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Abstract. In this paper we study non-complemented spaces of operators and
the embeddability of �∞ in the spaces of operators L(X, Y ), K(X, Y ) and Kw∗ (X∗, Y ).
Results of Bator and Lewis [2, 3] (Bull. Pol. Acad. Sci. Math. 50(4) (2002), 413–416;
Bull. Pol. Acad. Sci. Math. 549(1) (2006), 63–73), Emmanuele [8–10] (J. Funct. Anal. 99
(1991), 125–130; Math. Proc. Camb. Phil. Soc. 111 (1992), 331–335; Atti. Sem. Mat. Fis.
Univ. Modena 42(1) (1994), 123–133), Feder [11] (Canad. Math. Bull. 25 (1982), 78–81)
and Kalton [16] (Math. Ann. 208 (1974), 267–278), are generalised. A vector measure
result is used to study the complementation of the spaces W (X, Y ) and K(X, Y ) in the
space L(X, Y ), as well as the complementation of K(X, Y ) in W (X, Y ). A fundamental
result of Drewnowski [7] (Math. Proc. Camb. Phil. Soc. 108 (1990), 523–526) is used
to establish a result for operator-valued measures, from which we obtain as corollaries
the Vitali–Hahn–Saks–Nikodym theorem, the Nikodym Boundedness theorem and a
Banach space version of the Phillips Lemma.

2010 Mathematics Subject Classification. 46B05, 46B28, 46B25.

1. Introduction. Let (en) denote the unit vector basis of c0. E, F , X , Y will denote
real Banach spaces. The set of all continuous linear transformations from E to F will
be denoted by L(E, F), and the compact (respectively, weakly compact) operators will
be denoted by K(E, F) (resp. W (E, F)). The w∗ − w continuous maps from E∗ to F
(resp. w∗ − w continuous compact) will be denoted by Lw∗ (E∗, F) (resp. Kw∗ (E∗, F)).
If (Tn) is a sequence in L(E, F), then (Tn) → T in the strong operator topology (sot) if
(Tn(x)) converges to T(x) for all x ∈ E and (Tn) → T in the weak operator topology
(wot) if (Tn(x)) converges weakly to T(x) for all x ∈ E.

We note that X � L(�, X). Let � be a σ -algebra of subsets of �. If (Ai)∞i=1 is a
sequence from �, then σ ((Ai)) denotes the σ -algebra of subsets of ∪∞

i=1Ai generated
by (Ai)∞i=1. If this sequence is pairwise disjoint, we can identify σ ((Ai)) with P , the
power class of the positive integers. If A is an algebra of subsets of �, a bounded and
finitely additive set function μ : A → X is said to be strongly additive if ‖μ(Ai)‖ → 0,
whenever (Ai) is a pairwise disjoint sequence from A. Equivalently, a bounded and
finitely additive set function μ : A → X is strongly additive iff there is a finitely additive
non-negative real valued measure λ so that μ 
 λ [6, Corollary 5.3, p. 28]. Drewnowski
[7, p. 38] showed that if μ : � → X is strongly additive and (Ai) is a pairwise disjoint
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sequence from �, then there is a subsequence (Bi) of (Ai) so that μ : σ ((Bi)) → X
is countably additive. A sequence (μi) of strongly additive measures on A is said
to be uniformly strongly additive if for any pairwise disjoint sequence (An) in A,
limn ‖μi(An)‖ = 0 uniformly in i.

The Diestel–Faires theorem [6, p. 20] is helpful in identifying isomorphic copies
of both co and �∞. The key ingredient in the proof of the Diestel–Faires theorem is a
fundamental lemma by Rosenthal [22]. The proof of this lemma, which appears in [6],
is from Kupka [17] and is described as an elegant simplification of Rosenthal’s original
argument. The proof of the algebra version is based on the proof of the σ -algebra
version, the Hahn–Banach theorem and isomorphic identifications. We present an
elementary proof of Rosenthal’s lemma that handles both cases simultaneously. (In the
σ -algebra case, replace infinite sums with unions.)

THEOREM 1 ( Rosenthal’s Lemma [22]). Suppose that A is an algebra of subsets
of �, and (μn) is a uniformly bounded sequence of finitely additive real-valued measures
defined on A. If (An) is a pairwise disjoint sequence of sets in A and ε > 0, then there is
a subsequence (Anj ) of (An) such that∑

j �=i

|μni |(Anj ) < ε

for each i ∈ �.

Proof. Let ε > 0, and let (Ai) be a pairwise disjoint sequence of sets in A. Since
(|μi|) is bounded, using a diagonal process we may assume without loss of generality
that xi = limn |μn|(Ai) exists for all i.

We claim that limk xk = 0. Suppose not. Without loss of generality xk > δ for
all k, for some δ > 0. Let M > 0 so that |μn| < M for all n and let N ∈ � so that
N δ
2 > M. Since limn |μn|(Ak) > δ for all k, one can find an n ∈ � so that |μn|(Ai) > δ

2 ,
for all 1 ≤ i ≤ N. Then |μn|(∪N

i=1Ai) > N δ
2 > M, a contradiction. By passing to a

subsequence, we may (and do) assume that
∑

k xk < ε/2.
Partition � into a pairwise disjoint sequence of infinite sets (M1

i ), and let n1 = 1.
Since |μn1 |(�) < ∞ and (Ai) is a pairwise disjoint sequence,

∑
j |μn1 |(Aj) < ∞. Choose

i ∈ � such that ∑
j∈M1

i

|μn1 |(Aj) < ε/2.

Let N1 = {n ∈ M1
i : n > n1}. Since limn |μn|(An1 ) < ε/2 and N1 is infinite, we can

choose n2 ∈ N1 such that |μn2 |(An1 ) < ε/2.
Now partition {n ∈ N1 : n > n1} into a pairwise disjoint sequence of infinite sets

(M2
i ). As above, choose i ∈ � so that

∑
j∈M2

i
|μn2 |(Aj) < ε/2. Let N2 = {n ∈ M2

i : n >

n2} and choose n3 ∈ N2 such that |μn3 |(An1 ) + |μn3 |(An2 ) < ε/2.
Continuing this way we obtain a strictly increasing subsequence (ni) of positive

integers and a sequence of infinite subsets (Ni) of � so that ni+1 ∈ Ni, Ni+1 ⊆ {n ∈ Ni :
n > ni}, ∑

j∈Ni

|μni |(Aj) < ε/2,

and
∑i−1

j=1 |μni |(Anj ) < ε/2.
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If j > i, then nj ∈ Ni, and
∑

j>i |μni |(Anj ) ≤ ∑
j∈Ni

|μni |(Aj) < ε/2 for each i. Hence,∑
j �=i |μni |(Anj ) < ε for each i. �

Rosenthal [22] showed that his lemma easily demonstrates that if T : �∞ → X is an
operator so that ‖T(en)‖ �→ 0, then there is a copy of �∞ on which T is an isomorphism.
This result of Rosenthal and classical results of Bessaga and Pelczynski [4] are used to
give a new and quick proof of the Diestel–Faires theorem.

