
J. Functional Programming 7 (6): 613–660, November 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

613

Modularity of strong normalization in the

algebraic-λ-cube

FRANCO BARBANERA1, MARIBEL FERNÁNDEZ2

and HERMAN GEUVERS3

1Dipartimento di Informatica, Universitá di Torino,

Corso Svizzera 185, 10149 Torino, Italy

(e-mail: barba@di.unito.it)
2DMI - LIENS (CNRS URA 1327), École Normale Supérieure,

45, rue d’Ulm, 75005 Paris, France

(e-mail: maribel@dmi.ens.fr)
3Faculty of Mathematics and Informatics, Catholic University of Nijmegen,

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

(e-mail: herman@cs.kun.nl)

Abstract

In this paper we present the algebraic-λ-cube, an extension of Barendregt’s λ-cube with

first- and higher-order algebraic rewriting. We show that strong normalization is a modular

property of all the systems in the algebraic-λ-cube, provided that the first-order rewrite rules

are non-duplicating and the higher-order rules satisfy the general schema of Jouannaud and

Okada. We also prove that local confluence is a modular property of all the systems in the

algebraic-λ-cube, provided that the higher-order rules do not introduce critical pairs. This

property and the strong normalization result imply the modularity of confluence.

Capsule Review

The λ-cube contains various systems intended to be used for the formalization of proofs in

order to verify these mechanically. Also, these formal proofs are being used to automatically

extract algorithms from them, whenever possible. Algebraic terms can easily be formed inside

the λ-cube. For efficiency reasons (ease of formalizing and executability of the resulting proofs),

one would like to add rewrite rules on these. This paper studies various ways to do this.

Several conditions are formulated that guarantee the preservation of properties like strong

normalization and confluence for the systems with the extended reduction relations. Because

the added rewrite rules may be of a higher order, these conditions are somewhat involved.

1 Introduction

One of the main motivations for the development of computational models is no

doubt that of isolating particular aspects of the practice of computing, in order

to better investigate them, so allowing either to tune existing programming lan-

guages or to devise new ones. However, the study of such models cannot exploit

all its possibilities to help the development of actual computing tools unless their

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

614 F. Barbanera, M. Fernández and H. Geuvers

interactions and possible (in)compatibilities are also investigated. In this framework,

many research efforts have been devoted over the last few years to the study of

the interactions between two closely related models of computation: that based on

β-reduction on λ-terms; and that formalized by means of rewrite rules on algebraic

terms. These particular models are relevant for the study of two aspects of pro-

gramming languages: higher-order programming and data type specification. The

combination of these two models has also provided an alternative in the design

of new programming languages: the algebraic functional languages (Jouannaud and

Okada, 1991). These languages allow algebraic definitions of data types and op-

erators (as in equational languages like OBJ) and the definition of higher-order

functions (as in functional languages like ML), in a unified framework.

The study of systems based on λ-calculus and algebraic rewriting has been carried

out both in untyped and typed contexts. If no type discipline is imposed on the

languages, the interactions between these computational models raise several prob-

lems (Klop, 1987; Dougherty, 1992). For typed languages things work out nicely. In

Breazu-Tannen and Gallier (1990) and Okada (1989), it is shown that the system ob-

tained by combining a terminating first-order many-sorted term rewrite system with

the second-order typed λ-calculus is again terminating with respect to β-reduction

and the algebraic reductions induced by the rewrite rules, i.e. strong normalization is

a modular property in this case. The same holds for confluence (Breazu-Tannen and

Gallier, 1992). In Jouannaud and Okada (1991), both results are extended to com-

binations of first- and higher-order rewriting systems with second-order λ-calculus,

under certain conditions on the form of the rewrite rules.

The question that naturally arises is whether such a nice interaction between typed

λ-calculi and algebraic rewriting is independent of the power of the type discipline.

More precisely, the question is whether the existing results extend to higher-order

type disciplines such as the Calculus of Constructions of Coquand and Huet (1988).

Actually, considering only first-order algebraic rewriting, this problem has already

been addressed (Barbanera, 1990). A strong restriction was, however, imposed on

the definition of the combined system: in the type conversion rule only β-conversion

(=β) was considered as equality. So, even if there was a rewrite rule x+ 0→ x in the

system, two types of the form P (x) and P (x + 0) (where P is a type depending on

natural numbers) were not considered to be the same. Such a choice was motivated

mainly by the essential use of the property of confluence in the proof of modularity

of strong normalization.

In this paper we extend the Calculus of Constructions, adding not only first-order

but also higher-order algebraic rewriting, and considering in the type conversion rule

the Rβ-reduction/expansion relation generated by the algebraic reductions together

with β-reduction. Because of the presence of the Rβ-reductions, the proof of strong

normalization cannot rely on the confluence property, which obviously does not

hold in general. Also, other properties of the metatheory of the system, like Subject

Reduction, which in the case of the pure Calculus of Constructions are proven using

confluence, will have to be proven independently of confluence in this extension.

In fact, the presence of the R-reduction relation in the type conversion rule also

makes the definition of the system more involved: this rule is used to define the

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 615

terms of the system, and one cannot define a notion of Rβ-reduction to be used

in the rule unless one knows what the terms are. We have then to cope with a

circularity, which can be solved in two ways, either by defining the system by levels,

starting from the pure Calculus of Constructions, or by defining algebraic rewriting

on pseudoterms and using it in the type conversion rule, but taking into account

only sets of rewrite rules that have a correct algebraic meaning when, after the

definition of legal terms, they can be typed. The second solution, to be discussed

more fully later, is the one we have chosen in the present paper where, for the sake

of uniformity, we provide a definition of the extension with first- and higher-order

(in the sense of Jouannaud and Okada, 1991) algebraic rewriting of all the systems

of the so-called λ-cube (Berardi, 1990; Barendregt, 1991). This extension will be

called algebraic-λ-cube (λR-cube for short).

The main result we prove for the systems of the λR-cube is the modularity of the

strong normalization property, i.e. we prove that the systems are strongly normalizing

in case the first-order algebraic rules are so on algebraic terms (the higher-order

rules we will use are strongly normalizing because of their structure).

As stated before, we had to cope with the problem of not having at hand the

property of confluence. We solved such a problem by extending some technical results

devised in Geuvers (1992) (see also Geuvers, 1993). We prove strong normalization

in three steps. By means of a reduction preserving translation, we prove the strong

normalization of the extended Calculus of Constructions to be implied by the same

property of system λRω (the extended typed λ-calculus of order ω). The strong

normalization property of this last system will also be proven by means of a

reduction preserving translation, showing it to be implied by the same property of

system λ∧R (a type assignment system for λ-calculus with intersection types and

algebraic rewriting), which in turn was proven strongly normalizing in Barbanera

and Fernández (1996). A preliminary version of the strong normalization proof for

λRω was given in Barbanera and Fernández (1993b).

Finally, we also prove that local confluence is a modular property of the systems

of the algebraic-λ-cube, provided that the higher-order rules do not introduce critical

pairs. This, and the previous strong normalization result, imply the modularity of

confluence.

This paper is an extended version of Barbanera et al. (1994). It is organized as

follows. In section 2 we define the λR-cube. Section 3 is devoted to the metatheory

of the λR-cube (among others, the Subject Reduction property is proved). We

then outline the skeleton of the strong normalization proof in section 4. The main

points of such proof are the topic of sections 5 and 6 (we recall system λ∧R in

Appendix A). In section 7 we prove the modularity of confluence. Section 8 contains

the conclusions.

2 Adding algebraic rewriting to the λ-cube: the λR-cube

The λ-cube (Berardi, 1990; Barendregt, 1991) is a coherent collection of eight type

systems. Each system is placed on a vertex of the cube in a way that geometrically

exploits the possible dependencies between types and terms. Each of the possible

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

616 F. Barbanera, M. Fernández and H. Geuvers

directions in the three-dimensional space in which the cube is corresponds to a

particular dependency.

The aim of the present section is to define an extension of the λ-cube with

algebraic rewriting features: the algebraic-λ-cube (λR-cube for short). As usual, we

will define first the set of pseudoterms of the system and then the inference rules that

are used to generate legal terms. The set of pseudoterms of the λR-cube includes

algebraic constants and types, defined as follows:

Definition 2.1 (Algebraic types)

Let S be a countable set of sorts: S = {s1, s2, . . .}. The elements of S denote

basic algebraic types . The set TS of algebraic types over S is inductively defined as

follows:

• S ⊆ TS

• σ, τ ∈ TS ⇒ σ → τ ∈ TS

We will call first-order algebraic types the elements σ1 → . . . → σn → σ ∈ TS such

that σ, σi ∈ S (1 ≤ i ≤ n).

Definition 2.2 (Signature)

A signature (over S) is a set F of (typed) function symbols, such that

F =
⋃
τ∈TS

Fτ,

where Fτ denotes the set of (Curried) function symbols whose functionality (type)

is τ. We assume Fτ ∩Fτ′ = ∅ if τ 6≡ τ′. Each function symbol f in F is assumed to

have an arity which, when necessary, will be denoted by superscripts (fn)1.

A function symbol fm is called first-order if it has a first-order algebraic type

s1 → . . . → sn → s and n ≡ m. Function symbols which are not first-order will be

called higher-order . We denote by Σ the set of all first-order function symbols in F
and by f, g, . . . its generic elements. Capital letters F,G, . . . denote instead generic

higher-order function symbols. When it is clear from the context, we use f to denote

a generic (first- or higher-order) element of F.

We now add function symbols and sorts to the syntax of the pure λ-cube:

Definition 2.3 (Pseudoterms)

The eight systems of the λR-cube are based on a set T of pseudoterms defined by

the following grammar:

T ::= x | f | s | ? | 2 | (TT) | λx:T .T | Πx:T .T

1 The arity of a function symbol cannot be deduced from its type, it must be given when
defining a signature (if a function symbol has a type σ1 → . . . → σn → s, with s ∈ S, its
arity can at most be n). Arities will serve to distinguish first- and higher-order function
symbols.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 617

where f and s range over F and S, respectively, x ranges over the category of

variables (divided into two groups: Var? and Var2) and ? and 2 are special

constants, the former informally denoting the set of types , the latter that of kinds2.

The notions of bound variable and free variable are defined as usual, as well as

that of substitution. The notation

M[N1/x1, . . . , Nm/xm]

will be used to denote the simultaneous substitution of the terms Ni for the variables

xi (i = 1, . . . , m) in the term M. A generic substitution will be often denoted by ϕ.

In such a case Mϕ will denote its application to the term M.

If M is a pseudoterm then Var(M), FV (M) will denote the set of variables and

the set of free variables of M, respectively. Just as in the untyped λ-calculus, terms

that only differ from each other in their bound variables will be identified: we work

modulo α-conversion .
~M will stand for a sequence M1 . . .Mn; Π~x:~A for Πx1:A1. . . .Πxn:An. The length

of a sequence ~M will be denoted by |~M|. Expressions of the form Πx:A.B will, as

usual, be denoted by A → B if x 6∈ FV (B). Such a notation, together with the fact

that function symbols are Curried, makes it possible to see the elements of TS as

pseudoterms.

To be able to define algebraic reduction rules, we consider the following subset of

pseudoterms.

Definition 2.4 (Algebraic pseudoterms)

(i) The set of algebraic pseudoterms is defined by the following grammar

A ::= x | f | (AA).

(ii) A function symbol fn is said to be saturated in an algebraic pseudoterm t if

any occurrence of it appears in subterms of t of the form ft1 . . . tm with m ≡ n
(note that we omit brackets as usual, since application associates to the left).

An algebraic pseudoterm is saturated if any function symbol occurring in it is

so.

(iii) A first-order algebraic pseudoterm t is a saturated algebraic pseudoterm such

that

1. any f ∈ F occurring in t is first-order

2. there is no subterm of t of the form xP , where x is a variable and P is any

pseudoterm.

(iv) A higher-order algebraic pseudoterm is an algebraic pseudoterm which is not

first-order.

Given the algebraic pseudoterms we can define a set of algebraic rewrite pseu-

dorules.

2 In the literature, ? and 2 are usually called sorts , a word that we reserve for the base types
of algebraic rewrite systems.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

618 F. Barbanera, M. Fernández and H. Geuvers

Definition 2.5 (Algebraic rewrite pseudorules)

(i) An algebraic rewrite pseudorule r is a pair of algebraic pseudoterms 〈t, t′〉 such

that

1. t is not a variable;

2. FV (t′) ⊆ FV (t);

3. t and t′ are saturated.

(ii) A first-order rewrite pseudorule is a rewrite pseudorule 〈t, t′〉 such that both t

and t′ are first-order algebraic pseudoterms.

(iii) A higher-order rewrite pseudorule is a rewrite pseudorule which is not first-

order.

A rewrite pseudorule will be denoted as usual by r : t → t′. Given a set R of

rewrite pseudorules, we denote by FOR and HOR the subsets of first-order and

higher-order pseudorules of R, respectively.

We cannot speak of types in algebraic rewrite rules yet, since types are well-formed

terms of the λR-cube, and to define well-formed terms we need to consider algebraic

reductions in the type conversion rule which, together with the other term formation

rules, will define the set of well-formed terms. In a sense, in order to avoid a circular

definition, the ‘algebraic correctness’ of the algebraic pseudorules can be checked

only a posteriori .

Given a set R of algebraic reduction pseudorules, we can also define on pseu-

doterms, besides the usual β-reduction, R-reductions.

Definition 2.6 (Reductions on pseudoterms)

(i) The β-reduction relation on pseudoterms (→β) is defined as the compatible

closure of the notion of reduction

(λx:A.B)C →β B[C/x].

(ii) The reduction relation induced by R on pseudoterms (→R) is defined as

follows:

M →R N iff there exist r : t→ t′ ∈ R, a context C[] and a substitution ϕ such

that M ≡ C[tϕ] and N ≡ C[t′ϕ].

(iii) We define →Rβ as the union of →R and →β: M →Rβ N ⇐⇒ (M →R

N ∨ M →β N).

As usual, �β , �R and �Rβ denote the reflexive and transitive closure of →β , →R

and →Rβ , respectively. The relations of β-, R-, and Rβ-conversion, i.e. the least

equivalence relations generated by the reduction relations, will be denoted by =β ,

=R , and =Rβ , respectively.

The relation →β on pseudoterms satisfies the Church–Rosser property (Baren-

dregt, 1986). It is obvious that, in general, this property does not hold for →Rβ .

We now present the set of typing rules that define the legal terms of the system,

but first we introduce some terminology and notation.

An assignment is an expression of the form M : N, where M and N are pseu-

doterms. A declaration is an expression of the form x:A, where x is a variable and

A a pseudoterm.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 619

A pseudocontext is a finite sequence 〈x1:A1, . . . , xn:An, x:B〉 of declarations.

If Γ = 〈x1:A1, . . . , xn:An〉 then Γ, x:B denotes the pseudocontext 〈x1:A1, . . . ,

xn:An, x:B〉, and Γ|V denotes the restriction of Γ to the variables in V .

Γ′ ⊆ Γ (Γ′ is subcontext of Γ) iff x:A in Γ′ ⇒ x:A in Γ. Γ �β Γ′ (Γ =β Γ′) iff

Γ = x1:A1, . . . , xn:An, Γ′ = x1:A′1, . . . , xn:A
′
n and Ai �β A

′
i (Ai =β A

′
i) for 1 ≤ i ≤ n.

A context Γ = 〈x1:A1, . . . , xn:An〉 is called algebraic if Ai ∈ TS (1 ≤ i ≤ n).
A generic system of the λR-cube will be denoted by λR . A statement in a system

λR is an expression of the form Γ `λR M : A, where Γ is a pseudocontext and M

and A pseudoterms.

We show now, for each system of the λR-cube, how to generate its legal state-

ments. Legal terms and contexts will then be the pseudoterms and pseudocontexts

contained in legal statements. Instead of ‘the statement Γ `λR M : A is legal’,

from now on we shall just write Γ `λR M : A. The legal statements of a system

λR are those generated by the following general axioms and rules, and by particu-

lar specific rules (instantiations, depending on the system, of the parametric rule (Π)).

