DIOPHANTINE APPROXIMATION ON HECKE GROUPS
by J. LEHNER

Dedicated to Robert Rankin in admiration and respect

1. Introduction. If o is a real irrational number, there exist infinitely many reduced
rational fractions p/q for which

1

Pl
<«/§q2’ (1.1

q

and V5 is the best constant possible. This result is due to A. Hurwitz. The following
generalization was proposed in [2]. Let I be a finitely generated fuchsian group acting on
H™, the upper half of the complex plane. Let £ be the limit set of I’ and ? the set of
cusps (parabolic vertices). Assume ©e?. Then if a € £ —P, we have

1

p

o——

q

for infinitely many p/q € I'(), where k depends only on T'. Attention centers on
h=hT)=sup k, (1.3)

k running over the set for which (1.2) holds. We call h the Hurwitz constant for I'. When
'=T(1), the modular group, (1.2) reduces to (1.1) and h(T)=+5. A proof of (1.2)
when I is horocyclic (i.e., £ =R, the real axis) was furnished by Rankin [4]; he also found
upper and lower bounds for h. See also [3, pp. 334-5], where the theorem is proved for
arbitrary finitely generated T'.

In the present paper we consider the Hecke groups

a={lo G ol

)\q=2c0sg, q=4,5,... (1.4)

where

These are horocyclic groups. It is our object to evaluate, or at least estimate
h(G,)=h,. (1.5)
The Hecke groups include G;=TI'(1), for which h3=\/§ as stated above, and

S )

a subgroup of I'(1), for which h..= 2, as proved by W. T. Scott [6] — see also [4, p. 289].
We shall therefore confine our attention to q=4.
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Our results are contained in the following theorems.

THEOREM 1. hy, =2, 1=2,3,....
2 2 1/2
THEOREM 2. 2=< h2l_15[(;—_——1~/\> +4] ,

A=Ay, 1=4,5,...,
2=hs=2.036.
2. The lower bound. We wish to show first that
h,=2, q=4 (2.1)

as proved in [2]. Here we sketch the argument.
From now on we write

A=1, G=G

-
A fundamental region for G, is the triangle
Ro={z=x+iy:y>0,|x|=A/2, x>+ y?>=1}. (2.2)

This may be regarded as a quadrilateral with i as one vertex, the sides being labelled
1,2,2', 1, starting with the left-hand vertical and proceeding counterclockwise. The sides
1, 1’ are conjugate under G, and likewise 2, 2'. The set of cusps P is G(»), as « is the only
cusp in R,,. The elliptic vertices are i, p =exp mi/q, and —p.

Let @ eR— G(»). The vertical line L,=L:={a+Iiy, y>0} crosses infinitely many
fundamental regions, say Ry, R,, ... in order. Let y; = L N R; be the directed segment of
L lying in R, The transformation V;'e G maps R, on R, and p; on the directed arc
wi=Vi'y, lying in R,.

Lemma 1. For each a €eR— G () there exist infinitely many j, and corresponding points
t; on wj, such that
Im#;>1. (2.3)

Proof. Consider the sequence of wi. Each u} cuts two sides of R,, say k;, k;.; in that
order. Denote the conjugate of k by k’ and set (k') =k. Then w{,, cuts k! q, kii».
Suppose k;, k;,, are not consecutive sides of R,; since i} (when extended) is orthogonal to
R, this means (k;, k1) =(1,2", (2, 1"), (1, 1) or their reverses. Then it is clear there is a ¢}
on w} satisfying (2.3). Hence if the lemma is untrue we must assume the sequence of k’s is
eventually k, I; ', k'; k,I; ..., where (k,1)=(1,2), (2/,1), or their reverses. In the first
case, for example, this would mean that infinitely many sides of fundamental regions issue
from the elliptic vertex —p. This is impossible.

Having proved the lemma, we now write = VitieL (j=1,2,...). Thus =
a+iy, j>0. Let V;'=(q}, —p}:q;, —p;). Then

Vi

mt=— N -
(g —p)>+4q3y3

i1
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Since the arithmetic mean is not less than the geometric mean, we get
vi> (g —p)*+aiyi=2lqe — pl ;.
Hence

D 1 :
a-2|l<— (=1,2,..)),
4; 2‘1?

which implies (2.1).

3. Approximation by A-fractions. One of the standard ways of proving Hurwitz’s
theorem (1.1) is to use regular continued fractions. One first shows that if (1.1) is satisfied
by any rational number P/Q in lowest terms, then P/Q must be a convergent in the
expansion of « as a regular continued fraction. The problem is thus reduced to studying
the approximation of a by its convergents.

We follow a similar route. For a given A =\, q=4, a A-fraction (A CF) has been
developed by D. Rosen [5]. A A CF is a finite or infinite continued fraction

€,

[1oA, €4/11A, .. . ]=T1oA +a‘+—— s

(3.1)

where the integers r, i = 1, are positive and £ = £1, If the fraction is finite, we can write
[ro)\, 81/rl)t, e ey Sn/r"A]: S""’I”SAE‘T1 e S*E"r"T(OO),

where S=(1,A1:0,1), T=(0,—1:1,0) are the generators of G. It follows that every finite
A CF has a value that is a cusp of G (belongs to G(w)) and conversely. An infinite
convergent A CF, then, converges to a point in R— G(x).