THEOREM 2 (Diestel-Faires theorem [6]). If A is an algebra, and μ : A → X is
a bounded vector measure which is not strongly additive, then there is an isomorphism
T : c0 → X and a pairwise disjoint sequence of sets (Ai) in A so that T(en) = μ(An).
Moreover, if A is a σ -algebra, the above conclusion remains true if c0 is replaced by �∞.

Proof. Suppose that A is an algebra, and μ : A → X is a non-strongly additive
bounded vector measure. Let (An) be a sequence of pairwise disjoint sets in A
so that (μ(An)) �→ 0. Without loss of generality, suppose ‖μ(An)‖ > ε for all n,
for some ε > 0. If x∗ ∈ X∗, ‖x∗‖ ≤ 1, then x∗μ is a bounded real-valued measure
(since μ is bounded), thus strongly additive. Then

∑ |x∗μ(An)| < ∞, and
∑

μ(An)
is weakly unconditionally converging, but not unconditionally converging. Moreover,
inf ‖μ(An)‖ > 0. By Lemma 3 in [4, p. 160], (μ(An)) ∼ (en).

Now suppose A is a σ -algebra, and μ : A → X is a non-strongly additive and
bounded vector measure. As above, let (An) be a sequence of pairwise disjoint sets in
A and ε > 0 so that ‖μ(An)‖ > ε for all n. If b ∈ �∞ is a finitely valued sequence, write
b = ∑n

j=1 bjχBj , where B1, B2, . . . , Bn are pairwise disjoint sets of positive integers. Let
U be the dense linear subspace of �∞ consisting of finitely valued sequences, and define
T : U → X by

T(b) =
n∑

j=1

bj μ

⎛
⎝⋃

k∈Bj

Ak

⎞
⎠ .

Note that T is a bounded linear operator defined on a dense subspace of �∞, and,
thus, it has a bounded extension, still denoted by T . Then T : �∞ → X is a bounded
linear operator and ‖T(en)‖ = ‖μ(An)‖ > ε for all n. By Rosenthal’s result [22], there
is an infinite subset M of � so that T |�∞(M) is an isomorphic embedding. If Bn = An,
n ∈ M, then (Bn) is a pairwise disjoint sequence in A and T(en) = μ(Bn). �

Theorem 2 also enables (numerous) short proofs of the measure theoretic version
of the Orlicz–Pettis theorem: If � is a σ -algebra and μ : � → X is weakly countably
additive, then μ is countably additive. Specifically, suppose (Ai) is a pairwise disjoint
sequence in �, A = σ ((Ai)), and Y = [μ(Ai) : i ≥ 1]. Weak countable additivity of μ

and separability of Y ensure that μ : A → Y is strongly additive. It is straightforward
to check that a strongly additive and weakly countably additive measure is countably
additive, i.e. μ(∪∞

i=1Ai) = ∑∞
i=1 μ(Ai).

The next result links unconditional convergence in the strong operator topology
and the presence of isomorphic copies of �∞ in L(E, F).

THEOREM 3. (i)If �1 � c
↪→ E and (Tn) is a sequence of operators in L(E, F)

so that
∑

Tn(x) converges unconditionally for all x ∈ E, then
∑

T∗
n (y∗) converges

unconditionally for all y∗ ∈ F∗.
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(ii)If �1
c

↪→ E, then there is a sequence (Tn) of operators in L(E, F) so that
∑

Tn(x) is
unconditionally convergent for all x ∈ E and

∑
T∗

n (y∗) is not unconditionally convergent
for some y∗ ∈ F∗.

(iii)If (Tn) is a sequence in L(E, F) so that
∑

Tn(x) is unconditionally convergent
for all x ∈ E and

∑
T∗

n (y∗) fails to converge for some y∗ ∈ F∗, then �∞ ↪→ L(E, F).

Proof. (i) Suppose �1 � c
↪→ E, and let (Tn) be a sequence in L(E, F) such that∑

Tn(x) converges unconditionally for all x ∈ E. If y∗ ∈ F∗, then
∑

T∗
n (y∗) converges

unconditionally in the w∗- topology of E∗. By the Bessaga–Pelczyinski theorem [4] (or
[16, Proposition 3]),

∑
T∗

n (y∗) converges unconditionally for all y∗ ∈ F∗.

(ii) Suppose �1
c

↪→ E. Let P : E → �1 be a projection and let y be a normalised
element of F . Define Tn : E → F by Tn(x) = 〈P(x), en〉 y = enP(x) y. Note that

∑
Tn(x)

is absolutely summable, and thus unconditionally converging for all x ∈ E. If y∗ ∈ F∗,∑
T∗

n (y∗) = ∑
y∗(y) enP. However, ‖enP‖ �→ 0, and thus

∑
T∗

n (y∗) does not converge
unconditionally if y∗(y) �= 0.

(iii) Suppose
∑

Tn(x) converges unconditionally for all x ∈ E and
∑

T∗
n (y∗) fails

to converge for some y∗ ∈ F∗. Let ε > 0 and (pi, qi) be a sequence of intertwining
pairs of positive integers so that ‖∑qi

n=pi
T∗

n (y∗)‖ ≥ ε for each i. Let Li = ∑qi
n=pi

Tn.
Certainly, ‖Li‖ �→ 0, and

∑
Li(x) is unconditionally convergent for each x ∈ E. Define

μ : P → L(E, F) by μ(A) = ∑
i∈A Li (sot). Then μ is bounded, finitely additive and

not strongly additive (μ({i}) �→ 0). Apply the Diestel–Faires theorem to conclude that
�∞ ↪→ L(E, F). �

REMARK. If �∞ ↪→ L(E, F), then �∞ ↪→ L(F∗, E∗). To see this, let U : �∞ →
L(E, F) be an isomorphism and consider V : �∞ → L(F∗, E∗), V (b) = U(b)∗. If
E and F are infinite dimensional, the question of whether �∞ ↪→ L(E, F) when
�∞ ↪→ L(F∗, E∗) is more delicate and will be discussed later in this paper.

Suppose p : P → � is a non-negative, finitely additive and real-valued set function
defined on the power class of the natural numbers, e.g. p is the total variation of
an element in ba(P). Suppose that p ({n}) = 0 for each n. Let {Aα : α ∈ D} be an
uncountable collection of infinite subsets of the natural numbers so that Aα ∩ Aβ is
finite if α �= β, i.e. Aα and Aβ are almost disjoint. Then p (Aα) = 0 for uncountably
many α. If not, there is a δ > 0 so that {α : p (Aα) > δ} is uncountable. Since p (Aα ∪
Aβ) = p (Aα) + p (Aβ) for α �= β, we contradict the assumption that p (�) is real. Now
suppose μ : P → X is bounded and finitely additive, μ({n}) = 0 for all n and (x∗

n) is
a sequence of functionals in X∗ which separates the points in μ(P). If one assumes
that there are uncountably many α for which |μ|(Aα) �= 0, then there is an n so that
{α : |x∗

nμ|(Aα) > 0} is uncountable. Let p = |x∗
nμ|, and note the contradiction above.