General axioms and rules

(ax) ` ? : 2

(alg1) ` s : ? for any s ∈ S

(alg2) ` f : σ for any f ∈ Fσ

(var)
Γ ` A : p

Γ, x:A ` x : A
if p ∈ {?,2}, x ∈ Varp and x 6∈ Γ

(weak)
Γ ` A : p Γ `M : C

Γ, x:A `M : C
if p ∈ {?,2}, x ∈ Varp and x 6∈ Γ

(λ)
Γ, x:A `M : B Γ ` Πx:A.B : p

Γ ` λx:A.M : Πx:A.B
if p ∈ {?,2}

(app)
Γ `M : Πx:A.B Γ ` N : A

Γ `MN : B[N/x]

(redRβ)
Γ `M : A Γ ` B : p

Γ `M : B
if A�R B, A�β B, B �R A or B �β A

Specific rules

(Π)
Γ ` A : p1 Γ, x:A ` B : p2

Γ ` Πx:A.B : p2

p1, p2 ∈ {?,2}

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

620 F. Barbanera, M. Fernández and H. Geuvers

The specific rules, which characterize the different systems of the cube, are all in-

troduction rules, obtained by considering particular p1, p2 ∈ {?,2} in the parametric

rule (Π). Given particular p1, p2 ∈ {?,2}, the corresponding (Π)-rule will be called

(p1, p2).

As for the pure λ-cube, the specific term-formation rules have the following

informal meaning:

(?, ?) allows forming terms depending on terms,

(?,2) allows forming types depending on terms,

(2, ?) allows forming terms depending on types,

(2,2) allows forming types depending on types.

Recall that in the λR-cube the reduction relation →Rβ used in rule (redRβ) has

not been defined on terms, but on pseudoterms. To do otherwise would have led

to a circularity, since rule (redRβ) itself is used to define what a (legal) term is.

Moreover, unlike in the pure λ-cube, the reduction-expansion relation has been

used instead of the conversion relation. This is motivated by the fact that a side

condition like A =Rβ B could be proved by means of a chain of reductions-

expansions where pseudoterms that are not legal terms are also present. The use of

conversion causes no trouble at all in the pure λ-cube, since, by the Church–Rosser

and Subject Reduction properties of →β , we can always get A =β B by means of

a chain containing only legal terms. As stated before, we cannot rely, instead, on

Church–Rosser for the pseudoterms (and terms) of the λR-cube.

The absence, in general, of the Church–Rosser property for →Rβ makes also

difficult to prove some properties easily provable in the pure cube, like Subject

Reduction for β-reduction alone.

Definition 2.7

We use A
c
=β B to denote that terms A and B are convertible via β-reductions and β-

expansions that remain inside the set of well-typed terms. Similarly for A
c
=R B and

A
c
=Rβ B. To be precise, A

c
=Rβ B means that there are well-typed terms E1, . . . , En

such that

A�ρ1
E1 �ρ2

E2 �ρ3
E3 · · ·En �ρn+1

B,

where each of the ρi is either R or β. Note that, for example, the terms on the

reduction path from A to E1 need not be well-typed. (But we want to prove that

they are, of course.)

Given a set R of algebraic reduction pseudorules, the reduction relation →R on

terms of the λR-cube not always makes sense. First, because the left-hand side and

the right-hand side of a rule could have different types in the same context. Besides,

because in the presence of higher-order rules, a situation like the following could

arise. Assume that f ∈ Fs2→s3→s, a ∈ Fs3 , h ∈ Fs3→s, and consider the following

rewrite pseudorule:

r : f(Xx)a→ ha (1)

Now the following terms could be legal in the λR-cube:

Γ `λR M:P (f((λY : ? .y)x)a), Γ `λR P (ha) : ?, (2)

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 621

where y:s2, x:? ∈ Γ. By the rewrite rule r above, we have P (f((λY :?.y)x)a)→R P (ha)

and hence, from (2), by applying rule (redRβ), we can infer Γ `R M : P (ha). This,

however, would have no sense. In fact, in the context Γ the term f((λY : ? .y)x)a has

no algebraic meaning, since the term λY : ? .y has no algebraic interpretation.

To overcome this problem, and have well-typed algebraic rewrite rules, we restrict

the set of the algebraic rewriting rules that can be used to extend the λ-cube. In

particular, we will consider rewrite rules whose ‘algebraicability’ is independent from

systems and contexts.

Definition 2.8 (Cube-embeddability)

(i) An algebraic pseudoterm t is cube-embeddable if it is a legal term and there

exist Γ and σ, unique and algebraic, such that for any Γ′, A and system λR :

Γ′ `λR t : A ⇒ (Γ′|FV (t)
c
=Rβ Γ) & (A

c
=Rβ σ).

(ii) An algebraic rewrite pseudorule r : t → t′ is cube-embeddable if t is cube-

embeddable, and Γ `λR t′ : σ, where Γ and σ are the unique algebraic context

and type of t. R is cube-embeddable if all its rules are.

Definition 2.9 (Algebraic terms and rewrite rules)

Cube-embeddable algebraic pseudoterms and cube-embeddable algebraic rewrite

pseudorules will be called algebraic terms and algebraic rules, respectively.

A variable x in an algebraic term will be called first-order if τ (∈ TS) is first-order,

where x:τ ∈ Γ and Γ is the unique algebraic context of the above definition; x will

be called higher-order if τ is higher-order.

We now give a simple syntactical condition implying cube-embeddability.

Definition 2.10

C(t) is the predicate on algebraic pseudoterms defined as follows:

C(t) ⇐⇒ t is a legal term and for any x ∈ FV (t) there exists a subterm

fP1 . . . Pk of t such that f ∈ F and Pj ≡ x for some 1 ≤ j ≤ k.

It is straightforward to check that such a condition subsumes condition 1 of

Definition 2.5(i), since no single variable can satisfy it.

By the Stripping Lemma and Lemma 3.9 for the λR-cube (see the next section),

and the definition of C(t), it is easy to check the following:

Fact 2.11

Let t be an algebraic pseudoterm: C(t) ⇒ t is cube-embeddable.

We can now formally define the λR-cube.

Definition 2.12 (The λR-cube)

Given a cube-embeddable set of algebraic rewrite pseudorules R, the algebraic cube

of typed λ-calculi (λR-cube) is defined as the set of the type systems λR→, λR2, λRP ,

λRω , λRP2, λRω , λRPω and λRPω (also called λRC) defined by the General Axioms and

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

622 F. Barbanera, M. Fernández and H. Geuvers

rules above and, respectively, by the following Specific Rules:

λR→ = { (? ,?) }
λR2 = { (? ,?), (2,?) }
λRP = { (? ,?), (? ,2)}
λRω = { (? ,?), (2,2) }
λRP2 = { (? ,?), (2,?), (? ,2)}
λRω = { (? ,?), (2,?), (2,2) }
λRPω = { (? ,?), (? ,2), (2,2) }
λRPω = { (? ,?), (2,?), (? ,2), (2,2) }

We can draw a picture of the λ-cube as follows.

λR→

6

-�
��>
λRω

6

-

λR2
-�

��>
λRω -

λRP
�
��>

6

λRPω

6
λRP2

�
��>
λRC

Some systems of the λR-cube are already present in the literature. In particular,

when the rules in R are first-order, λR→ is the system studied in Breazu-Tannen (1988)

and Okada (1989), while λR2 is equivalent to the system defined by Breazu-Tannen

and Gallier (1991). The systems of Jouannaud and Okada (1991) correspond instead

to λR→ and λR2. We have already mentioned in the introduction which results were

proved for these systems.

Definition 2.13

Given a system λR , we define

(i) Context(λR) = {Γ | Γ `Rλ A : B for some pseudoterms A,B}
(ii) Term(λR) = {A | Γ `Rλ A : B

for some pseudoterm B and Γ ∈ Context(λR)}
(iii) Kind(λR) = {A | Γ `Rλ A : 2 for some Γ ∈ Context(λR)}
(iv) Constr(λR) = {A | Γ `Rλ A : B : 2

for some Γ ∈ Context(λR), B ∈ Term(λR)}
(v) Type(λR) = {A | Γ `Rλ A : ? for some Γ ∈ Context(λR)}

(vi) Object(λR) = {A | Γ `Rλ A : B : ?

for some Γ ∈ Context(λR), B ∈ Term(λR)}

Then, according to this definition, kinds are those terms that can be typed with

2, constructors the ones that can be typed with a kind, types the constructors that

can be typed with ?, and objects the terms that can be typed with a type.

The replacement of rule (redRβ) for the rule (conv) of the pure λ-cube is only

needed for systems with dependent types: the following lemma (which will be proved

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 623

at the end of section 3), shows that such a replacement is useless for systems without

the (?,2)-rule, i.e. without dependent types.

Lemma 2.14

Let A,M ∈ Term(λR), and let λR be any system of the λR-cube without the (?,2)-

rule. A ∈ Constr(λR) & M subexpression of A⇒M ∈ Kind(λR)∨M ∈ Constr(λR).

Lemma 2.15

Let λR be a system of the λR-cube without the (?,2)-rule. Then in λR the rule

(conv) is equivalent to the rule (redRβ).

Proof

Consequence of Lemma 2.14 and the Church–Rosser property of the pure λ-cube.

Definition 2.16 (Reductions on terms)

We define the reduction relations on terms of the λR-cube simply by restricting to

the set of terms the reduction relations on pseudoterms defined in Def.2.6.

We have defined the algebraic extension of the λ-cube with Curried rewriting.

Although the usual presentation of term rewriting systems is not Curried (see

Dershowitz and Jouannaud, 1990), it is straightforward to show that Currying

establishes the expected relation between both presentations: a rule r : q → q′ of

a many-sorted uncurried term rewriting system, becomes c(r) : curry(q)→ curry(q′)

in our framework. It has to be noted, however, that in a Curried system there are

unsaturated terms which have no meaning in the context of the usual term rewriting

systems. As we will see later, this fact, far from being a drawback, provides flexibility

and expressive power to the λR-cube. Moreover, our strong normalization result is

formulated for rewrite rules that are terminating on the set of first-order algebraic

terms, which coincide in both presentations. So we do not loose any generality by

using Curried rewriting; on the contrary, as a consequence of our main theorem, we

obtain a result of preservation of termination under Currying for standard many-

sorted term rewriting systems (preservation of strong normalization under Currying

for untyped systems was shown by Kennaway et al. (1996), whereas preservation of

confluence was proven by Kahrs (1995)).

2.1 Strong normalization for the λR-cube

As stated in the introduction, we are interested in the strong normalization property

for the systems of the λR-cube. However, if unrestricted terminating higher-order

rewrite rules are considered it can easily be shown that this property fails. For

example, let HOR be the set

{r : f(Xx)xX → f(Xx)(Xx)X}.

For such terminating set of rules, even the simplest system of the λR-cube, λR→, is

not strongly normalizing, as can be seen by the following derivation

f((λy:s.y)x)x(λy:s.y)→r f((λy:s.y)x)((λy:s.y)x)(λy:s.y)→β

→β f((λy:s.y)x)x(λy:s.y).

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

624 F. Barbanera, M. Fernández and H. Geuvers

Then one has necessarily to restrict the notion of higher-order rule in order to get

strongly normalizing systems. Following Jouannaud and Okada (1991), we consider

higher-order rules that always terminate on algebraic terms thanks to their structure:

a generalization of primitive recursion called general schema .

Higher-order rewrite rules satisfying the general schema are of wide use in the

practice of higher-order rewriting and can be considered as definitions of new

functionals of a language.

We will use the notation t[~v] to indicate that t is a term and v1, . . . , vn are subterms

of t. So t[~v] is the same as t; such notation only makes appear explicitly some of

the subterms of t.

Definition 2.17 (The general schema (Jouannaud and Okada, 1991))

(i) A higher-order rewrite rule r : t → t′ satisfies the general schema w.r.t. R if it

is of the form

F~l[~X,~x] ~Y → v[(F ~q1[~X,~x] ~Y), . . . , (F ~qm[~X,~x] ~Y)]

where ~X and ~Y are sequences of higher-order variables and ~x is a sequence

of first-order variables, and

1. ~X ⊆ ~Y ;3

2. F is a higher-order function symbol that can appear neither in the sequences

of terms~l, ~q1, . . . , ~qm, nor in the rules of R, and its occurrences in v are only

the ones explicitly indicated;

3. v is any algebraic term;

4. ~l, ~q1, . . . , ~qm are sequences of terms of sort type;

5. ∀i ∈ {1..m}, ~qi <mul
~l where < denotes strict subterm ordering and <mul its

multiset extension, defined as usual. (If < is a partial ordering on S , then

the ordering <mul on multisets of elements of S is the transitive closure of

the replacement of an element with any finite number, including zero, of

elements that are smaller under <.)

(ii) A set HOR = {li → ri}i∈I of higher-order rewrite rules satisfies the general

schema (w.r.t. FOR) if each rule li → ri ∈ HOR satisfies the general schema

w.r.t. FOR ∪ {lj → rj}j<i. This implies that there is no mutual recursion in

HOR.

Remark 2.18

It would be possible to consider more powerful higher-order rules allowing v to be

a term in λR→, or λRω . To do so, however, even if it would not modify the proof of

strong normalization, would make the definition of the λR-cube more involved The

definition of the λR-cube containing such extended higher-order rewrite rules can

be found in Barbanera et al. (1994).

Notice that some of the conditions given in the definition of the general schema

can be loosened. Condition (i).1 could be removed by reasoning on a transformed

3 Notice that this condition implies C(F~l[~X,~x] ~Y) and hence that F~l[~X,~x] ~Y is cube-
embeddable.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 625

version of F , while condition (i).2 could be removed by introducing product types

and packing mutually recursive definitions in the same product.

As said above, although restricted, the general schema is interesting from a

practical point of view: it allows the introduction of functional constants of higher-

order types by primitive recursion on a first-order data structure.

Let us show some examples.

Example 2.19

Consider the signature of lists, with constructors cons and nil. The function append

(that concatenates two lists) can be defined by a set FOR of first-order rules

(Jouannaud and Okada, 1991):

append nil l → l

append (cons x l) l′ → cons x (append l l′)

append (append l l′) l′′ →append l (append l′ l′′)

The functional map, which applies a function to all the elements of a list, can be

defined using two higher-order rules:

map nilX → nil

map (cons x l)X → cons (X x) (map l X)

Here, append is defined algebraically (the third rule establishes the associativity of

append on lists) while the higher-order function map is defined recursively on the

structure of lists. Its definition satisfies the general schema.

We will show another example using lists:

Example 2.20

foldr is a very useful higher-order function, whose informal meaning is the following:

Let 〈x1, . . . , xn〉 denote the list containing the elements x1, . . . , xn, then

foldr a 〈x1, . . . , xn〉 f = fx1(fx2(. . . (fxna) . . .))

where f is a function and a is a constant.

It is easy to define foldr by a set of higher-order rules satisfying the general

schema:

foldr a nilX → a

foldr a (cons x l)X → X x (foldr a l X)

Now, using foldr, and assuming that +, ×, 0 and 1 are already defined, we can define

the (unary) functions sum and product:

sum l → foldr 0 l +

product l → foldr 1 l ×
The function sum adds the elements of a list of numbers, while product multiplies

them. Moreover, assume that append is defined as in the previous example, then we

can define the (unary) function concat

concat x→ foldr nil x append

The function concat concatenates a list of lists into one long list.

The higher-order rewrite rules defining foldr, sum, product and concat satisfy the

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

626 F. Barbanera, M. Fernández and H. Geuvers

general scheme, then, as a consequence of the ‘main theorem’ that we will prove

later, the union of the above defined rewrite systems is strongly normalizing.

We have seen that unrestricted higher-order rewrite rules could prevent the strong

normalization property to hold and have proposed a restriction. This, however, is

not still sufficient to get modularity of strong normalization, even if we only consider

reductions on algebraic terms. It is in fact possible to code Toyama’s example of

non-termination (Toyama, 1987), as shown below.

Example 2.21

Consider the following sets of rewrite rules:

FOR = {r1 : f01x→ fxxx}

HOR = {r2 : FX → 1, r3 : FX → 0}
where F is a higher-order function symbol, f is a first-order function symbol, 0, 1

are first-order constants and X, x are variables. R is terminating and HOR satisfies

the general schema, nonetheless there exists an infinite reduction sequence:

f(FX)(FX)(FX)→r3 f0(FX)(FX)→r2 f01(FX)→r1

→r1 f(FX)(FX)(FX)→r3 . . .

Confluence of HOR does not suffice to restore the strong normalization property.

This can be seen by coding the example of Barendregt and Klop (see Toyama, 1987).