In the A CF (3.1) define

P_lzl, Pozro)\, Q_1= 5 QO=1,

(3.2)
Pn = rn)‘Pn~1+ EnPn—29 Qn = rn)\Qn—1+ ann—Z’ n= 1'
Then we derive the following equations.
Toh, €4/1A, ..., g /1, A]=P,/Q,
[ 0 1/ _]1 (3.3)
PnQn—l_ QnPn—l = (__1)n €182 ... &,
If « is represented by the convergent A CF (3.1), we have
a =lim P,/Q,.
Defining the ““tail” of (3.1) by
a, = [rnA9 8n+1/rn+1Aa .. -] (n = 0):
we get
a=[r0)\,..., Enot 8—] (3.4)
rn—lA ay,
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Now this is a finite A CF whose value is P,/Q,. Using (3.2) we obtain

anPn—l + SrrPn—Z
a= n=1 3.5
anQn—1+ 8n.Qn—2 ( ) ( )

P 1" 'e185... 8,

2
Qn\] mnv-lQn—l

(3.6)

with

mnfl(a) = m, 1= 0y, + enQn72/Qn—1

:[rn)\, Enil ,...]+en/[r,,_1)\,“°‘"‘1 2] 37
rn+1)\ rn;zl\ rl)\

Rosen calls (3.1) reduced if certain conditions on r; and ¢; are fulfilled; these will be
given later. He establishes the following properties of reduced A CF.

(3.8) An infinite reduced A CF converges.

(3.9) Every real number a can be expanded uniquely by the ‘‘nearest integer al-
gorithm” in a reduced A CF. If the fraction is infinite, it converges to c.

(3.10) In a reduced A CF we have Q,=1, Q, is non-decreasing, and Q, — » as
n—>00,

We denote the expansion of « in a reduced A CF by A CFa.

Remark. The A CF is a type of semi-regular continued fraction, but as the above
shows, it possesses properties beyond those of the general semi-regular continued frac-
tion.

We are now ready to prove the following result.

TueoreM 3. For P/Q e G(») and acR— G(x) let
la—P/Q|<1/2Q%. (3.11)
Then P/Q is a convergent of the reduced A CFa.
Proof. Write

P 0
a—6=—80—2, 0<o<3, e==+1.
Expand P/Q in a reduced A CF:
P/Q = [rO)\’ sl/ri)\’ ceey sn—l/rn—lh]; (312)

the fraction is finite because P/Q € G(). Call the convergents P/Q,, so that

B_ Pn—l
Q Qn—l )
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Next define w by
_ Pn—lw + 8nPrL42

CQu0+ 6,0,
where we have introduced ¢, by
£E=g165...,(-1)" L.
Then using (3.3) we get
€6 P_P_o+el, o P,

o ——=
2
n—1 Q Qn—lw + EnQn——2 Qn—l
-1
_ E €182 ... 8"_1(_1)n

Qn—l(anlw + EYIQ}’I—2) ’

and so
_ Qn*]
Qn—lw + 8n()n*—2 '
Hence
— Qn~1 B oann—2> 0,
OQn.fl

121

(3.13)

because Q,,_,=Q,,_, by 3.10)—P, _,/Q, _ is areduced A CF—and 0<<6<1/2, g, = 1.

We expand w in a reduced A CF
= [rnA’ 8n,+1/rn-+»1A7 . ]
Here r, ={w/A} = nearest integer to w/A. Since

1 SnQn—2 )\
S————>2~1=1>=
T 0. 2’
it follows that r, = 1.
We have two expressions for «:

Pn—lw + enPn—2 Pn—lan. + 8nPn—2
o = = ;
Qn—lw + En()n—v2 On—lan + 8M()n—Q
see (3.13), (3.5). Hence w = ¢, and by (3.4), (3.14),
€1 €n-1 &n En—1 €n En+1
=|roA,—, ..., , =[r)\,..., T ,]
* [ro riA Ta_1A a"] o TaoaA T A T

It follows from (3.12) that

_ Pn—l _ €4 En-1
- - r0A9——1--'7-——7
riA T,_1A

and so P/Q is a convergent of a.
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4. Theorem 3 permits us to confine our considerations to approximations of a by
the convergents of its reduced A CF. By (3.6) we have

a— = ,
Qn—l mn—leﬁ—l
m, .= m,_,{a) being given by (3.7). Let
M(a)=lim m,_(a); (4.1)

then we have

h,=inf M(a), acR—G,(®).

In this section we treat the case q=2I, where |=2. To prove Theorem 1, it is
obviously sufficient to exhibit one «, say «,, for which

M(ag) =2, 4.2)

for this would imply h, =2 and we already know h,=2 from (2.1).
At this point we introduce the definition of a reduced A CF when q =2[. Let

s=[(q-3)2]=1-2=0.