LEMMA 4. If μ : P → X is bounded and finitely additive, μ({n}) = 0 for all n, and
there are countably many functionals in X∗ separating the points in μ(P), then there is
an uncountable collection {Aα : α ∈ D} of almost disjoint infinite subsets of � so that if
α ∈ D and B ⊆ Aα, then μ(B) = 0.

We remark that if E is separable and F is the dual of a separable space, then there
are countably many functionals separating the points of L(E, F). Lemma 4 furnishes
an almost immediate proof of Drewnowski’s result, which was highlighted in the
Introduction. Specifically, suppose μ : � → X is a strongly additive measure and λ is a
finitely additive non-negative real-valued measure so that μ 
 λ. Let (Ai) be a pairwise
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disjoint sequence of sets in � and identify σ ((Ai)) with P . Define ν(S) = ∑
i∈S λ({i}),

for S ⊆ �. Note that ν : P → � is countably additive and ν({i}) = λ({i}) for each i.
Lemma 4 produces an infinite subset M of � so that ν(S) = λ(S) for all S ⊆ M. If
Bi = Ai, i ∈ M, then (Bi) is a subsequence of (Ai), and λ is countably additive on
σ ((Bi)). Since μ is λ-continuous, μ is countably additive on σ ((Bi)).

Lemma 4 also plays an important role in the proofs of the next 11 results, each of
which deals with the structure of spaces of operators. Theorem 5 presents an alternate
and shorter proof of the main result in [7], Theorem 6 uses the family of projections
associated with an unconditional basic sequence together with auxiliary maps to show
that certain subspaces of L(X, Y ) are not complemented, Corollaries 7–13 extend
results in several papers listed in the bibliography and Theorem 14 explicitly formalises
a phenomenon present in preceding results.

The following isometries [23] help to establish the context of Theorem 5.
(1) Lw∗ (X∗, Y ) � Lw∗ (Y∗, X), Kw∗ (X∗, Y ) � Kw∗ (Y∗, X) (T → T∗)
(2) W (X, Y ) � Lw∗ (X∗∗, Y ) and K(X, Y ) � Kw∗ (X∗∗, Y ) (T → T∗∗).

THEOREM 5. (Drewnowski, [7]). �∞ ↪→ Kw∗(X∗, Y ) iff �∞ ↪→ X or �∞ ↪→ Y.

Proof. Suppose �∞ �↪→ X and �∞ �↪→ Y . Let T : �∞ → Kw∗ (X∗, Y ) be an
isomorphism. For x∗ ∈ X∗, y∗ ∈ Y∗, define Tx∗ : �∞ → Y and Ay∗ : �∞ → X by
Tx∗ (b) = T(b)(x∗) and Ay∗ (b) = T(b)∗(y∗). Note that since �∞ �↪→ X and �∞ �↪→ Y ,
the operators Tx∗ : �∞ → Y and Ay∗ : �∞ → X are weakly compact ([22], [6, Chapter
VI]), and thus unconditionally converging. Let Ti = T(ei) for each i, and let

S(b) =
∑

bi Ti (sot)

for each b = (bi) ∈ �∞. By the uniform boundedness principle (or the Pietsch ε-norm
[20, Section 1.2]), we obtain that S(b) is a bounded linear operator. Further, S(b) ∈
Lw∗ (X∗, Y ).

Let R be the rational span of {Ti : i ≥ 1}. Certainly, R is countable. Further, if
L ∈ R, then L is compact. Thus, there is a separable closed linear subspace H of X∗ so
that S(b)(BX∗ ) ⊆ S(b)(BH) ⊆ [Ti(H) : i ≥ 1]. Now we observe that [Ti(H) : i ≥ 1] is a
separable subspace of Y . Thus, there is a continuous linear transformation W : Y →
�∞ so that W |[Ti(H): i≥1] is an isometry.

Let μ(A) = WT(χA)|H and ν(A) = W (
∑

i∈A Ti|H) = WS(χA)|H , for A ⊆ �. Then
μ, ν : P → L(H, �∞) are bounded and finitely additive measures, and μ({n}) = ν({n})
for all n. Thus, by Lemma 4, there is an infinite subset M of � so that μ(A) = ν(A)
for all A ⊆ M. Consequently, W (

∑
i∈A Ti|H) is compact for all A ⊆ M. Since W is

an isometry on [Ti(H) : i ≥ 1],
∑

i∈A Ti|H is compact. Then
∑

i∈A Ti is compact for all
A ⊆ M (by the construction of H).

For x∗ ∈ X∗ and b ∈ �∞(M), S(b)(x∗) = ∑
i∈M biTi(x∗). Then S(b) = ∑

i∈M biTi

(weakly) in Kw∗ (X∗, Y ) [14], and by the Orlicz–Pettis theorem, S(b) = ∑
i∈M biTi

(norm) in Kw∗ (X∗, Y ), for each b ∈ �∞(M). Hence, ‖Ti‖ → 0, i ∈ M, a contradiction
since T is an isomorphism.

Conversely, suppose �∞ ↪→ X (�∞ ↪→ Y ). Since X and Y embed in the rank one
operators from X∗ to Y , �∞ ↪→ Kw∗ (X∗, Y ). �

THEOREM 6. (i) Let X and Y be Banach spaces with the following properties:
There exists a Banach space G with a semi-normalised unconditional basis (gi) and

coefficient functionals (g∗
i ), and operators R : G → Y and S : X → G such that (R(gi)) is
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a semi-normalised basic sequence in Y and (S∗(g∗
i )) has no norm convergent subsequence.

If (PA) is the family of projections associated to (gi) and T : L(X, Y ) → K(X, Y ) is an
operator, then there is an N ∈ � so that

TRP{n}S �= RP{n}S,

for n > N. Thus, K(X, Y ) is not complemented in L(X, Y ).
(ii) Let X and Y be Banach spaces with the following properties:
There exists a Banach space G with a semi-normalised unconditional basis (gi) and

coefficient functionals (g∗
i ), and operators R : G → Y and S : X → G such that (R(gi)) is

a semi-normalised basic sequence in Y and (S∗(g∗
i )) has no weakly convergent subsequence.

If (PA) is the family of projections associated to (gi) and T : L(X, Y ) → W (X, Y ) is an
operator, then there is an N ∈ � so that

TRP{n}S �= RP{n}S,

for n > N. Thus, W (X, Y ) is not complemented in L(X, Y ).
(iii) Let X and Y be Banach spaces with the following properties:
There exists a Banach space G with a semi-normalised unconditional basis (gi) and

coefficient functionals (g∗
i ), and operators R : G → Y and S : X → G such that R is

weakly compact, (R(gi)) is a semi-normalised basic sequence in Y and (S∗(g∗
i )) has no

norm convergent subsequence. If (PA) is the family of projections associated to (gi) and
T : W (X, Y ) → K(X, Y ) is an operator, then there is an N ∈ � so that

TRP{n}S �= RP{n}S,

for n > N. Thus, K(X, Y ) is not complemented in W (X, Y ).