The cause of non-termination in the example is that rule r1 is duplicating, i.e.

there are more occurrences of the variable x in its right-hand side than in its left-

hand side. We will show that the restriction of FOR to non-duplicating rules (also

called conservative), together with the general schema condition for HOR, imply the

modularity of Strong Normalization in the λR-cube.

Definition 2.22

(i) A rewrite rule r : t → t′ is non-duplicating if, for any variable, the number of

its occurrences in t is greater than or equal to the number of its occurrences

in t′.

(ii) A set of rewrite rules is non-duplicating if each of them is so.

Example 2.23

The first-order system defining the function append in Example 2.19 is non-

duplicating.

The restriction to non-duplicating rules appeared first in the work of Rusinowitch

(1987), who studied modularity of termination of unions of first-order term rewriting

systems.

We can now state our main result.

Theorem 2.24 (Main Theorem)

Let R be a cube-embeddable set of rewrite rules such that

1. FOR is non-duplicating and strongly normalizing on first-order algebraic

terms;

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 627

2. HOR satisfies the general schema (w.r.t. FOR).

Then the systems of the λR-cube are strongly normalizing w.r.t. →Rβ .

The restriction to non-duplicating first-order rules is not needed if we consider

only first-order rules.

The rest of the paper will be devoted to the proof of the main theorem. Since all

the systems of the λR-cube are subsystems of λRC , the proof of the main theorem

will be given for λRC , and hence from now on every notion we shall refer to (if not

otherwise stated) will be of λRC .

3 Metatheory of the λR-cube

In this section we present the syntactical properties of λRC that will be used in

the proof of the main theorem. The proofs of some of them are straightforward

extensions of the corresponding proofs for the λ-cube, and will be omitted. Complete

proofs will be given instead for those properties, like subject reduction, that require

the development of some technical machinery.

Proposition 3.1 (Substitution)

For Γ1, x:A,Γ2 a context, M, B and N terms,

Γ1, x:A,Γ2 `M : B

Γ1 ` N : A

}
⇒ Γ1,Γ2[N/x] `M[N/x] : B[N/x].

Note this also implies that, if Γ, x:A ` M,N : C with M
c
=Rβ N and Γ ` Q : A,

then M[Q/x]
c
=Rβ N[Q/x].

Lemma 3.2 (Thinning for the λR-cube)

For Γ and Γ′ contexts, M and N terms, we have the following.

Γ `M : N & Γ ⊂ Γ′ ⇒ Γ′ `M : N.

Lemma 3.3 (Stripping for the λR-cube)

For Γ a context, M, N and R terms, we have the following:

(i) Γ ` p : R, with p ∈ {?,2} ⇒ p ≡ ?, R c
=Rβ 2,

(ii) Γ ` s : R, with s ∈ S ⇒ R
c
=Rβ ?,

(iii) Γ ` x : R, with x ∈ Var ⇒ R
c
=Rβ A with x : A ∈ Γ

for some term A,

(iv) Γ ` f : R, with f ∈ Fτ ⇒ R
c
=Rβ τ

(v) Γ ` Πx:M.N : R ⇒ Γ `M : p1,Γ, x:M ` N : p2

and R
c
=Rβ p2

for some p1, p2 ∈ {?,2}, and rule (p1, p2)

(vi) Γ ` λx:M.N : R ⇒ Γ, x:M ` N : B,Γ ` Πx:M.B : p

and R
c
=Rβ Πx:M.B

for some term B and p ∈ {?,2},
(vii) Γ `MN : R ⇒ Γ `M : Πx:A.B,Γ ` N : A

with R
c
=Rβ B[N/x]

for some terms A and B.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

628 F. Barbanera, M. Fernández and H. Geuvers

Proof

The proof is easy. We can go up in the derivation tree until we reach the point

where the term has been formed. In doing this we only pass through applications of

the conversion or weakening rule. At the point where the term has been formed, we

distinguish the seven different cases above, according to the form of the term, and

we easily check that the conclusions are satisfied.

Lemma 3.4 (Correctness of types)

For Γ a context, M and A terms,

Γ `M : A⇒ ∃p ∈ {?,2}[A ≡ p ∨ Γ ` A : p].

Proof

The proof can be given by analysing the derivation tree of Γ ` M : A, like in the

proof of 3.3, but also by induction on the derivation of Γ ` M : A. We follow the

second option, which gives the shortest proof. The only case that has some interest

is when the last rule is (app).

(app)

Γ ` P : Πx:A.B Γ ` N : A

Γ ` PN : B[N/x]

Then Γ ` Πx:A.B : p by induction, and hence by Stripping (Lemma 3.3), Γ, x:A `
B : p′ for some p′ ∈ {?,2}. Now by Substitution (Proposition 3.1), we conclude that

Γ ` B[N/x] : p′.

Lemma 3.5

(i) Γ ` Πu:C.2 : D is not possible,

(ii) N ∈ Term with N
c
=Rβ p ∈ {?,2}, then N ≡ p.

(iii) M ≡ Π~x:~A. ? and M typable in Γ ⇔ Γ `M : 2.

Proof

(i) First note that 2 does not have a type. This immediately proves the thesis.

(ii) If N
c
=Rβ p with N 6≡ p then necessarily N ′ →R p ∈ {?,2} or N ′ →β p ∈ {?,2}

for some N ′. The first case is not possible for typing reasons. In the second case,

N ′ ≡ (λx:A.M)Q, with p occurring as subterm of M or Q in applied or abstracted

form. Now, by stripping this term we find that 2 has a type, which is not the case.

Then N ≡ p.
(iii) (⇐) is the most interesting implication; the proof uses the second item. First

one proves that Γ ` PQ : 2 is impossible and then one proves Γ ` Πx:C.D : 2 ⇒
Γ, x:C ` D : 2 and we are done. Suppose Γ ` PQ : 2. Then Γ ` P : Πx:A.B with

B[Q/x]
c
= 2, hence B[Q/x] ≡ 2. But then B ≡ 2 or B ≡ x and Q ≡ 2, which are

both easily falsified. Suppose now that Γ ` Πx:C.D : 2. Then Γ, x:C ` D : p with

p
c
= 2, hence p ≡ 2. For (⇒) one uses the Stripping Lemma: part (i) if ~x is an

empty sequence, and part (v) otherwise.

Lemma 3.6

Γ ` Πx:A.B : C ⇒ C ∈ {?,2}.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 629

Proof

C
c
=Rβ ? or C

c
=Rβ 2 by Stripping (v). But then, by Lemma 3.5 (ii), C ≡ ? or C ≡ 2.

Lemma 3.7

Γ `M : 2

N ∈ Term

N
c
=Rβ M

⇒ Γ ` N : 2.

Proof

We do the proof for M �Rβ N and N �Rβ M, the general case follows by induction

on the definition of N
c
=Rβ M. Recall that N

c
=Rβ M means that M and N are equal

via expansions and reductions that remain inside the set of well-typed terms. By

Lemma 3.5.(iii)(⇐) we have that M ≡ Π~x:~A.?.

• M �β N. Then N ≡ Π~x:~A′.? with ~A �β
~A′, so Γ ` N : 2. (Use Lemma

3.5.(iii) (⇒).) If M �R N, then we are done similarly.

• N �β M. We prove that N must be of the form Π~x:~D.? and we are done.

Suppose N ≡ (λ~y:~B.P)~Q. Then either P or Q contains a subterm of the

form Π~z:~C.?. We even know that this subterm occurs as λq:R.Π~z:~C.? or as

R(Π~z:~C.?). Both are impossible for typing reasons. If N �R M the thesis is a

consequence of the cube-embeddability of the rewrite rules.

Corollary 3.8 (βR-preservation of ? and 2)

Let p, p′ ∈ {?,2}.
Γ `M : p

Γ′ ` N : p′

N
c
=Rβ M

⇒ p ≡ p′.

Proof

Suppose p ≡ 2, i.e. Γ ` M : 2. Then Γ′ ` N : 2 by Lemma 3.7 and so p ≡ p′.

Similarly if p′ ≡ 2. Hence p ≡ 2 iff p′ ≡ 2.

The following lemma is hard to prove, because we cannot rely on the Church–

Rosser property of →Rβ .

Lemma 3.9

Let σ1, σ2 ∈ TS. σ1
c
=Rβ σ2 ⇒ σ1 ≡ σ2.

Proof

In section 5 a translation τ : {2} ∪ Kind(λRC) ∪ Constr(λRC) → Term(λRω) will be

defined, such that τ(σ) ≡ σ for σ ∈ TS. Moreover, for such a translation Lemma

5.6 will ensure that τ(A) =β τ(B) in case A
c
=Rβ B. Hence, from σ1

c
=Rβ σ2 we get

σ1 ≡ τ(σ1) =β τ(σ2) ≡ σ2. By Church–Rosser for =β it follows σ1 ≡ σ2, since no

reduction is applicable to σ1 and σ2. It is not difficult to check that referring to

Lemma 5.6 as we have done above creates no circularity. We refer to it only in order

not to duplicate its proof here.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

630 F. Barbanera, M. Fernández and H. Geuvers

Lemma 3.10 (Classification)

Type ∩ Kind = ∅,
Obj ∩ Constr = ∅.

Proof

For the former, it suffices to prove the following:

Γ `M : p, Γ′ `M : p′ ⇒ p ≡ p′. (3)

This is an immediate consequence of Corollary 3.8. For the latter, it suffices to prove

the following property:

Γ `M : B : p, Γ′ `M : B′ : p′ ⇒ p ≡ p′. (4)

We prove this statement by induction on the structure of M, using βR-preservation

of ? and 2. The proof is not really difficult but still a bit tricky, and we therefore

give it in quite some detail.

var It suffices to show that, if Γ ` x : B : p with x ∈ Varp0 , then p ≡ p0. Now,

if Γ ` x : B, then x : A ∈ Γ with Γ ` A : p0 and A
c
=Rβ B. Hence by

βR-preservation of ? and 2 (Corollary 3.8), p ≡ p0.

s ∈ S If Γ ` s : B and Γ′ ` s : B′ then, by Stripping, we get B′
c
=Rβ ?

c
=Rβ B.

Hence, by βR-preservation of ? and 2, p ≡ p′.
f ∈ F If Γ ` f : B and Γ′ ` f : B′, then, by Stripping(iv), we get B

c
=Rβ τ

c
=Rβ B

′.

Hence, by βR-preservation of ? and 2, p ≡ p′.
Π If Γ ` Πx:A.B : C : p and Γ′ ` Πx:A.B : C ′ : p′, then, by Stripping

(v), we get C
c
=Rβ p0 and C ′

c
=Rβ p

′
0 with p0, p

′
0 ∈ {?,2}. It follows that

Γ ` Πx:A.B : p0 and Γ′ ` Πx:A.B : p′0. Hence, by property (3), p0 ≡ p′0,

from which C
c
=Rβ C

′. βR-preservation of ? and 2 allows now to infer

p ≡ p′.
λ Suppose that Γ ` λx:A.M : B : p and Γ′ ` λx:A.M : B′ : p′. Then, by Strip-

ping (vi), B
c
= Πx:A.C and Γ ` Πx:A.C : p with p ≡ p by βR−preservation

of ? and 2. By Stripping again, case (v), we have also Γ ` A : p1 and

Γ, x:A ` M : C : p (we have the same p in Γ, x:A ` M : C : p and

Γ ` Πx:A.C : p by Lemma 3.5(ii)) Similarly B′
c
= Πx:A.C ′ with Γ′ ` A : p′1,

Γ′, x:A `M : C ′ : p′ and Γ′ ` Πx:A.C ′ : p′. Now, by induction p ≡ p′.
app Let Γ ` MN : D : p and Γ′ ` MN : D′ : p′. Then, by Stripping, Correctness

of Types, βR-preservation of ? and 2 and Substitution, we have that Γ `
M : Πx:A.B : p2, Γ ` N : A : p1, Γ ` B[N/x] : p2 and B[N/x]

c
=Rβ D. At

the same time Γ′ ` M : Πx:A′.B′ : p′2, Γ′ ` N : A′ : p′1, Γ′ ` B′[N/x] : p′2
and B′[N/x]

c
=Rβ D

′. Now, by induction, p2 ≡ p′2. Also, by βR-preservation

of ? and 2, p ≡ p2 and p′ ≡ p′2 and so p ≡ p′.

It still remains to prove Lemma 2.14, for which we need the following technical

lemma:

Lemma 3.11

Let K be the set inductively defined by

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 631

1. ? ∈ K
2. k1, k2 ∈ K ⇒ k1 → k2 ∈ K

Then Γ `λR k : 2 ⇒ k ∈ K , where λR is any system of the λR-cube without

(?,2)-rules.

Proof

By induction on the structure of k using Lemma 3.5(iii).

Lemma 2.14

For A,M ∈ Term(λR) and λR any system of the λR-cube without (?,2)-rules:

A ∈ Constr(λR) & M subexpression of A ⇒ M ∈ Kind(λR) ∨M ∈ Constr(λR)

Proof

By induction on the structure of A. For the A variable the thesis follows immediately.

In case A is of the form Πx:P .Q, λx:P .Q or PQ, since we do not have (?,2)-rules, P

and Q have necessarily to be constructors or kinds, then by the induction hypothesis

or Lemma 3.11, so are all their subexpressions.

3.1 The subject reduction property

That of subject reduction is a property that, as stated before, requires more effort to

be proved in λRC than in λC , because we cannot rely on the Church–Rosser property

for pseudoterms. In the following we will prove separately subject reduction for �R

and for �β .

Lemma 3.12

Let r : t→ t′ be a rewriting rule in R. Γ ` t[~N/~x] : A ⇒ Γ ` t′[~N/~x] : A.

Proof

Let Bi (1 ≤ i ≤ n, n = |N|) be the type of Ni in the first statement Γ′i ` Ni : Bi
that we meet going up in the derivation of Γ ` t[~N/~x] : A (since t is algebraic,

these statements will be in applications of rule (app)). It is easy to check that it is

possible to modify the derivation in order to get a derivation for: ~Γ′,~x:~B, ~Γ′′ ` t : A.

By definition of reduction rule we can infer ~Γ′,~x:~B, ~Γ′′ ` t′ : A. Hence, since we

have also that Γ′i ` Ni : Bi (1 ≤ i ≤ n), by Substitution (Proposition 3.1), it follows

Γ ` t′[~N/~x] : A.

Proposition 3.13 (Subject Reduction Lemma for Rewriting, SRR)

For Γ a context, P , P ′ and D terms,

Γ ` P :D & P →R P
′ ⇒ Γ ` P ′:D.

Proof

By induction on the derivation of Γ ` P :D. The only case which is not trivial or

does not follow from the induction hypothesis is when, by the application of rule

(app), one gets an R-redex. The thesis in such a case is a consequence of Lemma

3.12.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

632 F. Barbanera, M. Fernández and H. Geuvers

It turns out that Subject Reduction for β is a much harder nut to crack. The

standard proof is by induction on the derivation. Here we run into a problem with

the case:
Γ ` λx:C.M : Πx:A.B Γ ` N : A

Γ ` (λx:C.M)N : B[N/x]

where (λx:C.M)N →β M[N/x] and we want to show that Γ ` M[N/x] : B[N/x].

By Stripping we conclude that

Γ ` λx:C.M : Πx:C.D

with

Πx:C.D
c
=Rβ Πx:A.B,

and we know that in the reduction-expansion chain from Πx:C.D to Πx:A.B we

only have types and kinds, but we cannot conclude from this that C =βR A and

D =βR B, because we don’t have Church–Rosser. Notice that the problem is even

more difficult: we have to show that C
c
=Rβ A and D

c
=Rβ B.

Definition 3.14

The λ-abstractions in a well-typed term of our system (but the definition immediately

extends to pseudoterms) are split into four classes, the 0-, 2-, P - and ω-abstractions,

as follows.

1. λx:A.M is a 0-abstraction if M is an object, A a type,

2. λα:A.M is a 2-abstraction if M is an object, A a kind,

3. λx:A.M is a P -abstraction if M is a constructor, A a type,

4. λα:A.M is a ω-abstraction if M is a constructor, A a kind.

We can decorate the λs correspondingly, so we can speak of the λ0s of a term,

etc. We now also define the notions of β0-reduction, β2-reduction, βP -reduction

and βω-reduction by just restricting reduction to the redexes with the appropriate

subscript attached to the symbol λ. We use an arrow with a superscript above it to

denote these restricted reductions (or the union of some of them), so
Pω→β , etc.

