enumeration of knots and links, and some of their algebraic properties', in: Computational problems in abstract algebra (Pergamon Press, Oxford, 1969) pp. 329-358.
[5] R. I. Hartley, 'On two-bridged knot polynomials', J. Austral Math. Soc. (Ser. A) 28 (1979), 241-249.
[6] K. Murasugi, 'On the Alexander polynomial of the alternating knot', Osaka J. Math. 10 (1958), 181-189.
[7] D. Rolfsen, Knots and links, Math. Lecture Series 7 (Publish or Perish Inc., Berkeley, 1976).
[8] H. Schubert, 'Knoten mit zwei Brücken', Math. Z. 65 (1956), 133-170.
[9] H. Seifert, 'Über das Geschlecht von Knoten', Math. Ann. 110 (1934), 571-592.

Department of Mathematics
Kobe University
Nada-ku
Kobe 657
Japan
e-mail: nakanisi@math.s.kobe-u.ac.jp