Proof. (i) Let (PA) be the family of projections associated with (gn), R and S
as in the hypothesis, and set μ(A) = RPAS, A ⊆ �. Let X0 be a separable subspace
of X such that ‖x∗‖ = ‖x∗|X0‖ for all x∗ ∈ [S∗(g∗

n) : n ≥ 1]. Let (y∗
n) be the sequence

of biorthogonal coefficients corresponding to (R(gn)), and (f ∗
n ) be the sequence of

Hahn–Banach extensions to Y∗. Note that μ(A)|X0 is compact iff A is finite. Indeed,
(μ(A)∗(f ∗

n )) = (S∗(g∗
n))n∈A, which is relatively compact iff A is finite.

Now suppose T : L(X, Y ) → K(X, Y ) is an operator and B = {n ∈ � : Tμ({n}) =
μ({n})} is an infinite set. Let J : Y → �∞ be an operator which is an isometry on [R(gn) :
n ≥ 1]. Identify P with P(B) in the obvious way, and define ν : P(B) → L(X0, �∞) by
ν(A) = (JTμ(A) − Jμ(A))|X0 , A ⊆ B. Apply Lemma 4 to obtain an infinite subset M
of B so that JTμ(M) = Jμ(M) on X0. Since J is an isometry on [R(gn) : n ≥ 1] and
JTμ(M)|X0 is compact, μ(M)|X0 is also compact, a contradiction. Therefore there does
not exist a projection P : L(X, Y ) → K(X, Y ).

(ii) The proof is essentially the same as the proof of (i), replacing ‘relatively
compact’ with ‘relatively weakly compact’.

(iii) The proof is similar to the proof of (i), defining μ : P → W (X, Y ) by
μ(A) = RPAS, A ⊆ �, and ν : P(B) → W (X0, �∞) by ν(A) = (JTμ(A) − Jμ(A))|X0 ,
A ⊆ B. �

REMARK. If one assumes that {S∗(g∗
i ) : i ∈ �} is not relatively compact, then one

may pass to a subsequence (gni ) and obtain the same conclusion as above.

COROLLARY 7 ([9], [19]). If X has a semi-normalised unconditional basis (xn),
(PA) is the family of projections associated with (xn) and T : L(X, X) → K(X, X) is
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an operator, then there is an N ∈ � so that TP{n} �= P{n}, for n > N. Thus, K(X, X) is
not complemented in L(X, X).

Proof. Let G = Y = X , and R = S be the identity on X . Apply Theorem 6. �
COROLLARY 8 (Lemma 3, [16]). If �1 is complemented in X and Y is infinite

dimensional, then K(X, Y ) is not complemented in L(X, Y ).

Proof. Let P be a projection from X to �1. Let G = �1. Since P is a projection, P∗ is
an isomorphism. Therefore (P∗(en)) has no norm convergent subsequence. Let (yn) be a
normalised basic sequence in Y . Define R : �1 → Y by R(b) = ∑

bn yn, b = (bn) ∈ �1.
Then (R(e∗

n)) = (yn) is basic and normalised. Apply Theorem 6. �
If each of (xn) and (yn) is a basic sequence, one says that (xn) dominates (yn) and

writes (xn) � (yn) provided that
∑

αnyn converges whenever
∑

αnxn converges. Note
that if (yn) is any semi-normalised basic sequence, then (e∗

n) � (yn). Singer [24, p. 68]
shows that if (xn) and (yn) are semi-normalised basic sequences and (xn) � (yn), then
there is an operator T : [xn] → [yn] so that T(xn) = yn for each n. Theorem 6 and the
proof of Corollary 8 immediately produce the following generalisation of Lemma 3 of
[16]: If (xn)∞n=1 is an unconditional semi-normalised basic sequence, [xn] is complemented
in X, (yn)∞n=1 is a semi-normalised basic sequence in Y and (xn) � (yn), then K(X, Y ) is
not complemented in L(X, Y ).

COROLLARY 9 (11, Corollary 4). If c0 ↪→ Y and X is infinite dimensional, then
K(X, Y ) is not complemented in L(X, Y ).

Proof. Let (x∗
n) be a w∗-null sequence of norm one elements in X∗ (Josefson–

Nissenzweig theorem). Define S : X → c0 by S(x) = (x∗
n(x)). Note that (S∗(e∗

n)) = (x∗
n)

has no norm convergent subsequence. Let G = c0 and R : c0 → Y be an embedding.
Apply Theorem 6. �

COROLLARY 10 ([8, Theorems 2 and 3]; [2, Theorem 4]). If c0 ↪→ Y and X∗ contains
a w∗-null sequence (x∗

n), which is not weakly null, then W (X, Y ) is not complemented in
L(X, Y ).

Proof. Assume without loss of generality that (x∗
n) has no weakly convergent

subsequence. Define S : X → c0 by S(x) = (x∗
n(x)). Then (S∗(e∗

n)) = (x∗
n) has no

weakly convergent subsequence. Let G = c0 and R : c0 → Y be an embedding. Apply
Theorem 6. �

COROLLARY 11 (Theorem 2, [9, 15]). If c0 ↪→ K(X, Y ), then K(X, Y ) is not
complemented in L(X, Y ).

Proof. By corollaries 8 and 9 we can suppose without loss of generality that c0 �↪→
X∗ and c0 �↪→ Y . Suppose c0 ↪→ K(X, Y ) and let (Tn) be a copy of (en) in K(X, Y ).
Then

∑
Tn(x) converges unconditionally for each x ∈ X . Define μ : P → L(X, Y ) by

μ(A)(x) = ∑
n∈A Tn(x), x ∈ X , A ⊆ �. If R : L(X, Y ) → K(X, Y ) is an operator, then

RTn = Tn for only finitely many n; in fact, ‖RTn‖ → 0. Otherwise, apply Theorem 2
to the measure Rμ and obtain �∞ ↪→ K(X, Y ). Theorem 5 and the present hypotheses
eliminate this possibility. �

COROLLARY 12 (10, Lemma 3). If �1 is complemented in X and Y does not have the
Schur property, then K(X, Y ) is not complemented in W (X, Y ).
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Proof. Let P be a projection from X to �1. Let G = �1. The proof of Corollary
8 shows that (P∗(en)) has no norm convergent subsequence. Let (yn) be a normalised
weakly null basic sequence in Y . Define R : �1 → Y by R(b) = ∑

bn yn, b = (bn) ∈ �1.
Since (R(e∗

n)) = (yn) is weakly null, R is weakly compact. Apply Theorem 6. �
COROLLARY 13 ([2, Theorem 3]). Suppose that X has a semi-normalised

unconditional basis (xn), (PA) is the family of projections associated with (xn) and
S : X → Y is an operator so that no subsequence of (S(xn)) converges weakly. If
T : L(X, Y ) → W (X, Y ) is an operator, then there is an N ∈ � so that TSP{n} �= SP{n},
for n > N. Thus, W (X, Y ) is not complemented in L(X, Y ).