We also have the usual notion of β-weak-head-reduction: a term M β-weak-head-

reduces to M ′, notation M →wh M
′, if M is itself a β-redex, say M ≡ (λx:A.P)Q

and M ′ is obtained by contracting (λx:A.P)Q (the β-head-redex). In the following,

we shall not consider (weak)-head-reduction, where the head-redex is an R-redex.

Therefore, we omit explicit reference to β and refer to β-weak-head-reduction as

weak-head-reduction. As usual, we define �wh as the transitive reflexive closure of

→wh. Note that a term of the form Πx:A.B is in weak-head-normal-form (whnf).

Lemma 3.15 (SRβPω)

For Γ and Γ′ contexts, P , P ′ and D terms,

Γ ` P : D & P
Pω→β P

′ ⇒ Γ ` P ′ : D

Γ ` P : D & Γ
Pω→β Γ′ ⇒ Γ′ ` P : D.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 633

Proof

The proof is by simultaneous induction on the derivation. Just as in the usual proof

for β, the only interesting case is when the last rule is (app) with P ≡ (λx:A.M)N

and P ′ ≡M[N/x]. We then have

Γ ` λx:A.M : Πx:B.C Γ ` N : B

Γ ` (λx:A.M)N : C[N/x]

where the λ is a λP or a λω . Then by applying Stripping (Lemma 3.3) to the first

premise, we find

Γ, x:A `M : C ′ (1)

Γ ` Πx:A.C ′ : p (∈ {?,2})
Πx:A.C ′

c
=Rβ Πx:B.C.

So, again by Stripping

Γ ` A : p1 (2)

Γ, x:A ` C ′ : p

for some p1, p ∈ {?,2}.

By the fact that we have a P - or ω-redex, we know that λx:A.M is a constructor

and hence that Πx:A.C ′ and Πx:B.C are kinds. So by Lemma 3.5(iii), we know that

Πx:A.C ′ ≡ Π~x:~A.? and Πx:B.C ≡ Π~x:~B.?. Now, by (1), Π~x:~A.?
c
=Rβ Π~x:~B.?, so all

the well-typed terms on the reduction-expansion path from Π~x:~A.? to Π~x:~B.? are

of the form Π~x:~C.?, because of Lemmas 3.7 and 3.5. Hence

A
c
=Rβ B (3)

C ′
c
=Rβ C. (4)

So, applying the conversion rules to (2) and Γ ` N : B, using (3), we get

Γ ` N : A. (5)

Applying Substitution (Proposition 3.1) to (5) and (1) we get

Γ `M[N/x] : C ′[N/x]. (6)

By applying Correctness of Types (Lemma 3.4) to the first premise, we find Γ `
Πx:B.C : p′ for some p′ ∈ {?,2} and hence by Stripping

Γ, x:B ` C : p′(∈ {?,2}). (7)

Now apply Substitution to Γ ` N : B and (7) to get

Γ ` C[N/x] : p′. (8)

Apply the conversion rules to (6) and (8) (using (4)) to conclude

Γ `M[N/x] : C[N/x]

and we are done.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

634 F. Barbanera, M. Fernández and H. Geuvers

Corollary 3.16 (Stability of βPω-redexes under
Pω�β)

For M a term, if

M ≡ C[(λx:A.N)Q]
Pω�β C

′[(λx:A′.N ′)Q′] ≡M ′

and (λx:A.N)Q is a P - or ω-redex in M, then (λx:A′.N ′)Q′ is a P - or ω-redex in M ′.

Proof

If N is a constructor in M, then N ′ is a constructor in M ′ by subject reduction for

βPω .

Lemma 3.17 (Confluence of βPω)

For M,P ,N ∈ Term,

M
Pω�β P & M

Pω�β N ⇒ ∃Q[P
Pω�β Q & N

Pω�β Q].

In a diagram

M

βPω
� P
······

↓↓

βPω ······∨∨

βPω

N ······ ·
βPω
·····� Q

Proof

By completeness of developments and the fact that βPω-redexes are stable under
Pω�β . (Corollary 3.16)

Lemma 3.18

If Γ ` (λx:C.P)Q : p ∈ {?,2}, then this is a P - or ω-redex.

Proof

First we know by Lemma 3.5 that p must be ?. By Stripping we find A,B and D

such that

Γ, x:C ` P : B,

Γ ` Q : A,

Γ ` λx:C.P : Πx:C.B,

Πx:C.B
c
=Rβ Πx:A.D,

D[Q/x]
c
=Rβ ?

Hence D[Q/x] ≡ ? and so D ≡ ?, because Q can’t be ?. (This follows from Stripping

and Lemma 3.5.) Hence Πx:A.D : 2 and so Πx:C.B : 2 by βR-preservation of

elements of {?,2}. Hence B ≡ Π~y:? and so B : 2 and P is a constructor. We

conclude that the λ is decorated with P or ω and we are done.

As a consequence, we find that subject reduction holds for weak-head-reduction

on types. That is

Γ `M : ? ,M �wh N ⇒ Γ ` N : ?.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 635

We now formulate two useful lemmas on the interaction between �R , �β and

�wh. Note that the properties hold for pseudoterms.

Lemma 3.19 (Commutativity of weak-head-reduction and β-reduction)

For M,P ,N ∈ T ,

M �wh P & M �β N ⇒ ∃Q[P �β Q & N �wh Q].

In a diagram

M
β
� N
······

↓↓

wh ······∨∨

wh

P ······ ·
β
·····� Q

Proof

Recall that weak-head-reduction refers only to β-weak-head-reduction. We prove the

lemma for the case of a one step weak-head-reduction: if M →wh P & M �β N,

then P �β Q & N →wh Q for some Q. This immediately implies the general case,

as can be seen by filling in the diagram. So, let M →wh P , say M ≡ (λx:A.B)C .

If N ≡ (λx:A′.B′)C ′ with A �β A
′, B �β B

′ and C �β C
′ we are done by taking

Q ≡ B′[C ′/x]. If in the reduction from M to N the head-redex is contracted we are

also done, by taking Q ≡ N.

Lemma 3.20 (Commutativity of weak-head-reduction and R-reduction)

For M,P ,N ∈ T ,

M �wh P & M �R N ⇒ ∃Q[P �R Q & N �wh Q].

In a diagram

M
R
� N
······

↓↓

wh ······∨∨

wh

P ······ ·
R
·····� Q

Proof

The proof is exactly the same as the proof for Lemma 3.19.

We also have postponement of R-reduction with respect to weak-head-reduction,

but only for types and kinds. (Postponement of R-reduction w.r.t. weak-head-

reduction does not hold in general: an R-reduction can create a weak-head-redex.)

Lemma 3.21 (Postponement of R-reduction wrt weak-head-reduction for types and

kinds)

If M is a type or kind, then

M �R N �wh Q⇒ ∃P [M �wh P �R Q].

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

636 F. Barbanera, M. Fernández and H. Geuvers

Or in a diagram

M
R
� N

············∨∨

wh

↓↓

wh

P ······ ·
R
·····� Q

Proof

We prove the lemma for the case of a one step weak-head-reduction: If M �R

N →wh Q, then M →wh P �R Q for some P . This implies the general case, as can be

verified by filling in the diagram. So, let M be a type or a kind with M �R N →wh Q.

From N →wh Q we conclude that N ≡ (λx:A.B)C and Q ≡ B[C/x] for some A,B

and C . As M is a type or kind, we know that M 6≡ tϕ for any reduction rule t→ t′

and substitution ϕ. Hence, M ≡ (λx:A′.B′)C ′ with A′ �R A, B′ �R B and C ′ �R C .

Now, take P ≡ B′[C ′/x]. Then M →wh P and P �R Q.

We now list the four main properties that we need to prove the main lemma.

Lemma 3.22

Let Πx:A.B, E and F be types or kinds. We have the following properties.

E
R

� F E
β

� F
······

······(I)

↓↓
wh ······∨∨

wh (II)

↓↓
wh ······∨∨

wh

Πx:A.B · · · ·
R
·� Πx:A′.B′ Πx:A.B · · · ·

β
·� Πx:A′.B′

F
R

� E F
β

� E
······

······(III) ······∨∨

wh

↓↓
wh (IV) ······∨∨

wh

↓↓
wh

Πx:A′.B′ · · ·
R
· ·� Πx:A.B Πx:A′.B′ · · ·

β
· ·� Πx:A.B

Proof

The validity of diagram (I), respectively diagram (II), follows from Lemma 3.20,

respectively Lemma 3.19. Let’s focus on diagram (I): following Lemma 3.20, there

is a Q such that F �wh Q and Πx:A.B �R Q. But then Q must be of the form

Πx:A′.B′ with A�R A
′ and B �R B

′. So we are done.

For diagram (III) we use Lemma 3.21. This gives us a term Q such that F �wh

Q and Q �R Πx:A.B. Due to Lemma 3.18, SRR (Proposition 3.13) and SRPωβ
(Lemma 3.15), we know that Q �R Πx:A.B is a well-typed reduction path, with

only types or kinds on it. But then it cannot be the case that there is a term of the

form tϕ for any reduction rule t → t′ and substitution ϕ on this reduction path.

Hence all terms on the path must be Π-terms and Q ≡ Πx:A′.B′ for some A′ and

B′.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 637

For diagram (IV) we use the well-known Standardization Theorem. It states that

if M �β N, then there is a ‘standard’ reduction path from M to N, i.e. a path

that reduces outside-in. If one considers such a reduction path from F to Πx:A.B,

either F ≡ Πx:A′.B′ or there must be a reduction step (λy:C.D)Q →β Πx:A′.B′

on the path (for some C,D,Q, A′ and B′). But then, the reduction path from F to

(λy:C.D)Q must consist of weak-head-reductions only, because any other reduction

would block the possibility to contract (λy:C.D)Q. So we are done.

Lemma 3.23 (Main Lemma for Subject Reduction)

If Πx:A.B
c
=Rβ Πx:A′.B′ and all the terms on the reduction-expansion-path from

Πx:A.B to Πx:A′.B′ are types or kinds, then Πx:A.B
c
=Rβ Πx:A′.B′ via a path that

only uses Π-terms.

Proof

We take a look at the well-typed terms that are on the path from Πx:A.B to

Πx:A′.B′. We can depict the situation as follows:

Πx:A.B ρ1
� E1 �ρ2

E2 ρ3
� . . . En−1 �ρn Πx:A′.B′

where ρi ranges over {β, R}. We prove the lemma by showing that there are Π-terms

F1, . . . , Fn−1 such that

Πx:A.B ρ1
� F1 �ρ2

F2 ρ3
� . . . Fn−1 �ρn Πx:A′.B′

Consider the following diagram, and note that all arrows exist due to Lemma 3.22

(diagrams (III) and (IV) for the first tile, (I), (II), (III) and (IV) for the rest).

E1 E3 E5 · · ·

		�
�
�
ρ1 �

�
�

↓↓
wh

@
@
@ ρ2

@
@
@RR 		�

�
�
ρ3 �

�
�

↓↓
wh

@
@
@ ρ4

@
@
@RR 		�

�
�
ρ5 �

�
�

Πx:A.B �
ρ1

Πx:C1.D1 E2 Πx:C3.D3 E4 Πx:C5.D5 · · ·
@
@
@
ρ2 @

@
@RR ↓↓

wh

		�
�
� ρ3

�
�
� @

@
@
ρ4 @

@
@RR ↓↓

wh

		�
�
� ρ5

�
�
�

Πx:C2.D2 Πx:C4.D4

Proceeding in this way until Πx:A′.B′, we find well-typed Π-terms F1 ≡ Πx:C1.D1,

. . . , Fn−1 ≡ Πx:Cn−1.Dn−1 such that

Πx:A.B ρ1
� F1 �ρ2

F2 ρ3
� . . . Fn−1 �ρn Πx:A′.B′

Corollary 3.24

If Πx:A.C
c
=Rβ Πx:B.D and the reduction-expansion-path contains only types and

kinds, then A
c
=Rβ B and C

c
=Rβ D.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

638 F. Barbanera, M. Fernández and H. Geuvers

Proposition 3.25 (Subject Reduction for β)

For Γ and Γ′ contexts, P , P ′ and D terms,

Γ ` P : D & P �β P
′ ⇒ Γ ` P ′ : D

Γ ` P : D & Γ�β Γ′ ⇒ Γ′ ` P : D.

Proof

By induction on the derivation one proves the statement for a one-step reduction. The

only interesting case is when the last rule is (app) and P ≡ (λx:A.B)C , P ′ ≡ B[C/x].

We then use the fact that when Πx:A.C
c
=Rβ Πx:B.D and the reduction-expansion-

path contains only types and kinds, then A
c
=Rβ B and C

c
=Rβ D, which was proved

in the previous corollary.

Lemma 3.26 (Subject Reduction)

For Γ a context, P , P ′ and D terms,

Γ ` P :D & P →Rβ P
′ ⇒ Γ ` P ′:D.

Proof

Immediate from Propositions 3.13 and 3.25.

4 Proof of the main theorem

In this section we present the skeleton of the proof of the main theorem (2.24).

From now on, when dealing with a set R of rewrite rules, we shall implicitly assume

that conditions (1) and (2) of the main theorem are satisfied. χ |= SN will denote

the fact that system χ is strongly normalizing.

The proof consists of three main steps:

• λ∧R |= SN

• λ∧R |= SN ⇒ λRω |= SN

• λRω |= SN ⇒ λRC |= SN

where system λ∧R is a type assignment system defined as the extension of the

intersection system of Coppo and Dezani (1980) (see also Barendregt et al., 1993)

with the algebraic features defined by a set R of rewrite rules.

The definition of λ∧R is recalled in Appendix A, while for the proof of λ∧R |= SN

(Theorem A.8) we refer to Barbanera and Fernández (1996). The proof in Barbanera

and Fernández (1996) is based on the Tait–Girard computability predicate method,

and the particular computability predicate results from a generalization to system

λ∧R of the one defined in Jouannaud and Okada (1991).

The proofs of the other two steps are based instead on a method that, together

with that of Tait–Girard, is among the most used in proofs of strong normalization,

i.e. the method of reduction-preserving translations. It consists in proving that

the SN of a system is implied by the same property of another system. Such an

implication is proved by a translation from the terms of the former to the terms of

the latter, which preserves reductions, i.e. reducible terms are mapped to reducible

terms.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 639

This method has been used by Harper et al. (1987) to obtain the SN of their

system LF (roughly corresponding to λP in the λ-cube) using SN of simply typed

lambda calculus (λ→ in the λ-cube).

The translation to prove λ∧R |= SN ⇒ λRω |= SN is nothing but a type-erasing

function. Its definition and the proof of reduction-preservation will be the subject

of section 6.

The translation and the reduction-preservation proof for λRω |= SN ⇒ λRC |= SN

will be instead the subject of section 5.

5 λRω |= SN ⇒ λRC |= SN

As mentioned in section 4, we will define a translation from terms of λRC to terms

of λRω and prove this translation to be reduction-preserving.

The definition of the translation and the argument given to prove its ‘reduction-

preservation’ are similar to those provided by Geuvers and Nederhof (1991) to prove

the strong normalization for the pure λC . Geuvers and Nederhof’s translation can

be seen as a higher-order generalization of the map defined by Harper et al. (1987)

to prove the strong normalization property of the LF system.

As in Harper et al. (1987) and Geuvers and Nederhof (1991), it is not possible to

define a reduction-preserving map [−] such that

Γ `λRC M:A ⇒ [Γ] `λRω [M]:[A]

i.e. [−] cannot work uniformly on all the terms of λRC . One is then forced to define

another map τ(−) from kinds and constructors to types and to prove that

Γ `λRC M:A ⇒ τ(Γ) `λRω [M]:τ(A).

The definitions of [−] and τ(−) do not speak for themselves. We refer to Geuvers

and Nederhof (1991) for some intuitions about their definitions as generalizations

of the maps defined in Harper et al. (1987).

Also, since τ cannot work uniformly on constructors and kinds, in its definition

we shall use another map, ρ : {2} ∪ Kind(λRC) → Kind(λRω) such that if M is a

constructor of kind k in λRC then τ(M) is a constructor of kind ρ(k) in λRω . ρ(k) is

just the λRω -kind obtained by erasing from k all type dependencies.

Definition 5.1

The map ρ : {2} ∪ Kind(λRC)→ Kind(λRω) is inductively defined by:

1. ρ(?) = ρ(2) = ?

2. ρ(Πα:M.N) = ρ(M)→ ρ(N) if M ∈ Kind(λRC)

3. ρ(Πx:M.N) = ρ(N) if M ∈ Type(λRC).

The case distinction in the definition is correct by the Classification Lemma

(Lemma 3.10), and by Lemma 3.5(iii) there are no more cases.

The following properties of ρ will be used:

Property 5.2

(i) If k1, k2 ∈ Kind(λRC) and k1
c
=Rβ k2 then ρ(k1) ≡ ρ(k2).

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

640 F. Barbanera, M. Fernández and H. Geuvers

(ii) If k ∈ Kind(λRC), u ∈ Var?∪Var2 and A ∈ Term(λRC) then ρ(k) ≡ ρ(k[A/u]).

Proof

(i) By Lemma 3.5(iii)(⇐) we have that k1 ≡ Π~x:~A.?
c
=Rβ Π~x:~B.? ≡ k2. From this

fact, it immediately follows from Corollary 3.24 that, if |~A| = n and |~B| = m, n = m

and

Ai
c
=Rβ Bi for 1 ≤ i ≤ n. (5)

We now can prove the thesis by induction on the structure of k1. The base case is

immediate. To prove the inductive case let us first notice that if we apply the map

ρ to k1 and k2 it follows that, by Corollary 3.8 and (5) above, only one of the two

following cases can occur:

1. ρ(Π~x:~A.?) ≡ ρ(A1)→ ρ(Πx2:A2. . . .Πxn:An.?) &

ρ(Π~x:~B.?) ≡ ρ(B1)→ ρ(Πx2:B2. . . .Πxn:Bn.?)

2. ρ(Π~x:~A.?) ≡ ρ(Πx2:A2. . . .Πxn:An.?) & ρ(Π~x:~B.?) ≡ ρ(Πx2:B2. . . .Πxn:Bn.?).

In both cases the property follows by induction.

(ii) By Lemma 3.5(iii), we have that k ≡ Π~x:~C.?. Then k[A/u] ≡ Π~x: ~C[A/u].?. We

can now prove the thesis by induction on the structure of k. The base case is imme-

diate. The inductive case follows easily once one realizes that, by the Substitution

Lemma, C ∈ Kind(λRC) ⇒ C[A/u] ∈ Kind(λRC).

Now, we choose one of the variables of Var2 to act as a fixed constant, i.e. it will

not be used as a bound variable in an abstraction. This variable will be denoted by

0.

Definition 5.3

The map τ : {2}∪Kind(λRC)∪Constr(λRC)→ Term(λRω) is inductively defined by:

1. τ(?) = τ(2) = 0 : ?.

2. τ(α) = α if α is a variable.

τ(s) = s if s ∈ S.

3. τ(Πα:M.N) = Πα: ρ(M).τ(M)→ τ(N) : ? if M ∈ Kind(λRC).

τ(Πx:M.N) = Πx: τ(M).τ(N) if M ∈ Type(λRC).

4. τ(λα:M.N) = λα: ρ(M).τ(N) if M ∈ Kind(λRC).

τ(λx:M.N) = τ(N) if M ∈ Type(λRC).

5. τ(MN) = τ(M)τ(N) if N ∈ Constr(λRC).

τ(MN) = τ(M) if N ∈ Object(λRC).

The definition by cases is correct by the Classification Lemma (Lemma 3.10).

Lemma 5.4 guarantees that the range of τ is actually Term(λRω).

To map Context(λRC) into Context(λRω) we choose, for each variable α ∈ Var2 ,

a connected variable xα ∈ Var?, such that no two variables of Var2 are connected

to the same variable of Var?. We now extend the map τ in such a way that it also

acts on Context(λRC) yielding elements of Context(λRω):

1. Let A ∈ Kind(λRC) ∪ Type(λRC).

τ(x : A) = x : τ(A) if x ∈ Var?.
τ(α : A) = α : ρ(A), xα : τ(A) if α ∈ Var2 .

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 641

2. Let Γ = 〈u1 : A1, u2 : A2, . . . , un : An〉 ∈ Context(λRC).

τ(Γ) = 〈0 : ?, d :⊥, τ(u1 : A1), τ(u2 : A2), . . . , τ(un : An)〉.

The reason for putting 0 : ? and d :⊥≡ Πα: ?.α in the context is that in the

following definition of the map [−] on terms of λRC it will be necessary to have a

canonical inhabitant for each type and kind. If τ(Γ) `λRω B : ? or τ(Γ) `λRω B : 2,

we want τ(Γ) `λRω cB : B for a cB which does not depend upon the structure of Γ.

Now, if τ(Γ) `λRω B : ? we shall put cB ≡ dB and if τ(Γ) `λRω B : 2, a canonical

inhabitant of B is inductively defined by:

1. if B ≡ ? then c? = 0;

2. if B ≡ k1 → k2 then ck1→k2 = λα : k1.c
k2 .

Note that cB[N/u] ≡ cB[N/u] for all B ∈ Kind(λRω) ∪ Type(λRω), N ∈ Term(λRω)

and variables u.

The following lemma states that ρ and τ are well-defined:

Lemma 5.4

Let Γ ∈ Context(λRC), M,N ∈ Term(λRC).

Γ `λRC M : N : 2 or Γ `λRC M : N ≡ 2 ⇒ τ(Γ) `λRω τ(M) : ρ(N).

Proof

By induction on the length of the derivation of Γ `λRC M : N, distinguishing cases

according to the last applied rule.

1. If Γ `λRC M : N is an axiom, there are two possibilities: either M ≡ ? and

N ≡ 2 and we are done, or M ≡ s and N ≡ ? where s is a sort, and in

this case it is easy to check that the lemma holds by definition of τ and ρ.

2. If the last rule is (var) then the conclusion is Γ′, α : N `λRC α : N and so, by

induction and definition of τ and ρ, τ(Γ′, α : N) `λRω τ(α) : ρ(N).

3. If the last rule is (weak) the thesis follows from the induction hypothesis, the

definition of τ(−) and ρ(−) and Weakening.

4. If the last rule is (redRβ) then the thesis follows from the induction hypothesis

and Property 5.2.

5. If M ≡ Πu:B1.B2, N ≡ p ∈ {?,2} and the last applied rule is (Π) then by

induction τ(Γ) `λRω τ(B1) : ? and τ(Γ, u : B1) `λRω τ(B2) : ?.

If B1 ∈ Type(λRC) then τ(Γ, u : B1) ≡ τ(Γ), u : τ(B1) and so τ(Γ) `λRω τ(B1)→
τ(B2) : ? by rule (?, ?).

If B1 ∈ Kind(λRC) then τ(Γ, u : B1) ≡ τ(Γ), u : ρ(B1), xu : τ(B1) and so, by rules

(?, ?) and (2, ?), we have τ(Γ) `λRω Πu: ρ(B1).τ(B1)→ τ(B2) : ?.

6. If M ≡ λu:B1.B2, N ≡ Πu:B1.C2 ∈ Kind(λRC) and the last rule is (λ) then by

induction τ(Γ) `λRω τ(B1) : ? and τ(Γ, u : B1) `λRω τ(B2) : ρ(C2).

If B1 ∈ Type(λRC) then τ(λu:B1.B2) ≡ τ(B2), ρ(Πu:B1.C2) ≡ ρ(C2) and τ(u :

B1) ≡ u : τ(B1). By definition of τ and ρ and by Property 5.2, u is not

a free variable in τ(B2) : ρ(C2), and so by substituting cτ(B1) for u we find

τ(Γ) `λRω τ(B2) : ρ(C2).

If B1 ∈ Kind(λRC) then τ(λu:B1.B2) ≡ λu: ρ(B1).τ(B2), ρ(Πu:B1.C2) ≡ ρ(B1)→
ρ(C2) and τ(Γ, u : B1) = τ(Γ), u : ρ(B1), xu : τ(B1). By definition of τ and ρ and

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

642 F. Barbanera, M. Fernández and H. Geuvers

by Property 5.2, xu is not a free variable in τ(B2) : ρ(C2), so by substituting

cτ(B1) for xu we obtain τ(Γ), u : ρ(B1) `λRω τ(B2) : ρ(C2) and by one application

of (λ), τ(Γ) `λRω λu: ρ(B1).τ(B2) : ρ(B1)→ ρ(C2).

7. If M ≡ B1B2, N ≡ C2[B2/x] ∈ Kind(λRC) and the last rule is (app), let

Γ `λRC B1 : Πx:C1.C2 and then by the Stripping Lemma and induction we

obtain:

If B2 ∈ Object(λRC) then τ(B1B2) ≡ τ(B1), τ(Γ) `λRω τ(B1) : ρ(Πx:C1.C2)

and ρ(Πx:C1.C2) ≡ ρ(C2) ≡ ρ(C2[B2/x]).

If B2 ∈ Constr(λRC) then τ(B1B2) ≡ τ(B1)τ(B2), τ(Γ) `λRω τ(B1) : ρ(Πx:C1.C2)

and τ(Γ) `λRω τ(B2) : ρ(C1). Besides, ρ(Πx:C1.C2) ≡ ρ(C1) → ρ(C2), so

τ(Γ) `λRω τ(B1B2) : ρ(C2) ≡ ρ(C2[B2/x]). 2

Lemma 5.5

A ∈ TS ⇒ τ(A) ≡ A.

Proof

Immediate by definition of τ.

Lemma 5.6

Let B, B′ ∈ Kind(λRC) ∪ Constr(λRC).

(i) If x ∈ Var? and A ∈ Object(λRC) then τ(B[A/x]) ≡ τ(B) ≡ τ(B)[A/x].

(ii) If α ∈ Var2 and A ∈ Constr(λRC) then τ(B[A/α]) ≡ τ(B)[τ(A)/α].

(iii) If B →Rβ B
′ then τ(B)→β τ(B

′) or τ(B) ≡ τ(B′).
(iv) B

c
=Rβ B

′ ⇒ τ(B) =β τ(B
′).

Proof

By induction on the structure of B.

(i) (ii) Immediate by definition of τ(−), Property 5.2 and the induction hypothesis.

(iii) We consider →β and →R separately.

Assume B →β B′. If B ≡ Πu:M.N, B ≡ λu:M.N or B ≡ MN with B′ ≡
Πu:M ′.N ′, B′ ≡ λu:M ′.N ′ or B′ ≡ M ′N ′, then τ(B) →β τ(B′) or τ(B) ≡ τ(B′)

by induction. The interesting situation occurs when B ≡ (λu:M.N)P and B′ ≡
N[P/u]. If M ∈ Type(λRC) then τ((λu:M.N)P) ≡ τ(N) ≡ τ(N[P/u]) by definition

of τ and by (i). If M ∈ Kind(λRC) then τ((λα:M.N)P) ≡ (λα: ρ(M).τ(N))τ(P) →β

τ(N)[τ(P)/α] ≡ τ(N[P/α]) by definition of τ and by (ii).

Assume B →R B
′. Since B, B′ ∈ Kind(λRC) ∪ Constr(λRC) it has to be necessarily

that B ≡ C[A] and B′ ≡ C[A′] for a suitable context for objects C[], where

A,A′ ∈ Object(λRC) and A →R A
′. Then, τ(B) ≡ τ(B′) follows by (i). Notice that

in (i) the usual notion of substitution is considered, not that of replacement in

contexts. However, it is quite straightforward to check that (i) is valid even for the

replacement in contexts.

(iv) Immediate from (iii).

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 643

Definition 5.7

The map [−] : Kind(λRC)∪Constr(λRC)∪Object(λRC)→ Object(λRω) is inductively

defined by

1. [?] = c0,

2. [x] = x if x ∈ Var?,
3. [α] = xα if α ∈ Var2 ,

4. [s] = c0 if s ∈ S,

5. [f] = f if f ∈ F,

6. [Πx:M.N] = c0→0→0[M][N][cτ(M)/x] if M ∈ Type(λRC),

[Πα:M.N] = c0→0→0[M][N][cτ(M)/xα][cρ(M)/α] if M ∈ Kind(λRC),

7. [λx:M.N] = (λz: 0.λx: τ(M).[N])[M] where z is a fresh variable, if M ∈
Type(λRC),

[λα:M.N] = (λz: 0.λα: ρ(M).λxα: τ(M).[N])[M] where z is a fresh variable, if

M ∈ Kind(λRC),

8. [MN] = [M][N] if N ∈ Object(λRC),

[MN] = [M]τ(N)[N] if N ∈ Constr(λRC).

This definition by cases is correct by the Classification Lemma. The following

theorems state that [−] satisfies the required conditions: Theorem 5.8 shows that

the range of [−] is actually Object(λRω), and Theorem 5.12 shows that the mapping

preserves all possible reduction sequences.

Theorem 5.8

Let Γ ∈ Context(λRC), M,N ∈ Term(λRC).

If Γ `λRC M : N then τ(Γ) `λRω [M] : τ(N).

Proof

By induction on the structure of M. By Lemma 5.4 we know that τ(Γ) is a legal

context in λRω .

1. M ≡ ?, then N ≡ 2 by Stripping (Lemma 3.3(i)) and Lemma 3.5(ii). It follows

that [?] ≡ c0 : 0 ≡ τ(2) in τ(Γ).

2. M ≡ s ∈ S , then N ≡ ? by Stripping (ii) and Lemma 3.5(ii). It follows that

[s] ≡ c0 : 0 ≡ τ(?) in τ(Γ).

3. M ≡ u ∈ Var? ∪ Var2 , then u : A ∈ Γ, with A
c
=Rβ N. If u ≡ α ∈ Var2 then

τ(α : A) ≡ α : ρ(A), xα : τ(A) ∈ τ(Γ). If u ≡ x ∈ Var? then τ(x : A) ≡ x :

τ(A) ∈ τ(Γ). In both cases τ(Γ) `λRω [u] : τ(A), and by Lemma 5.6, and some

applications of (redRβ), τ(Γ) `λRω [u] : τ(N).

4. M ≡ f ∈ F, then, by Stripping (iv), N
c
=Rβ σ where σ is the type of f in the

signature F. We have that [f] ≡ f : σ in τ(Γ). By Lemma 5.5, τ(σ) ≡ σ and

then, by Lemma 5.6 and some applications of (redRβ), we find [f] : τ(N) in

τ(Γ).

5. M ≡ Πu:B1.B2, then Γ `λRC B1 : p1 and Γ, u : B1 `λRC B2 : p2 for suitable

p1, p2 ∈ {?,2}. By induction τ(Γ) `λRω [B1] : 0 and τ(Γ, u : B1) `λRω [B2] : 0.

By Lemma 5.4, τ(Γ) `λRω , τ(B1) : ? and so τ(Γ) `λRω cτ(B1) : τ(B1).

If p1 ≡ ? and u ≡ x ∈ Var? then τ(Γ, x : B1) ≡ τ(Γ), x : τ(B1), so by induction

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

644 F. Barbanera, M. Fernández and H. Geuvers

and the Substitution Lemma, τ(Γ) `λRω [B2][cτ(B1)/x] : 0. By using the rule

(app) twice we get τ(Γ) `λRω c0→0→0[B1][B2][cτ(B1)/x] : 0.

If p1 ≡ 2 and u ≡ α ∈ Var2 then τ(Γ, α : B1) ≡ τ(Γ), α : ρ(B1), xα : τ(B1), so by

induction and the Substitution Lemma τ(Γ) `λRω [B2][cτ(B1)/xα, cρ(B1)/α] : 0. By

using the rule (app) twice we get τ(Γ) `λRω c0→0→0[B1][B2][cτ(B1)/xα, cρ(B1)/α] : 0.

In both cases τ(Γ) `λRω [Πu:B1.B2] : 0.

6. M ≡ λu:B1.B2, then Γ `λRC B1 : p1 and Γ, u : B1 `λRC B2 : C2 : p2 for a suitable

C2 ∈ Term(λRC), p1, p2 ∈ {?,2}, with N
c
=Rβ Πu:B1.C2.

By induction τ(Γ) `λRω [B1] : 0 and τ(Γ, u : B1) `λRω [B2] : τ(C2). By Lemma

5.4, τ(Γ) `λRω τ(B1) : ? and τ(Γ, u : B1) `λRω τ(C2) : ?.