Consequently, if �1 is complemented in X and W (X, Y ) �= L(X, Y ), then W (X, Y )
is not complemented in L(X, Y ).

Proof. Let (PA) be the family of associated projections, S : X → Y be as in the
hypothesis and set μ(A) = SPA, A ⊆ �. Note that μ(A) is weakly compact iff A is
finite. Let J : Y → �∞ be an operator, which is an isometry on [S(xn) : n ≥ 1]. Now,
suppose that T : L(X, Y ) → W (X, Y ) is an operator and B = {n : Tμ({n}) = μ({n})} is
an infinite set. IdentifyP withP(B) in the obvious way, and define ν : P(B) → L(X, �∞)
by ν(A) = JTμ(A) − Jμ(A), A ⊆ B. Apply Lemma 4 to obtain an infinite subset M of
B so that JTμ(M) = Jμ(M). Since J is an isometry on [S(xn) : n ≥ 1] and JTμ(M) is
weakly compact, μ(M) is weakly compact, a contradiction. Therefore there does not
exist a projection P : L(X, Y ) → W (X, Y ).

Now, suppose that �1 is complemented in X and W (X, Y ) �= L(X, Y ). If W (X, Y )
is complemented in L(X, Y ), then W (�1, Y ) is complemented in L(�1, Y ). Let (yn)
be a bounded sequence in Y with no weakly convergent subsequence and define S :
�1 → Y by S(x) = ∑

xn yn, x = (xn) ∈ �1. The preceding argument shows that there is a
sequence of rank one operators (e∗

n ⊗ yn) so that any operator T : L(�1, Y ) → W (�1, Y )
fixes at most finitely many terms of this sequence. �

The measure μ in the first paragraph of the proof of Theorem 6 has the property
that μ(A)|X0 is compact iff A is finite. The next result explicitly demonstrates the
significance of such a measure.

THEOREM 14. Suppose that X is separable and Y embeds in the dual of a separable
space. Suppose further that U is an infinite set and μ : P(U) → L(X, Y ) is a bounded
and finitely additive measure so that μ(A) ∈ K(X, Y ) iff A is finite. If T : L(X, Y ) →
K(X, Y ) is an operator and (un) is an infinite sequence of distinct points in U, then there
is an N ∈ � so that Tμ({un}) �= μ({un}), for n > N. Thus, K(X, Y ) is not complemented
in L(X, Y ).

Proof. Note first that there are countably many continuous linear functionals
separating the points of L(X, Y ). Suppose there exists an operator T : L(X, Y ) →
K(X, Y ) so that Tμ({un}) = μ({un}) for infinitely many n. Identify the power class of
the natural numbers with the power class of the subsequence satisfying the preceding
equality, and define ν : P → L(X, Y ) by ν(B) = Tμ(B) − μ(B), B ∈ P . Lemma 4
produces an infinite subset M of U so that ν(B) = 0 for all B ⊆ M. Therefore
Tμ(M) = μ(M), a contradiction since μ(M) is not compact. Thus, there does not
exist a projection P : L(X, Y ) → K(X, Y ). �

We now address the question raised in the remark following the proof of Theorem
3. If �∞ embeds in L(F∗, E∗), does �∞ embed in L(E, F)? Suppose 1 < p < 2 < q < ∞,
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and consider L(�q, �p). Since every operator T : �q → �p is compact [21] and �∞ embeds
in neither (�q)∗ nor �p, Theorem 5 shows that �∞ �↪→ L(�q, �p).

Now let G = �2, X = �p, Y = �q, R : G → Y be the natural inclusion, and let
S : G∗ → X∗ be the natural inclusion map. A direct application of results in [9] and
[12] shows that c0 ↪→ K(�p, �q), and the main result in [18] shows that �∞ ↪→ L(�p, �q).
We also observe that c0 �↪→ K(�q, �p) ([13, Theorem 9], [10, Theorem 4]).

As observed in the concluding paragraph of the proof of Theorem 5 (see also [16]),
if �∞ ↪→ X∗, then �∞ ↪→ K(X, Y ). In fact, if T : �∞ → X∗ is an isomorphism, y is
any non-zero vector in Y , and (T(en) ⊗ y)(x) = T(en)(x) y, then ‖T(en) ⊗ y‖ �→ 0, and∑

(T(en) ⊗ y)(x) is unconditionally convergent for all x ∈ X . Moreover, the proofs of
part (iii) of Theorem 3, Theorem 3.1 in [14], Theorem 2.4 in [3] and Theorem 1 in [11]
explicitly suggest the equivalence of (a) the embeddability of �∞ in L(X, Y ) and (b)
the existence of a sequence (Tn) in L(X, Y ) so that ‖Tn‖ �→ 0 and

∑
Tn(x) converges

unconditionally in Y for each x ∈ X .
A very simple example shows that (a) does not imply (b) in general. Specifically,

�∞ ↪→ L(�, �∞), and the strong operator topology in L(�, �∞) is the norm topology
on �∞. However, we do have the following result.

THEOREM 15. Suppose that X is infinite dimensional.
(i) If c0 ↪→ Y or c0 ↪→ X∗, then there is a sequence (Tn) in K(X, Y ) so that ‖Tn‖ �→ 0

and
∑

Tn(x) is unconditionally convergent for all x ∈ X.
(ii) If c0 ↪→ L(X, Y ), c0 �↪→ Y, and c0 �↪→ X∗, then there is a sequence (Tn) in L(X, Y )

so that
∑

Tn(x) and
∑

T∗
n (y∗) are unconditionally convergent for all x ∈ X and

y∗ ∈ Y∗, and ‖Tn‖ �→ 0.
(iii) If �∞ ↪→ L(X, Y ), �∞ �↪→ Y, and �∞ �↪→ X∗, then there is a sequence (Tn) in

L(X, Y ) so that
∑

Tn(x) and
∑

T∗
n (y∗) are unconditionally convergent for all

x ∈ X and y∗ ∈ Y∗, and ‖Tn‖ �→ 0.
(iv) If (Tn) is a sequence in L(X, Y ) so that ‖Tn‖ �→ 0 and

∑
Tn(x) is unconditionally

convergent for all x ∈ X, then �∞ ↪→ L(X, Y ).