If p1 ≡ ? and u ≡ x ∈ Var? then τ(Γ, x : B1) ≡ τ(Γ), x : τ(B1). With two appli-

cations of (λ) and one of the rule (app) we get τ(Γ) `λRω (λz: 0.λx: τ(B1)[B2])[B1]:

Πx: τ(B1).τ(C2).

If p1 ≡ 2 and u ≡ α ∈ Var2 then τ(Γ, x : B1) = τ(Γ), α : ρ(B1), xα : τ(B1). With

three applications of (λ) and one of (app) we get

τ(Γ) `λRω (λz: 0.λα: ρ(B1).λxα: τ(B1).[B2])[B1] : Πα: ρ(B1).τ(B1)→ τ(C2).

In both cases τ(Γ) `λRω [λu:B1.B2] : τ(Πu:B1.C2) and so, by Lemma 5.6(iv),

after some applications of rule (redRβ) we get τ(Γ) `λRω [λu:B1.B2] : τ(N).

7. M ≡ B1B2 then Γ `λRC B1 : Πu:C1.C2 and Γ `λRC B2 : C1 for some C1, C2 ∈
Term(λRC) with N

c
=Rβ C2[B2/u].

By induction τ(Γ) `λRω [B1] : τ(Πu:C1.C2) and τ(Γ) `λRω [B2] : τ(C1). By

Lemma 5.4, τ(Γ) `λRω τ(C1) : ?.

If C1 ∈ Type(λRC), u ≡ x ∈ Var?, then τ(Πx:C1.C2) ≡ Πx: τ(C1).τ(C2), so

τ(Γ) `λRω [B1][B2] : τ(C2)[[B2]/x] ≡ τ(C2[[B2]/x]) ≡ τ(C2) ≡ τ(C2[B2/x]) (by

Lemma 5.6).

If C1 ∈ Kind(λRC), u ≡ α ∈ Var2 , then τ(Πα:C1.C2) ≡ Πα: ρ(C1).τ(C1) →
τ(C2),

so τ(Γ) `λRω [B1]τ(B2)[B2] : τ(C2)[[B2]/xα, τ(B2)/α] ≡ τ(C2[B2/α]) (by Lemma

5.6).

In both cases τ(Γ) `λRω [B1B2] : τ(C2[B2/u]) and then, by Lemma 5.6.(iv) and

some applications of rule (redRβ), τ(Γ) `λRω [B1B2] : τ(N).

We will now prove that if M →Rβ N in λRC then [M]→+
Rβ [N] in λRω , i.e. [−]

preserves all reduction sequences. For the proof we need some lemmas.

Lemma 5.9

Let M,N ∈ Term(λRC) such that M[N/x],M[N/α] ∈ Term(λRC).

If x ∈ Var? and N ∈ Object(λRC) then [M[N/x]] ≡ [M][[N]/x].

If α ∈ Var2 , N ∈ Constr(λRC) then [M[N/α]] ≡ [M][τ(N)/α, [N]/xα].

Proof

By induction on the structure of M.

If M ∈ (Var? ∪ Var2 ∪F ∪S∪ {?}) the result is trivial. Otherwise the first part

of the lemma follows from the induction hypothesis and the fact that:

1. τ(Q[N/u]) ≡ τ(Q)[[N]/u], by Lemma 5.6,

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 645

2. ρ(Q[N/u]) ≡ ρ(Q)[[N]/u], by Property 5.2,

3. cτ(Q[N/u]) ≡ cτ(Q)[[N]/u], by 1 and the definition of cB ,

4. cρ(Q[N/u]) ≡ cρ(Q)[[N]/u], by 2 and the definition of cB .

The second part of the lemma follows from the induction hypothesis and the fact

that:

1. τ(Q[N/α]) ≡ τ(Q)[τ(N)/α] ≡ τ(Q)[τ(N)/α, [N]/xα], by Lemma 5.6 and because

xα is not a free variable in τ(Q),

2. ρ(Q[N/α]) ≡ ρ(Q) ≡ ρ(Q)[τ(N)/α, [N]/xα], by Property 5.2 and because xα is

not a free variable in ρ(Q),

3. cτ(Q[N/α]) ≡ cτ(Q)[τ(N)/α, [N]/xα], by 1 and the definition of cB ,

4. cρ(Q[N/α]) ≡ cρ(Q)[τ(N)/α, [N]/xα], by 2 and the definition of cB .

We extend the definition of [−] to substitutions, in the usual way: Let ϕ be a

substitution in λRC , [ϕ] is the substitution such that Dom([ϕ]) = Dom(ϕ) and for

each x ∈ Dom([ϕ]), [ϕ](x) = [ϕ(x)]. This definition is correct by Theorem 5.8.

Lemma 5.10

(i) Let M ∈ Term(λRC) and let ϕ be a substitution in λRC such that Dom(ϕ) ⊂
Var? and Mϕ ∈ Term(λRC). Then [Mϕ] ≡ [M][ϕ].

(ii) Let C[M] ∈ Term(λRC) with C[] context and M ∈ Object(λRC). Then

[C[M]] ≡ [C][[M]].

Proof

(i) By Lemma 5.9.

(ii) It is not difficult to check that the proof of the first part of Lemma 5.9 can be

modified to consider replacement instead of substitution.

Lemma 5.11

Let t be a cube-embeddable algebraic term. Then [t] ≡ t.

Proof

By definition of algebraic term, cube-embeddability and map [−].

Now we can show that all the reduction sequences are preserved, and therefore

strong normalization is preserved.

Theorem 5.12

Let M,M ′ ∈ Term(λRC). If M →Rβ M
′ then [M]→+

Rβ [M ′].

Proof

By induction on the structure of M.

For M ∈ (Var? ∪ Var2 ∪F∪ S ∪ {?}) the theorem is trivial.

If M ≡ Πu:B1.B2, M ≡ λu:B1.B2, or M ≡ B1B2 with M ′ ≡ B1B
′
2 or B′1B2, then

[M] →Rβ [M ′] follows by induction. Let us consider now the cases where M is a

β-redex or a R-redex.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

646 F. Barbanera, M. Fernández and H. Geuvers

• If M ≡ (λu:B1.B2)C and M ′ ≡ B2[C/u], we distinguish again two cases:

— If C ∈ Object(λRC) then

[M] ≡ [(λu:B1.B2)][C] ≡ (λz: 0.λu : τ(B1).[B2])[B1][C]→β [B2] [[C]/u],

because z is a fresh variable. Moreover, [B2][[C]/u] ≡ [B2[C/u]], by

Lemma 5.9.

— If C ∈ Constr(λRC) then

[M]≡ [(λu:B1.B2)]τ(C)[C]≡ (λz: 0.λu: ρ(B1).λxu: τ(B1).[B2])[B1]τ(C)[C] →β

→β [B2][τ(C)/u, [C]/xu] ≡ [B2[C/u]] by Lemma 5.9.

• If M is a R-redex then it has to be M ≡ tϕ, M ′ ≡ t′ϕ, where r : t → t′ is a

rule in R and Dom(ϕ) ⊂ Var? because in R there is no free variable belonging

to Var2 . By Lemma 5.10, [M] ≡ [t][ϕ] and [M ′] ≡ [t′][ϕ]. Moreover, by

Lemma 5.11, [t] ≡ t and [t′] ≡ t′. Hence M ≡ [t][ϕ]→R [t′][ϕ] ≡ [M ′].

Theorem 5.13

→Rβ-strong normalization of λRω implies →Rβ-strong normalization of λRC .

Proof

By contradiction. Assume that there exists an infinite sequence of →Rβ-reductions

in λRC starting from a term M1 ∈ Term(λRC). By Theorem 5.12 there is an infinite

sequence of reductions starting from [M1] in λRω , which contradicts the hypothesis.

Hence all sequences of →Rβ-reductions are finite in λRC .

As an application of this result, we obtain the strong normalization of the

generalization to λC of the language described in Jouannaud and Okada (1991).

6 λ∧R |= SN ⇒ λRω |= SN

In this section we prove that SN of λ∧R implies SN of λRω . λRω belongs to the

λR-cube, while the intersection type assignment system λ∧R (see the Appendix) is

specified by the quadruple 〈S, F,Ax, R〉 (where F and Ax are naturally induced by

the signature F, or equivalently F is induced by F and Ax).

As for the proof of

λRω |= SN ⇒ λRC |= SN

we shall use a translation from terms of λRω to terms of λ∧R , and prove this

translation to be reduction-preserving. Such a translation will be a ‘type erasing’

function.

The following lemma was proved by Girard (1972) for λω (i.e. without algebraic

features), and it holds for λRω as well, because the function symbols of F can be

looked at as free variables in β-reductions.

Lemma 6.1 (Girard, 1972)

→β is strongly normalizing on terms of λRω .

Let us define, by induction on the structure of terms, a ‘type erasing’ function from

Object(λRω) to ΛF (the set of untyped λ-terms with constants in F , see Definition A.2

in the Appendix).

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 647

Definition 6.2 (The type erasing function | − |)
The map | − | : Object(λRω)→ ΛF is inductively defined by

1. |x| = x if x ∈ Var?.
2. |f| = f if f ∈ F.

3. |λx:A.q| = λx.|q| if A ∈ Type(λRω) and q ∈ Object(λRω)

4. |λx:A.q| = |q| if A ∈ Kind(λRω) and q ∈ Object(λRω)

5. |pq| = |p||q| if q ∈ Object(λRω)

6. |pQ| = |p| if Q ∈ Constr(λRω).

The definition by cases is correct by definition of λRω and the Classification Lemma.

We shall frequently use, without explicit mention, the following property, stating

that it can never happen that an object be a subterm of a constructor. This property

can be easily proved using Lemma 2.14.

Property 6.3

The erasing function never makes completely disappear subterms that are objects, i.e.

given an object C[q] where C[] is a context and q is an object itself, |C[q]| ≡ C ′[q′]
where q′ ≡ |q| and C ′[] ≡ |C[]|.

We shall prove that | − | maps objects of λRω to typeable terms in λ∧R , i.e.

|M| ∈ Λ∧R if M ∈ Object(λRω) (Theorem 6.9 below). To prove that |M| is typable

(the symbol `∧ denotes typability in λ∧R) we need some lemmas.

In the following, a type A will be called arrow-ground if its β-normal form A↓β
belongs to TS. Recall that, since in λRω we do not have the rule (?,2), it is not

possible to have algebraic reductions inside types (see Lemma 2.14); so
c
=Rβ between

types is indeed =β .

Lemma 6.4

Let M ∈ Object(λRω). Then there exists a context C[] and an object N such that

M ≡ C[N], | C[z] |≡ z (where z is a fresh variable), and the following implications

hold:

N ≡ λx:A.q ⇒ A ∈ Type(λRω).

N ≡ pq ⇒ q ∈ Object(λRω).

Besides:

1. If |N| ≡ cN1 . . . Nm (c variable or function symbol) and c has arrow-ground

type δ with δ↓β≡ σ1 → . . . σm → σ then there exist N ′i (1 ≤ i ≤ m) subterms of

N such that |N ′i | ≡ Ni and the type of N ′i is Ai with Ai =β σi.

2. If |N| ≡ λy.P then N is an abstraction.

Furthermore, there exists n ≥ 0 such that A↓β=β Πu1 : D1 . . .Πun : Dn.A
′[N1/v1, . . . ,

Nm/vm] for some terms N1, . . . , Nm, where A′ is the type of N, A is the type of M

and each Πui : Di . . . is a type with Di ∈ Kind(λRω).

Proof

The part about C[] and its properties easily follows by definition of the map | − |.
For the rest we use the Stripping Lemma.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

648 F. Barbanera, M. Fernández and H. Geuvers

Lemma 6.5

Let M ∈ Object(λRω) such that Γ ` M : A and |M| is in β-normal form. Then there

exist B and σ such that B `∧ |M| : σ. Besides,

1. if A is an arrow-ground type then σ ≡ A↓β ,

2. if x : δ ∈ Γ with δ arrow-ground type, then x : δ↓β ∈ B.

Proof

By induction on the structure of |M|.

1. If |M| is a constant then |M| is typable and the second condition is trivially

satisfied. The first condition is a consequence of Lemma 6.4.

2. If |M| ≡ x is a variable we distinguish the four possible cases:

• if A is not arrow-ground and δ is so, x : δ↓β`∧ x : δ↓β satisfies the

conditions;

• if δ is not arrow-ground and A is so, x : A↓β`∧ x : A↓β satisfies the

conditions;

• if both A and δ are arrow-ground, by Stripping (iii) and the fact we are

in λRω , we have that A↓β≡ δ↓β . Hence x : A↓β`∧ x : A↓β satisfies the

conditions;

• if neither A nor δ is arrow-ground, any application of (var), say x : s `∧ x : s

with s ∈ S, works.

3. Otherwise, since |M| is in normal form it has necessarily to be of the form

λy1 . . . yn.gN1 . . . Nm where g is either a variable or g ∈ F and the Ni’s have

the same form as |M|. We distinguish three cases:

(a) n = 0, m > 0 and g is a variable.

By the form of the term there exist Γ′ and N ′i , Ai (1 ≤ i ≤ m), such that

Γ ⊆ Γ′, |N ′i | = Ni and Γ′ ` N ′i : Ai. Since the N ′i ’s are objects themselves

(they have not been erased by the type erasing function), by induction

we get that, for 1 ≤ i ≤ m, there exist Bi, σi such that Bi `∧ Ni : σi,

and besides, if Ai is arrow-ground then σi ≡ Ai↓β , and if x : δ ∈ Γ′ with

δ arrow-ground then x : δ↓β ∈ Bi. It is now straightforward to get a

derivation for B1 ∪∧ . . . ∪∧ Bm ∪∧ {g : σ1 → . . . → σm → σ} `∧ |M| : σ,

where the symbol ∪∧ denotes the following operation between bases:

B ∪∧ B′ = {x : σ ∧ τ | x : σ ∈ B and x : τ ∈ B′} ∪ {x : σ | x : σ ∈
B and x 6∈ B′} ∪ {x : τ | x 6∈ B and x : τ ∈ B′} (it is straightforward to

check that if B `∧ M : β then we have also B ∪∧ B′ `∧ M : β for any

B′). Notice that if x : δ ∈ Γ′ with δ arrow-ground then the type of x in

B1 ∪∧ . . . ∪∧ Bm ∪∧ {g : σ1 → . . .→ σm → σ} is not an intersection.

Moreover:

– the first condition is satisfied since, in case A is arrow-ground we can

choose σ ≡ A↓β; otherwise we can take a fresh type variable;

– by the conditions satisfied (by induction) by the Bi `∧ Ni : σi’s, and

by the fact noticed above, we get that, for all x 6= g, x : δ ∈ Γ with δ

arrow-ground implies x : δ↓β∈ B. For what concerns g we know that if

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 649

g : δ ∈ Γ with δ arrow-ground then δ↓β≡ σ1 → . . . → σm → σ by Lemma

6.4. So the second condition is satisfied as well.

(b) n = 0, m > 0 and g ∈ Fσ1→...→σp→σ .

By the form of the term and Lemma 6.4, there exist Γ′ andN ′i , A
′
i (1 ≤ i ≤ m)

such that |N ′i | = Ni and Γ′ ` N ′i : A′i, and σ1 → . . . → σp → σ =β A
′
1 →

. . . → A′m → τ (that is, A′i =β σi for 1 ≤ i ≤ m, and τ =β σm+1 → σp → σ).

By induction, for 1 ≤ i ≤ m there exists Bi such that Bi `∧ Ni : σi
and if x : ρ ∈ Γ then x : ρ↓β∈ Bi. Moreover, if A is arrow-ground

then Γ ` M : σm+1 → . . . → σp → σ ≡ A↓β (by Lemma 6.4). Then,

B1∪∧ . . .∪∧Bm `∧ gN1 . . . Nm : σm+1 → . . .→ σp → σ satisfies the conditions.

(c) n 6= 0, |M| ≡ λy.N.

By the form of the term, Lemma 6.4 and Stripping, there exist Γ′, N ′, A′ such

that Γ ⊆ Γ′, Γ′ ` N ′ : A′ and |N ′|= N, and A=β Πα1: β1 . . .Παk: βk.Πy: τ.A′

[N1/v1, . . . , Nn/vn], where α1 : β1, . . . , αk : βk, y : τ ⊆ Γ′, the βi are kinds

and τ is a type. Now, if A is arrow-ground then k = 0 and A′, τ are

arrow-ground, and then A↓β≡ Πy: τ↓β .A′↓β . By induction, B `∧ N : σ with

σ ≡ A′↓β and y : τ↓β∈ B. Hence B − {y : τ↓β} `∧ λy.N : τ↓β→ σ ≡ A↓β
satisfies both conditions.