Proof. (i) Suppose that c0 ↪→ Y and let (yn) be a copy of (en) in Y . Use the Josefson–
Nissenzweig theorem [5, Ch. XII], and choose a normalised w∗ - null sequence (x∗

n)
in X∗. Let Tn : X → Y , Tn = x∗

n ⊗ yn; i.e. Tn(x) = x∗
n(x) yn. Then

∑
Tn(x) converges

unconditionally and ‖Tn‖ = ‖yn‖ �→ 0.
If c0 ↪→ X∗, the discussion preceding this theorem demonstrates the existence of

a sequence of operators that has the desired properties.
(ii) Next, suppose that c0 �↪→ Y and c0 �↪→ X∗. Let T : c0 → L(X, Y ) be

an isomorphism, and let Ti = T(ei). Then ‖Ti‖ �→ 0 and
∑

Ti(x) is weakly
unconditionally convergent, and thus unconditionally converging for all x ∈ X [4].
Further, in this case,

∑
T∗

i (y∗) is unconditionally convergent for all y∗ ∈ Y∗.
(iii) Suppose that �∞ �↪→ Y and �∞ �↪→ X . Let T : �∞ → L(X, Y ) be an

isomorphism and Ti = T(ei). Note that ‖Ti‖ �→ 0. For x ∈ X and y∗ ∈ Y∗, define
Tx : �∞ → Y by Tx(b) = T(b)(x) and Ty∗ : �∞ → X∗ by Ty∗ (b) = T(b)∗(y∗), b ∈ �∞.
Since �∞ �↪→ Y , Tx is weakly compact, and thus

∑
Tx(ei) = ∑

Ti(x) is unconditionally
converging for all x ∈ X [16, Proposition 1]. Similarly, since �∞ �↪→ X∗, Ty∗ is weakly
compact and

∑
Ty∗ (ei) = ∑

T∗
i (y∗) is unconditionally convergent for all y∗ ∈ Y∗.

(iv) See the proof of (iii) in Theorem 3. �
REMARK. If X is infinite dimensional, Theorem 15 shows that �∞ ↪→ L(X, Y )

precisely when there exists a sequence (Tn) in L(X, Y ) so that ‖Tn‖ �→ 0 and
∑

Tn(x)
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is unconditionally convergent for all x ∈ X . The proof also shows that if X is infinite
dimensional and c0 ↪→ L(X, Y ), then �∞ ↪→ L(X, Y ) [4, 13, 18].

The focus in the opening portion of this paper has dealt with applications of
measure theory to problems involving spaces of operators. In the remainder of this
paper, the roles are reversed.

If E is separable and F is the dual of a separable space, then there are countably
many continuous linear functionals that separate the points in Lw∗ (E∗, F). To see
this, suppose that Y is separable, F = Y∗ and let L, T ∈ Lw∗ (E∗, F), L �= T . Let (yk)
be dense in Y and consider (yk) ⊆ Y∗∗ = F∗. Choose k ∈ � so that L∗(yk) �= T∗(yk).
Let {xn : n ≥ 1} be dense in E, ‖xn‖ = 1, n ∈ �. For each n, choose x∗

n ∈ E∗ so that
‖x∗

n‖ = 1 and x∗
n(xn) = ‖xn‖. Now let (xni ) be a subsequence of (xn) so that ‖xni −

(L∗(yk) − T∗(yk))‖ i→ 0. Therefore 〈x∗
ni
, L∗(yk) − T∗(yk)〉 �= 0 for large i.

THEOREM 16. Suppose that � is a σ -algebra of subsets of �, E is separable and F
is a Banach space which does not contain �∞ but does embed isomorphically in the dual
of a separable space. If μ : � → Lw∗ (E∗, F) is bounded and finitely additive and (An) is
a pairwise disjoint sequence from �, then there is a subsequence (Bn) of (An) so that

μ : σ ((Bn)) → (Lw∗ (E∗, F), sot)

is countably additive.

Proof. Suppose that P is the power class of the positive integers and identify P
with σ ((Ai)). For x∗ ∈ E∗ and y∗ ∈ F∗, define Fx∗ : P → F by Fx∗ (A) = μ(A)x∗ and
Gy∗ : P → E by Gy∗ (A) = μ(A)∗y∗. Since �∞ �↪→ F , Fx∗ is strongly additive for each
x∗ ∈ E∗ (by the Diestel–Faires theorem). Hence,

∑
μ({n})x∗ converges unconditionally

for each x∗ ∈ E∗. Since E is separable, �∞ �↪→ E; thus Gy∗ is strongly additive and∑
μ({n})∗y∗ converges unconditionally for each y∗ ∈ F∗.

Let Y be separable and L : F → Y∗ be an isomorphism. Define ν : P →
Lw∗ (E∗, Y∗) by

ν(A)x∗ = L(μ(A)x∗) − L

(∑
n∈A

μ({n})x∗
)

,

for A ∈ P and x∗ ∈ E∗. Note that ν(A) is w∗ − w continuous since
∑

μ({n})∗y∗

converges unconditionally for each y∗ ∈ F∗. Further, ν is a well defined, bounded,
finitely additive measure, and ν({n}) = 0 for each n ∈ �. Hence, Lemma 4 applies, and
we obtain an infinite subset M of � such that ν(A) = 0 for all A ⊆ M. Then

μ(A)x∗ =
∑
n∈A

μ({n})x∗,

for each A ⊆ M and x∗ ∈ E∗. Thus,

μ : σ ((An)n∈M) → (Lw∗ (E∗, F) (sot)

is countably additive. �
COROLLARY 17. Suppose that � is a σ -algebra of subsets of �, E∗ is separable, and

F is a Banach space which does not contain �∞ but does embed isomorphically in the dual
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of a separable space. If μ : � → W (E, F) is bounded and finitely additive and (Ai) is a
pairwise disjoint sequence from �, then there is a subsequence (Bi) of (Ai) so that

μ : σ ((Bi)) → (W (E, F), sot)

is countably additive.

Proof. Apply Theorem 16 and the isometries stated before Theorem 5. �
The next result is stated in two parts for clarity and emphasis. The proof of this

theorem is short and straightforward. Further, it facilitates new proofs of the Vitali–
Hahn–Saks–Nikodym theorem, the Nikodym Boundedness theorem and a Banach
space version of the Phillips Lemma.

THEOREM 18. Suppose that � is a σ -algebra of subsets of �.
(i) If �∞ does not embed in E, �∞ does not embed in F, μ : � → Kw∗ (E∗, F) is

bounded and finitely additive, and (An) is a pairwise disjoint sequence from �,
then there is a subsequence (Bn) of (An) so that

μ : σ ((Bn)) → Kw∗ (E∗, F)

is countably additive.
(ii) If �1 is not complemented in E, �∞ does not embed in F, μ : � → K(E, F) is

bounded and finitely additive, and (An) is a pairwise disjoint sequence from �,
then there is a subsequence (Bn) of (An) so that

μ : σ ((Bn)) → K(E, F)

is countably additive.

Proof. (i) Theorem 5 implies that �∞ �↪→ Kw∗ (E∗, F). Then μ is strongly additive
(by the Diestel–Faires theorem), and the conclusion follows from Drewnowski’s result
stated in the Introduction.

(ii) Apply part (i) and the isometries stated before Theorem 5. �
COROLLARY 19. (i) Suppose that � is a σ -algebra, �∞ does not embed in X, and Y

is any Banach space. If μ : � → Kw∗ (X∗, Y ) is a measure which is countably additive in
the weak operator topology, then μ is norm countably additive.

(ii) (16, Theorem 5) Suppose that � is a σ -algebra, �1 is not complemented in X,
and Y is any Banach space. If μ : � → K(X, Y ) is a measure which is countably additive
in the weak operator topology, then μ is norm countably additive.

Proof. (i) Suppose that μ : � → Kw∗(X∗, Y ) is countably additive in the (wot) and
μ is not countably additive. Then there is a p > 0 and a pairwise disjoint sequence (Ai)
so that ‖μ(Ai)‖ > p for all i. Let Z = [μ(Ai)(X∗) : i ≥ 1]. Since μ is countably additive
in the (wot), μ(B)(X∗) ⊆ Z for all B ∈ σ ((Ai)). Note that μ(Ai)(X∗) is separable for
each i (since μ(Ai) is compact), and thus Z is separable. Apply Theorem 18 to find a
subsequence (Bi) of (Ai) so that μ : σ ((Bi)) → Kw∗(X∗, Z) is countably additive. But
‖μ(Bi)‖ > p for all i, a contradiction.

(ii) Apply part (i) and the isometries stated before Theorem 5. �
COROLLARY 20. Suppose that � is a σ -algebra of subsets of �.
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(i) If �∞ �↪→ X, μ : � → X is a bounded finitely additive set function, and (An) is a
pairwise disjoint sequence in �, then there is a sub -sequence (Bn) of (An) such
that μ is countably additive on σ ((Bn)).

(ii) ([5, p. 79]). If μ ∈ ba(�) and (An) is a pairwise disjoint sequence in �, then
there is a subsequence (Bn) of (An) such that μ is countably additive on σ ((Bn)).

Proof. (i) We note that K(�, X) = L(�, X) � X . Apply Theorem 18. �
COROLLARY 21 (Vitali–Hahn–Saks–Nikodym, [6, p. 23]). Suppose that � is a

σ -algebra of subsets of �, μn : � → X is strongly additive for each n, and μ(A) =
limn μn(A) exists for each A ∈ �. Then

lim
i

sup
n

‖μn(Ai)‖ = 0,

whenever (Ai) is a pairwise disjoint sequence from �, i.e. (μn) is uniformly strongly
additive. Consequently, μ is strongly additive.

Proof. Suppose not. Then there exists an ε > 0 and a sequence of pairwise disjoint
sets (An) in � such that ‖μn(An)‖ > ε for each n. Let �1 = σ ((An)), U = {μn(Ai) : n ≥
1, i ≥ 1}, and Y = [U ]. Then Y is a separable subspace of X (since U is countable).
Further, if A ∈ �1, then μn(A) ∈ Y for each n. By Drewnowski’s result quoted in
the Introduction and a standard diagonalisation argument, we may assume that each
μn : �1 → Y is countably additive. For each n ∈ �, let x∗

n ∈ Y∗ of norm one so that
|x∗

n μn(An)| = ‖μn(An)‖ > ε. Denote the Hahn–Banach extension of x∗
n in X∗ also

by x∗
n. Since Y is separable, using a Cantor diagonalisation argument, we obtain a

subsequence (y∗
n) of (x∗

n) so that limn y∗
n(y) exists for each y ∈ Y .

Therefore (y∗
n μn) is a sequence of scalar valued countably additive measures and

limn y∗
n μn(A) exists for each A ∈ �1. Let c denote the space of all convergent sequences

of real numbers equipped with the sup norm. Now define τ : �1 → c by

τ (A) = (y∗
n μn(A))n

for A ∈ �1. Note that c is separable and c � L(�, c). By Theorem 18, there is a
subsequence (Bi) of (Ai) so that τ : σ ((Bi)) → L(�, c) = K(�, c) is countably additive.
But ‖τ (Bn)‖ ≥ |y∗

n μn(Bn)| > ε, a contradiction.
The strong additivity of μ follows from the uniform strong additivity of (μn) and

the fact that (μn(A)) → μ(A) for each A. �
COROLLARY 22 (The Nikodym Boundedness theorem, [6, p. 14]). Suppose that � is

a σ -algebra of subsets of � and (μn) is a sequence of X-valued bounded vector measures.
If sup{‖μn(A)‖ : n ∈ �} < ∞ for each A ∈ �, then (μn) is uniformly bounded, i.e.

sup{‖μn(A)‖ : n ∈ �, A ∈ �} < ∞.

Proof. By replacing {μn : n ∈ �} with {x∗μn : n ∈ �, x∗ ∈ X∗, ‖x∗‖ ≤ 1}, it is
enough to prove the theorem for sequences of real-valued measures. Now suppose that
(μn) is a sequence of real-valued finitely additive measures such that supn |μn(A)| < ∞
for each A. Note that, since μn is a bounded real-valued measure, μn is strongly additive
for each n.

By contradiction, suppose that sup{|μn(A)| : n ∈ �, A ∈ �} = ∞. We claim that
for each M > 0, there is an n ∈ � and a partition {A, B} of � into pairwise disjoint
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members of � such that |μn(A)| > M and |μn(B)| > M. Let n ∈ � and A ∈ � so that
|μn(A)| > M + supi |μi(�)|. Then

|μn(� \ A)| = |μn(A) − μn(�)| ≥ |μn(A)| − |μn(�)| > M.

Then the sets A and B = � \ A satisfy the claim.
Let M = 1 and choose n1 ∈ � and {A1, B1} a partition of � such that |μn1 (A1)| > 1

and |μn1 (B1)| > 1. Now, either sup{|μn(A ∩ A1)| : n ∈ �, A ∈ �} = ∞ or sup{|μn(A ∩
B1)| : n ∈ �, A ∈ �} = ∞. Otherwise, sup{|μn(A)| : n ∈ �, A ∈ �} < ∞. Without loss
of generality, suppose that

sup{|μn(A ∩ A1)| : n ∈ �, A ∈ �} = ∞.

Let C1 = A1 and D1 = � \ C1.
Now treat C1 as � and choose an n2 > n1 and a partition {A2, B2} of C1 such that

|μn2 (A2)| > 2, |μn2 (B2)| > 2, and without loss of generality

sup{|μn(A ∩ A2)| : n ∈ �, A ∈ �} = ∞.

Let C2 = A2 and D2 = C1 \ A2.
Continue this process and obtain an increasing subsequence (ni) of positive

integers and a pairwise disjoint sequence of sets (Di) such that |μni (Di)| > i for each i.
Relabelling, we may assume that |μi(Di)| > i for each i.