Lemma 6.6

Let M ∈ Object(λRω) and |M| ≡ Q[P/x] where P is a term such that if x 6∈ FV (Q)

then P is in β-normal form, and ∃P ′ ∈ Object(λRω) s.t. |P ′| ≡ P . Then

∃B, σ s.t. B `∧ Q[P/x] : σ ⇒ ∃B′ s.t. B′ `∧ (λx.Q)P : σ

Proof

We consider two cases according to whether x does occur free in Q or not. We can

assume that x does not occur in B.

1. x occurs in Q.

Let B `∧ Q[P/x] : σ be a deduction in λ∧R . We shall consider only the

occurrences of P in Q[P/x] which replace occurrences of x in Q. Let {Bi `∧
P : δi | i ∈ I} be the set of all the conclusions (in the previous deduction)

whose subjects are such occurrences of P . Then it is not difficult to obtain a

deduction of B1∪∧ . . .∪∧Bn `∧ P :
∧
i∈I δi. (Note that ∪ is not sufficient because

the same variable could be bound more than once in a term.) Moreover, we

can obtain a deduction of B, x :
∧
i∈I δi `∧ Q : σ by extending the basis

B and replacing in the proof of B `∧ Q[P/x] : σ the deductions of B, x :∧
i∈I δi `∧ x : δj (obtained using rules (Ax) and (∧E) in λ∧R , see the appendix)

for the subdeductions of Bj `∧ P : δj . So by rule (→ I) in λ∧R we have that

B `∧ λx.Q : (
∧
i∈I δi)→ σ and since we have B1 ∪∧ . . . ∪∧ Bn `∧ P :

∧
i∈I δi we

can obtain B′ `∧ (λx.Q)P : σ where B′ = B1 ∪∧ . . . ∪∧ Bn ∪∧ B.

2. x does not occur in Q.

By the hypothesis and by Lemma 6.5 we know that ∃B1, δ such that B1 `∧ P :

δ. Besides, we know that ∃B, σ such that B `∧ Q[P/x] : σ, i.e., B `∧ Q : σ since

x is not free in Q. Then B, x : δ `∧ Q : σ and from this B `∧ λx.Q : δ → σ.

Now it is easy to construct a proof of B′ `∧ (λx.Q)P : σ where B′ = B ∪∧ B1.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

650 F. Barbanera, M. Fernández and H. Geuvers

Lemma 6.7

Let M[M ′/x] ∈ Object(λRω) where x ∈ Var?.
|M[M ′/x]| ≡ |M|[|M ′|/x].

Proof

By induction on the structure of M.

1. If M ≡ f ∈ F or M ∈ Var? it is trivial.

2. If M ≡ λy:N.N ′ with y ≡ x it is also trivial. Let us consider the case y 6≡ x.

|M[M ′/x]| ≡ |λy:N[M ′/x].N ′[M ′/x]|. Now there are two subcases:

(a) If N ∈ Type(λRω) then |M[M ′/x]| ≡ λy.|N ′[M ′/x]|, which, by induction,

is equal to λy.|N ′|[|M ′|/x] ≡ |M|[|M ′|/x].

(b) If N ∈ Kind(λRω) then |M[M ′/x]| ≡ |N ′[M ′/x]|, which by induction, is

equal to |N ′|[|M ′|/x] ≡ |M|[|M ′|/x].

3. If M ≡ M1M2 then |M[M ′/x]| ≡ |M1[M ′/x]M2[M ′/x]|. Now there are again

two subcases:

(a) If M2 ∈ Object(λRω) then |M[M ′/x]| ≡ |M1[M ′/x]||M2[M ′/x]|, which, by

induction, is equal to |M1|[|M ′|/x]|M2|[|M ′|/x] ≡ |M|[|M ′|/x].

(b) If M2 ∈ Constr(λRω) then |M[M ′/x]| ≡ |M1[M ′/x]| which, by induction,

is equal to |M1|[|M ′|/x] ≡ |M|[|M ′|/x].

Lemma 6.8

Let M ∈ Object(λRω). If |M| →β N then there exists M ′ ∈ Object(λRω) such that

N ≡ |M ′| and M →β M
′.

Proof

To have |M| →β N it has to be M ≡ C ′[(λx:A.q)q′] where C ′[] is a context and

A ∈ Type(λRω). Then |M| ≡ C[(λx.|q|)|q′|] →β C[|q|[|q′|/x]] ≡ N where C[] is the

context obtained by applying the function | − | to C ′ in the obvious way. Then we

can take M ′ = C ′[q[q′/x]] and we have M →β M
′ and |M ′| = N by Property 6.3

and Lemma 6.7.

Theorem 6.9

If M ∈ Object(λRω) then there exist B, σ such that B `∧ |M| : σ.

Proof

|M| is →β-strongly normalizable by Lemma 6.1 and Lemma 6.8. Then all the reduc-

tion strategies allow us to get the β-normal form of |M|, in particular the reduction

strategy according to which a contraction (λx.Q)P →β Q[P/x] is performed only

if P is in β-normal form (i.e. the rightmost-innermost evaluation). Hence we can

find B and σ by applying Lemma 6.5 to the β-normal form of |M| and iterating

Lemma 6.6 backwards along the chain of reduction steps which leads from |M| to

its β-normal form.

So, we have proved that if M ∈ Object(λRω) then |M| ∈ Λ∧R .

Lemma 6.10

Let t and t′ be two terms of λRω such that t→ t′ ∈ R. Then |t| ≡ t and |t′| ≡ t′.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 651

Proof

Easy by Stripping and the definitions of | − | and of cube-embeddable rewrite rule.

In the following we will prove that if M and N are objects, M →Rβ N implies

|M| →∗Rβ |N|. We shall use the notions of β0-, β2-, and βω-reduction as introduced

in Definition 3.14.

Let ϕ be a substitution for λRω , with Dom(ϕ) ⊆ Var?. We define the substitution

|ϕ| for terms in Λ∧R in the following way: Dom(|ϕ|) = Dom(ϕ) and for each

x ∈ Dom(|ϕ|), x|ϕ| = |xϕ|.

Lemma 6.11

Let M,N ∈ Object(λRω). If M →Rβ N then |M| →Rβ |N|, or |M| ≡ |N| if the

reduction is actually a β2- or a βω-reduction.

Proof

Let M ≡ C[P] where P is a β-redex or an R-redex and C[] is a suitable context. Let

us check the statement of the lemma for each notion of reduction, distinguishing, in

the case of a β-reduction, which sort of β-reduction it is.

Let P be the βω-redex (λa:A.Q)Q′. It is easy to check that, by definition of | − |,
if P : S : 2 then |C[P]| = |C[U]| for any U : S . We have therefore |M| ≡ |N|.

Let P be the β2-redex (λa:A.Q)Q′. We have that |(λa:A.Q)Q′| ≡ |Q| ≡ |Q[Q′/a]|
by definition of | − |, and then, by Property 6.3, |M| ≡ |N|.

Let P be the β0-redex (λx:A.Q)Q′. We have that |(λx:A.Q)Q′| ≡ (λx.|Q|)|Q′| →β

|Q|[|Q′|/x] and |Q|[|Q′|/x] ≡ |Q[Q′/x]| by Lemma 6.7. It follows then, by Property

6.3, |M| →β |N|.
Let P ≡ tϕ and tϕ →R t

′ϕ using a rule r : t → t′. By Lemma 6.7, |tϕ| ≡ |t||ϕ|
and |t′ϕ| ≡ |t′||ϕ|. By Theorem 6.9, |t||ϕ|, |t′||ϕ| ∈ Λ∧R . Moreover, by Lemma 6.10,

t ≡ |t| and t′ ≡ |t′|. Then |tϕ| ≡ |t||ϕ| →R |t′||ϕ| ≡ |t′ϕ| and hence, by Property 6.3,

it follows |M| →R |N|.

We can prove now the main theorem of this section.

Theorem 6.12

→Rβ-strong normalization of λ∧R implies →Rβ-strong normalization of λRω .

Proof

By Lemma 3.11 only the cases M ∈ Constr(λRω) and M ∈ Object(λRω) have to be

considered.

If M ∈ Constr(λRω) then, since λRω objects cannot occur in constructors (Lemma

2.14), it follows that any reduction in M is actually a β-reduction. Hence, strong

normalization of M follows from Lemma 6.1.

If M ∈ Object(λRω) then let us define the following interpretation I on the

elements of Object(λRω): for P ∈ Object(λRω), I(P) = 〈|P |, P 〉. We can now define

the following ordering on {I(P) | P ∈ Object(λRω)}:

>= (→Rβ,→β2 ∪ →βω),

which is well-founded since, for any P ∈ Object(λRω), |P | is typable in λ∧R (i.e.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

652 F. Barbanera, M. Fernández and H. Geuvers

|P | ∈ Λ∧R) by Theorem 6.9, and hence →Rβ-strongly normalizable by hypothesis.

Besides, →β is strongly normalizing on elements of λRω by Lemma 6.1.

→Rβ-strong normalization of M can now be derived by the well-foundedness

of > once one realizes that, by Lemma 6.11, for any P ∈ Object(λRω) such that

P →Rβ P
′, I(P) > I(P ′).

7 Modularity of confluence

We recall first the definition of confluence. A reduction relation → is confluent if for

any t, v1 and v2 such that t→∗ v1 and t→∗ v2, there exists v3 such that v1 →∗ v3 and

v2 →∗ v3.

Local confluence is a closely related (weaker) property. → is locally confluent if

for any t, v1 and v2 such that t → v1 and t → v2, there exists v3 such that v1 →∗ v3

and v2 →∗ v3.

For strongly normalizing relations, local confluence is equivalent to confluence

(Newman’s Lemma – Newman, 1942). So we shall prove that→βR is locally confluent

on λRC . The notion of critical pair is crucial in this proof. Let us recall the definition.

Assume terms are represented as trees where the application operator appears

explicitly.

Definition 7.1

If l → r and s → t are two rewrite rules (we assume that the variables of s → t

were renamed so that there is no common variable with l → r), p is the position

of a non-variable subterm of s and µ is a most general unifier of s|p and l, then

(tµ, sµ[rµ]p) is a critical pair formed from those rules. Note that s → t may be a

renamed version of l → r. In this case a superposition at the root position is not

considered a critical pair.

Thus, a critical pair arises from a most general non-variable overlap between

two left-hand sides. Overlaps of higher order variables applied to some arguments

do generate critical pairs (these are non-variable overlaps due to the application

operator):

Example 7.2

Consider the β-rule: (λx.M)N → M[N/x]4. If a rule r in HOR contains the term

Xt (where X is a higher-order variable and t is an arbitrary term) as a subterm of

the left-hand side – for instance, consider r : F(X0) → X – then there is a critical

pair between r and β: (λx.M, F(M[0/x])).

The following lemmas show that the confluence of FOR for algebraic terms

transfers to λRC-terms, and that for the class of higher-order rewrite systems which

we consider, the absence of critical pairs implies confluence (this is not true for

arbitrary higher-order rewrite systems (Nipkow, 1991)).

4 This is actually a ‘meta-rule’, or a rule schema. Although one cannot write this rule in
HOR, it is possible to compute the critical pairs generated by the superpositions of this
rule scheme on the left-hand sides of HOR.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 653

Lemma 7.3

If FOR is confluent on the set of algebraic terms of λRC then →FOR is locally

confluent on λRC .

Proof

By induction on the structure of terms. Let M be a term in λRC . If M is algebraic

the thesis follows trivially from the hypothesis. If M is not algebraic we consider

two cases:

1. M ≡ ?, M ≡ 2, M ≡ xP1 . . . Pn (n ≥ 0), M ≡ (λx : A.P0)P1 . . . Pn (n ≥ 0),

M ≡ (Πx : A.P0)P1 . . . Pn (n ≥ 0), or M ≡ FP1 . . . Pn where F is a higher-order

function symbol and n ≥ 0. In this case the thesis follows from the induction

hypothesis, since all the redexes are strictly inside the terms.

2. Otherwise the root of M is a first-order function symbol. In this case we are

going to use the notions of cap and aliens: let M ≡ ft1 . . . tn where f is a

first-order function symbol, an alien subterm of M is a maximal subterm of

M which is not of the same form (that is, a maximal subterm of M which

is not rooted by a first-order function symbol). We will denote by aliens(M)

the multiset of alien subterms of M. The cap of M is the first-order algebraic

term obtained from M by replacing its aliens by variables (all the occurrences

of the same alien subterm are replaced by the same variable).

Since by assumption the root of M is a first-order function symbol, the

cap of M is not a variable, and then →FOR is confluent on aliens(M) by

the induction hypothesis. Then, we only have to consider the case where

M →FOR N1 and M →FOR N2 in (non-variable) cap positions. In this case

cap(M) →FOR cap(N1) and cap(M) →FOR cap(N2) and by hypothesis there

exists N ′ such that cap(N1) →∗FOR N ′ and cap(N2) →∗FOR N ′. Each variable zi
of N ′ appears also in cap(M). Let Ai be the subterm of M replaced by zi to

obtain cap(M). Then, N1 →∗FOR N ′[Ai/zi] and N2 →∗FOR N ′[Ai/zi].

Having proved local confluence, confluence now follows from the strong normaliza-

tion property, by Newman’s Lemma.

Lemma 7.4

Let HOR be a higher-order rewrite system satisfying the general schema. If HOR

does not have critical pairs, then →HOR is locally confluent on λRC .

Proof

To prove local confluence, it is sufficient to show the commutation of →HOR reduc-

tions on overlapped redexes. Let t be a term in λRC such that t→HOR v1 at position

p and t→HOR v2 at position p.q. Since there are no critical pairs, the subterm t|p.q of

t must be covered by a variable z of the rule applied at position p. Let t′ be the term

obtained out of t by replacing the subterm at position p.q and all other occurrences

of t|p.q corresponding to z by a new variable x. Then, t′ is still reducible at position

p: t′ →HOR v
′. If x appears in v′ at positions m1, . . . , mn then t |p.q appears in v1 at the

same positions. Let t′′ be the term obtained after reducing v1 at positions m1, . . . , mn.

Then v2 →HOR t
′′ at position p. Hence HOR is locally confluent, therefore confluent

as a consequence of Newman’s Lemma.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

654 F. Barbanera, M. Fernández and H. Geuvers

Now, using a similar argument (and the previous lemmas), we can prove that→βR

is confluent.

Theorem 7.5 (Local Confluence of →Rβ in λRC)

If FOR is confluent on the set of algebraic terms, and HOR does not introduce

critical pairs (i.e. there is no critical pair between rules of HOR, between FOR and

HOR, between β and HOR5) then →Rβ is locally confluent in λRC .

Proof

It suffices to show the commutation of β-, →FOR- and →HOR-reductions on over-

lapped redexes. But since→β is confluent, and→HOR and→FOR are locally confluent

(by Lemmas 7.4 and 7.3), it is sufficient to prove that for all t such that t→Rβ v1 at

position p using one of the reduction relations, and t→Rβ v2 at position p.q using a

different reduction relation, there exists v3 such that v1 →∗Rβ v3 and v2 →∗Rβ v3.

Since there are no critical pairs, the subterm t|p.q of t must be covered by a variable

z of the rule applied at position p. Let t′ be the term obtained out of t by replacing

the subterm at position p.q and all other occurrences of t|p.q corresponding to z by

a new variable x. Then, t′ is still reducible at position p: t′ →Rβ v
′. If x appears in

v′ at positions m1, . . . , mn then t |p.q appears in v1 at the same positions. Let t′′ be the

term obtained after reducing v1 at positions m1, . . . , mn. Then v2 →Rβ t
′′ at position

p.

Hence →Rβ is locally confluent, therefore confluent by Newman’s Lemma.

For example, the class of higher-order rewrite systems defining higher-order

functions by primitive recursion (structured recursion) on first-order data structures,

satisfy the required hypothesis and then →Rβ is confluent in this case.

8 Conclusions

We have extended the Calculus of Constructions with algebraic types and rewrite

rules. Our system is closely related to the Calculus of Constructions with inductive

types (CCI) defined by Coquand and Paulin-Mohring (1990), since CCI can be seen

as an extension of the Calculus of Constructions with a particular class of higher-

order rewrite rules. The strong normalization of CCI was proved by Werner (1994).

The problem of extending the CCI with pattern-matching definitions was studied

by Coquand (1992). In particular, in Coquand (1992) there is a notion of recursive

schema ensuring strong normalization, and rewrite rules are assumed critical-pair

free. In our framework these restrictions apply only to higher-order rules (first-order

rules are simply required to be non-duplicating).

Confluence and strong normalization are essential properties of logical systems,

since they ensure the consistence of the system. Proving these properties is in general

a difficult task, so, it is important to study under which conditions these proofs are

modular. Our results show that, to prove strong normalization of any of the systems

in the λR-cube, it is sufficient to prove termination of the first-order rewrite rules in R

5 See Example 7.2.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 655

on first-order terms, provided that R satisfies certain syntactical conditions, namely

non-duplication for FOR and the general schema for HOR. As a consequence, we

get the strong normalization of a restriction of CCI (with pattern-matching) where

the inductive types are defined by structural induction. The general schema, however,

limits the power of the higher-order rules. More powerful versions of the schema

are described by Jouannaud and Okada (1996). The generalization of the proof of

strong normalization to those systems of higher-order rules will be the subject of

future work.

Acknowledgements

We would like to thank Mariangiola Dezani and Jean-Pierre Jouannaud for their

scientific guidance. The first author is also grateful to Antonietta and Silvia Cocci

for many useful discussions.

A System λ∧R

System λ∧R is a type assignment system with intersection types and algebraic features

which was introduced in Barbanera and Fernández (1996), where a slightly different

but equivalent presentation is provided.

Type assignment systems (also called type inference systems) are formal systems

for assigning types to untyped terms. These systems are defined by specifying a set

of terms, a set of types one assigns to terms, and a set of type inference rules. The

rules are usually given in a natural deduction style. Here, we use a slight variation of

the standard presentation, to keep track of the premises statements depend on. We

shall refer to Hindley and Seldin (1986) for all the notions about type assignment

systems that we do not define explicitly.

The particular type assignment system we are going to define contains algebraic

features in the style we have used so far, and intersection types. Type assignment

systems containing intersection types for the λ-calculus were originally devised in

Coppo and Dezani-Ciancaglini (1980) and Coppo et al. (1980), and investigated

afterwards in depth in several papers, among which we recall Barendregt et al.

(1983), Pottinger (1980), Coppo et al. (1984) and van Bakel (1993). We refer to

the above-mentioned papers and to the surveys by Cardone and Coppo (1990) and

Hindley (1990) for motivations and applications of intersection types.

We begin the description of system λ∧R by considering a set S of sorts and a set

of (untyped) function symbols F = {f1, f2, . . . , fn}. Each function symbol is equipped

with an arity , denoted by superscripts when not clear from the context.

Definition A.1 (Types)

The set TS∧ of types of λ∧R is defined as follows:

• If s ∈ S then s ∈ TS∧.

• If ϕ ∈ V then ϕ ∈ TS∧, where V is the set of type variables.

• If σ, τ ∈ TS∧ then σ → τ ∈ TS∧.

• If σ, τ ∈ TS∧ then σ ∧ τ ∈ TS∧.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

656 F. Barbanera, M. Fernández and H. Geuvers

We will consider types modulo associativity, commutativity and idempotency of

the type operator ∧.

A type is algebraic if it does not contain ∧ and type variables. As in section 2, we

denote by TS the set of algebraic types.

Definition A.2 (Terms)

The terms of λ∧R are defined by the following grammar:

ΛF ::= x | f | (ΛFΛF) | λx.ΛF

where x ranges over a set X of (untyped) variables and f over F . Terms are then

untyped λ-terms with constants and on them the usual notion of β-reduction is

defined.

Definition A.3

(i) A statement is an expression of the form M : σ where σ ∈ TS∧ and M ∈ ΛF .

M is the subject of the statement.

(ii) A basis (the set of assumptions a statement depends on) is a set of statements

with only variables as subjects. Moreover, there are no two statements with

the same subject. If x does not occur in the basis B then B, x : σ denotes the

basis B ∪ {x : σ}.
(iii) A set of axiom statements (for a set of constants F = {f1, f2, . . . , fn}) is a set

of statements of the form {f1:σ1, f2:σ2, . . . , fn:σn} where σi ∈ TS (1 ≤ i ≤ n)

and is of the form τ1 → . . .→ τm → τ for m arity of fi.

Definition A.4 (Inference rules)

Let Ax be a set of axiom statements.

(var) B, x: σ `∧ x : σ

(Ax) B `∧ f : σ for any f : σ ∈ Ax

(→I)
B, x:σ `∧ M : τ

B `∧ λx.M : σ → τ

(→E)
B `∧ M : σ → τ B `∧ N : σ

B `∧ (MN) : τ

(∧I)
B `∧ M : σ B `∧ M : τ

B `∧ M : σ ∧ τ

(∧E)
B `∧ M : σ ∧ τ
B `∧ M : σ

Then the set of statements Ax is a parameter system λ∧R depends upon.

A term M will be called typable if there exists a basis B and a type σ such that

B `∧ M : σ.

We shall denote by Λ∧R the set of typable terms.

To complete the description of system λ∧R we have to define algebraic rewriting.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 657

For this, we could define in the present context the notions of first and higher-order

constant, algebraic term (first and higher-order), rewrite rule and so on, as done

in Barbanera and Fernández (1996). However, we can equivalently consider a set

of cube-embeddable rewrite rules as defined in section 2 and the rewrite relation

induced by it on Λ∧R .

Before doing that, to be precise, we have to give a small technical definition.

Definition A.5

Given a set S of sorts, a set F of constants, and a set Ax of axiom statements, let

t be an algebraic term for S and F as defined in 2.9, where F is the signature

naturally induced by F and Ax. We denote by t the untyped term obtained by

replacing any occurrence of a function symbol ofF in t by its untyped counter-part

in F .

In the rest of this section we will implicitly assume a signature to be induced by

a set of constants and a set of axiom statements.

Definition A.6 (Algebraic rewriting)

Let r ∈ R where R is a set of cube-embeddable rewrite rules for a signature F. Let

M,M ′ ∈ Λ∧R . The reduction relation →R on Λ∧R is defined as follows: M →R M
′

if M ≡ C[t[N1/x1, . . . , Nn/xn]] (where r : t → t′ ∈ R, N1, . . . , Nn ∈ Λ∧R and C[−] is

a context) and M ′ ≡ C[t′[N1/x1, . . . , Nn/xn]]. Note that since N1, . . . , Nn ∈ Λ∧R they

can contain λ-terms.

As usual,→Rβ denotes the union of the reduction relations→R and→β and�Rβ

its reflexive and transitive closure.

Note that because of the lemma below, which follows easily by the definition of

cube-embeddable rewrite rule, the definition above is sound, i.e. it is not possible to

have a term which is possible to rewrite, say C[tϕ] ∈ Λ∧R , such that the type of t

and of its variables are not ‘equivalent’ to the algebraic types present in the typed

term t.

Lemma A.7

Let t be a typed cube-embeddable term in a rule r : t→ t′ ∈ R, and let σ and Γ′ be

the algebraic type and context of t. If B `∧ t : τ then τ ≡ σ and for all statements

x:γ ∈ B such that x occurs in t: γ ≡ γ1 ∧ . . . ∧ γn where γ1 is the type of the variable

x in t.

System λ∧R is then completely specified by a quadruple 〈S, F,Ax, R〉, where S is

a set of sorts, F a set of constants, Ax a set of axiom statements, and R a set of

cube-embeddable rewrite rules for the signature F induced by F and Ax.

The main property of λ∧R , and the one we need here, is strong normalization.

This property was proved in Barbanera and Fernández (1996) in two steps: first

considering a rewrite relation induced by a term rewriting system R = FOR ∪HOR
such that FOR is non-duplicating and strongly normalizing on the set of first-

order algebraic terms that are typable in λ∧R , and HOR satisfies the general schema

(Theorem 2 in Barbanera and Fernández (1996)). Then it is proved that it is enough

to require strong normalization of FOR on the set of typed (many-sorted) first-order

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

658 F. Barbanera, M. Fernández and H. Geuvers

algebraic terms, since this implies strong normalization on the set of all typeable

terms (Theorem 6 in Barbanera and Fernández (1996)). The following theorem is

then a direct consequence of the latter:

Theorem A.8 (λ∧R |= SN (Barbanera and Fernández, 1996))

Let λ∧R be the system defined by

〈S, F,Ax, R〉,

where R is a cube-embeddable term rewriting system such that

1. FOR is non-duplicating and strongly normalizing on first-order typed algebraic

terms;

2. HOR satisfies the general schema (w.r.t. FOR).

Then terms in Λ∧R are strongly normalizable w.r.t. →Rβ .

References

van Bakel, S. (1993) Intersection type disciplines in lambda calculus and applicative term

rewriting systems. PhD thesis, University of Nijmegen.

Barbanera, F. (1990) Adding algebraic rewriting to the calculus of constructions: Strong

normalization preserved. Proc. 2nd Int. Workshop on Conditional and Typed Rewriting.

Barbanera, F. and Fernández, M. (1993a) Combining first and higher-order rewrite sys-

tems with type assignment systems. Proc. Int. Conference on Typed Lambda Calculi and

Applications, Utrecht. Lecture Notes in Computer Science 664. Springer-Verlag.

Barbanera, F. and Fernández, M. (1993b) Modularity of termination and confluence in com-

binations of rewrite systems with λω . Proc. 20th Int. Colloquium on Automata, Languages,

and Programming, Lund, Sweden. Lecture Notes in Computer Science 700. Springer-Verlag.

Barbanera, F. and Fernández, M. (1996) Intersection Type Assignment Systems with Algebraic

Rewriting. Theoretical Computer Science 170, 173–207.

Barbanera, F., Fernández, M. and Geuvers, H. (1994) Modularity of Strong Normalization

in the Algebraic-λ-cube. Proc. 9th IEEE Symposium on Logic In Computer Science, Paris,

France.

Barbanera, F., Fernández, M. and Geuvers, H. (1996) Modularity of Strong Normalization

in the Algebraic-λ-cube – Preliminary Version. Rapport de Recherche LIENS96-8.

Barendregt, H. (1986) Lambda Calculus: its syntax and semantics, 2nd ed. North Holland.

Barendregt, H. (1991) Introduction to generalised type systems. J. Functional Programming,

1.

Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M. (1983) A filter λ-model and the

completeness of type assignment. J. Symbolic Logic, 48(4), 931–940.

Berardi, S. (1990) Type dependence and constructive mathematics. PhD thesis, Mathematical

Institute, University of Torino, Italy.

Breazu-Tannen, V. (1988) Combining algebra and higher-order types. Proc. 3rd IEEE

Symposium on Logic In Computer Science, Edinburgh, UK.

Breazu-Tannen, V. and Gallier, J. (1991) Polymorphic rewriting conserves algebraic strong

normalization. Theoretical Computer Science, 83(1).

Breazu-Tannen, V. and Gallier, J. (1992) Polymorphic rewriting conserves algebraic confluence.

Information and Computation, 82, 3–28.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

Modularity of strong normalization in the algebraic-λ-cube 659

deBruijn, N. G. (1980) A survey of the project Automath. In: J. P. Seldin and J. R.

Hindley, editors, To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism.

Academic Press.

Cardone, F. and Coppo, M. (1990) Two extensions of Curry’s type inference system. In:

P. Odifreddi, editor, Logic and Computer Science. Academic Press.

Church, A. (1940) A formulation of the simple theory of types. J. Symbolic Logic, 5.

Coppo, M. and Dezani-Ciancaglini, M. (1980) An extension of the basic functionality theory

for the λ-calculus. Notre Dame J. Formal Logic, 21(4).

Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1980) Principal type schemes and λ-

calculus semantics. In: J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on

combinatory logic, lambda calculus and formalism. Academic Press.

Coppo, M., Dezani, M., Honsell, F. and Longo, G. (1984) Extended type structures and filter

lambda models. Logic Colloquium 82, Amsterdam.

Coquand, Th. (1992) Pattern matching with dependent types. Proc. of the Workshop on

Logical Frameworks.

Coquand, Th. and Paulin-Mohring, C. (1990) Inductively defined types. Proc. of Colog’88:

Lecture Notes in Computer Science 417. Springer-Verlag.

Coquand, Th. and Huet, G. (1988) The calculus of constructions. Information and Computation,

76, 95–120.

Dershowitz, N. and Jouannaud, J.-P. (1990) Rewrite systems. In: J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, vol. B, pp. 243–309. North-Holland.

Dougherty, D. J. (1992) Adding algebraic rewriting to the untyped lambda calculus. Infor-

mation and Computation, 101, 251–267.

Geuvers, H. (1992) The Church–Rosser property for βη-reduction in typed λ-calculi. Proc.

7th IEEE Symposium on Logic In Computer Science, Santa Cruz, CA.

Geuvers, H. (1993) Logics and type systems. PhD thesis, Department of Computer Science,

University of Nijmegen.

Geuvers, H. and Nederhof, M. J. (1991) A simple modular proof of the strong normalization

for the calculus of constructions. J. Functional Programming, 1.

Girard, J.-Y. (1972) Interprétation fonctionelle et élimination des coupures dans l’arithmétique

d’ordre supérieur. Thèse d’Etat, Univ. Paris VII, France.

Harper, R., Honsell, F. and Plotkin, G. (1987) A framework for defining logics. Proc. 2nd

IEEE Symposium on Logic In Computer Science, Washington, DC.

Hindley, R. (1990) Types with intersection, an introduction. Formal aspects of Computing.

Hindley, R. and Seldin, J. (1986) Introduction to Combinators and λ-calculus. Cambridge

University Press.

Jouannaud, J.-P. and Okada, M. (1991) Executable higher-order algebraic specification

languages. Proc. 6th IEEE Symposium Logic In Computer Science, Amsterdam.

Jouannaud, J.-P. and Okada, M. (1996) Strong Normalization of Inductive Data Type Systems.

Submitted.

Kahrs, S. (1995) Confluence of Curried Term Rewriting Systems. J. Symbolic Computation,

19(6), 601–623.

Kennaway, R., Klop, J. W., Sleep, R. and de Vries, F. J. (1996) Comparing curried and

uncurried rewriting. J. Symbolic Computation, 21(1), 15–39.

Klop, J. W. (1987) Term rewriting systems: a tutorial. EATCS Bulletin, 32, 143–182.

Klop, J. W., van Oostrom, V. and van Raamsdonk, F. (1993) Combinatory Reduction Systems,

introduction and survey. Theoretical Computer Science 121(1–2).

Newman, M. H. A. (1942) On theories with a combinatorial definition of ‘equivalence’. Ann.

Math., 43(2), 223–243.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

660 F. Barbanera, M. Fernández and H. Geuvers

Nipkow, T. (1991) Higher-order critical pairs. Proc. 6th IEEE Symposium Logic in Computer

Science, Amsterdam.

Okada, M. (1989) Strong normalizability for the combined system of the types lambda

calculus and an arbitrary convergent term rewrite system. Proc. ISSAC 89, Portland, OR.

van Oostrom, V. and van Raamsdonk, F. (1993) Comparing combinatory reduction systems

and higher-order rewrite systems. IR 333, Vrije Universiteit, Amsterdam.

van Oostrom, V. and van Raamsdonk, F. (1994) Weak orthogonality implies confluence: the

higher-order case. Proc. Logical Foundations of Computer Science.

Pottinger, G. (1980) A type assignment for the strongly normalizable λ-terms. In: J. P. Seldin

and J. R. Hindley, editors, To H.B. Curry: Essays on combinatory logic, lambda calculus and

formalism.. Academic Press.

Rusinowitch, M. (1987) On termination of the direct sum of term rewriting systems. Infor-

mation Processing Letters, 26, 65–70.

Toyama, Y. (1987) Counterexamples to termination for the direct sum of term rewriting

systems. Infor. Process. Lett., 25, 141–143.

Werner, B. (1994) Méta-théorie du Calcul des Constructions Inductives. Thèse, Université

Paris VII.

https://doi.org/10.1017/S095679689700289X Published online by Cambridge University Press

https://doi.org/10.1017/S095679689700289X