Define νi(A) = 1
i μi(A), for A ∈ �, i ∈ �. Then νi : � → � is strongly additive for

each i and limi νi(A) = 0 for each A. By the Vitali–Hahn–Saks–Nikodym theorem, (νi)
is uniformly strongly additive, and thus limi |νi(Di)| = 0. However, |νi(Di)| > 1 for each
i, a contadiction. �

If F is a separable Banach space, then the space c(F) = {(yn) : n ∈ �} ⊆ F� of
all convergent sequences in F is separable when endowed with the usual pointwise
operations and the sup norm. Let c0(F) be the subspace of c(F) consisting of null
sequences. Note that c0(F) � L(�, c0(F)) = K(�, c0(F)).

COROLLARY 23 (Banach space version of the Phillips Lemma). If μn : P → X is
strongly additive (in norm) for each n, and (μn(A)) → 0 for each A ∈ P , then

lim
n

∑
k∈A

μn({k}) = 0

uniformly for A ∈ P .

Proof. Suppose not. Choose ε > 0, (Ai) a sequence in P , and (λi) a subsequence
of (μi) such that ‖∑

k∈Ai
λi({k})‖ > 2ε for each i ∈ �. Using the unconditional

convergence of
∑

k λi({k}) (by the strong additivity of λi) and the fact that ‖μn(A)‖ → 0
for each A, we can find an increasing sequence (Ni) of natural numbers and a
subsequence (λni ) of (λi) such that∥∥∥∥∥∥

∑
k∈Ani ∩[Ni−1,Ni)

λni ({k})
∥∥∥∥∥∥ > ε

for each i ∈ �. Let Bi = Ani ∩ [Ni−1, Ni), � = σ ((Bi)) and νi = λni . If U = {νi(Bj) : i ≥
1, j ≥ 1}, then Y = [U ] is separable (since Bi are pairwise disjoint), hence c(Y ) and
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c0(Y ) are separable. Define

ν(A) = (νi(A))i

for A ∈ �. If A ∈ �, then ν(A) ∈ c0(Y ). Applying Theorem 18 to ν : � → L(�, c0(Y )),
one obtains a subsequence (Ci) of (Bi) so that ν is countably additive on σ ((Ci)).
However, ‖∑

k∈Ci
νi({k})‖ > ε for each i, a contradiction. �

COROLLARY 24 (A generalisation of a result of Schur, [1]). Suppose that X is a
Banach space which does not contain an isomorphic copy of �∞. Suppose further that
(xin) is a doubly indexed sequence in X so that

(a)
∑∞

n=1 xin is unconditionally convergent for each i, and
(b) limi

∑
n∈A xin exists for all A ⊆ �.

If xn = limi xin for each n, then

lim
i

∑
n∈A

(xin − xn) = 0

uniformly for A ⊆ �.

Proof. Let ν(A) = limi
∑

n∈A xin, for A ⊆ �. Then ν is finitely additive and the
Nikodym Boundedness theorem ensures that ν is bounded. Furthermore, since �∞ �↪→
X , ν must be strongly additive (by the Diestel–Faires theorem). Define μi : P → X by

μi(A) =
∑
n∈A

xin − ν(A).

Therefore (μi(A)) → 0 for each A ⊆ � and μi is strongly additive for each i. Apply
Phillips’s Lemma to conclude that

lim
i

∑
n∈A

μi({n}) = lim
i

∑
n∈A

(xin − xn) = 0

uniformly for A ⊆ �. �
If � is a σ -algebra of subsets of �, then ca(�) denotes the Banach space (with

total variation norm) of countably additive real measures μ : � → �. If X is infinite
dimensional, then there exists a bounded and countably additive measure μ defined
on a σ -algebra with values in X with infinite total variation. Suppose that X is infinite
dimensional and let

∑
xn be an unconditionally convergent series in X which is not

absolutely summable. Define μ : P → X by μ(A) = ∑
n∈A xn, if A ⊆ �. Then μ is

countably additive and does not have finite variation since the infinite series is not
absolutely summable. ca(�, X) denotes the Banach space (with sup norm) of countably
additive vector measures μ : � → X , and cabv(�, X) denotes the Banach space (with
total variation norm) of countably additive measures μ : � → X with bounded total
variation. For μ ∈ cabv(�, X), |μ| denotes the total variation of μ. A subset S of X
is said to be weakly precompact provided that every bounded sequence from S has a
weakly Cauchy subsequence.

COROLLARY 25. (i) If K is a weakly precompact subset of ca(�), then K is uniformly
strongly additive, i.e. if (Ai) is a pairwise disjoint sequence in A, then limi |μ(Ai)| = 0
uniformly for μ ∈ K.
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(ii) If K is a weakly precompact subset of ca(�, X) and X is a Schur space, then
K is uniformly strongly additive, i.e. if (Ai) is a pairwise disjoint sequence in A, then
limi ‖μ(Ai)‖ = 0 uniformly for μ ∈ K.

(iii) If K is a weakly precompact subset of cabv(�, X), then |K| = { |μ| : μ ∈ K } is
uniformly strongly additive.

Proof. (i) Suppose that (μn) is a sequence from K , and without loss of generality
suppose that (μn) is weakly Cauchy. Now, weakly Cauchy sequences in ca(�) are weakly
convergent [5, p. 91]. Suppose (μn) converges weakly to μ ∈ ca(�). Then μn(A) →
μ(A) for each A ∈ �. Note that each μn is strongly additive. The Vitali–Hahn–Saks–
Nikodym theorem implies that (μn) is uniformly strongly additive. If (Ai) is a pairwise
disjoint sequence from �, then limi supn |μn(Ai)| = 0.

(i) Suppose that (μn) is a sequence from K , and without loss of generality suppose
that (μn) is weakly Cauchy. Then for each A ∈ �, (μn(A)) is weakly Cauchy in X .
Since X is a Schur space, μ(A) = limn μn(A) exists for each A ∈ �. The Vitali–Hahn–
Saks–Nikodym theorem implies that (μn) is uniformly strongly additive, i.e. if (Ai) is a
pairwise disjoint sequence from �, then limi supn ‖μn(Ai)‖ = 0.

(iii) Suppose that K is a weakly precompact subset of cabv(�, X) and |K| = { |μ| :
μ ∈ K } is not uniformly strongly additive. Then one obtains p > 0, a sequence (μi) in
K , and a pairwise disjoint sequence (Ai) in � such that |μi|(Ai) > p for each i. For each
i, let (Aij)

ni
j=1 be a finite partition of Ai and (x∗

ij)
ni
j=1 in BX∗ such that

ni∑
j=1

|x∗
ijμi(Aij)| > p. (1)

Define T : cabv(�, X) → �1 by

T(ν) = (x∗
11ν(A11), . . . , x∗

1n1
ν(A1n1 ), x∗

21ν(A21), . . . , x∗
2n2

ν(A2n2 ), x∗
31ν(A31), . . . ).

Note that ‖T(ν)‖ ≤ |ν| for all ν ∈ cabv(�, X) and T is a continuous linear map. Since
T(K) is a weakly precompact subset of �1 � cabv(P, �), by (i) it follows that T(K) is
uniformly strongly additive. However, this is a contradiction with (1). �
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