(4.3) The fraction [roA, €/rA,...] is said to be reduced ({5, p. 555]) if the
inequality rA +¢;,,<1 is satisfied for no more than s consecutive values of i, say
i=jj+1,...,j+s—1;j=1.

This inequality is equivalent to r,=1, ¢, ., =~1.

We shall define oy as a (pure) periodic A CF. The infinite A CF [ro), g,/riA,...] is
periodic if for some integer p=1 (the period) and v =0 we have

rv+p = rva 8v+p+1 = 8v+1' (44)

We shall write the periodic fraction as

€1 Ep—1 Ep €4 ]_[ Ep—1 | sp]
ToAs, = ey s, [ S TOA e, —  — |- 4.5
[0 rlh rp_lA. ro)\ r1A © rp_l)\ r0A ( )

Note that it is necessary to exhibit the term g,/roA, since (4.4) does not distinguish
between ¢, =1 and ¢, =—1. The tails of a periodic A CF are also periodic:

Qo= =y =... (4.6)

Now consider the periodic A CF

1 1 -1
a0=[2)&,—x,...,—;‘-;X]=as+1=... 4.7

of period s + 1. This fraction satisfies (4.3) and so is reduced. By (3.8) it converges. Along
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with a, we introduce the reduced A CF

011El30=[)\,—%,--~,_51X;“%]=Bs+1=---, (4.8)
ao=2\-1/Be. (4.9)
Let
a,’l=[rn)t,ﬁ—, . :—i] (4.10)
so that by (3.7)
Mu_1=0o, +eylal 1. 4.11)

In the present case, with p =s+1, we can write

— ’ = — !
Myp 1= Qyp + 8np/anp—l = 0o 1/a np—1»

lim mnp,l=a0— 1/60:a0+a0—2A =2(ao_l\),

n

using (4.9).
We shall prove that

ag=A+1, (4.12)
so that

lim m,,_; =2.
On the other hand, if j¥0 (mod p),
m;_y=o;— 1o <oy <A<2=lim m,,_,.

Hence (4.2) follows, and with it, Theorem 1.
It remains to prove (4.12). From (3.5) and (4.8) we get

B = PsBO_Ps—l
° QBo— Q-1 '
QSB%_(QS—1+PS)BO+PS—1:0’ (4~13)

P,/ Q; being the convergents of B,. The value of Q; can be found in {1, p. 7] or is easily
checked by induction:

_ sin(i + 1)m/q

- (i=s-1),
sin 7/q

i
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so (s=1-2)

_sin((l —2)w/21 _ cos =/l
T G2l sl =2
sin({l —3)m/2] cos 37/21
Qs_2= =

sin /21 sin w/21 ~
By induction from (3.2),
P,=Q,,, (i=s5s-2).
Hence
P =AP ;=P 3=AQs_1~Q,>= Q,—AQ,,,
P, =2AP,_—P. ,=2A(Q.—\AQ,_,)— Q, 4
=20Q, - 2A*+1)Q,_y,
Q,_1+P;=2A(Q, —AQ,_y).
We shall shortly see that Q,# 0. Substituting these values in (4.3) and dividing by Q,, we

get

33—2A<1—A—Q(3—‘1)30+1—,\%:1=0. 4.14)

Now with {=exp(mi/2]),A =¢+ 7Y,

Y -2y __(#3 -3
0. =200, 1 O, = 2N+ =@+

2 sin /21
A(AZ-1)
" 2sin m/2l 70,
Q_y AZ=2
Q. AQA%*-1°
Thus (4.14) becomes
2\ 1
B%—)\z_l BO+)\2_1=0;

the roots of which are Bo=1/(A — 1), 1/(A +1). This gives ag=A +1, A — 1. However, from
the definition (4.7), ay>2A—1> A —1, and so we have proved (4.12). Theorem 1 is now
established.

5. We turn now to the case q odd, q>5:
q=21-1, =4, s=1-2.

There are additional conditions besides (4.3) in the definition of an infinite reduced A CF
when q is odd.
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5.1) If rA+g,,<1 for i=jj+1,...,j+s—1, then r, =2.

1

(5.2) If (B(s), —1/2x, —1/B(s)) occurs in the expansion, the succeeding sign is plus. Here

so=(n -1, 1)

with n partial quotients.

One way to avoid these rather complicated conditions is to use fractions with less
than the maximum allowable number of consecutive sequences r.A + g;, ;< 1. For example,

let
S s ) I 53
of period s, in which there are s —1 consecutive sequences. Then
= = P, ,0¢+P,_,
0T T Q100+ Q
A calculation quite similar to that of Section 4 yields
5 2
a0+<h—m>a0—1=0, (5.4)

where we have used

_sin(sm/(21—1)) cos(37/2(21 - 1))

o= = 0.
STV sin(w/(21-1))  sin(a/(21- 1)) u
Continuing,
L YR PR S S SO
Ayps—1 1 /\9 cey ’/\9 /\’ ’A
[ 1 1 1]
g A’__y ey T T T T Qg
A ATA
Hence
Mm,,_1—> Qg+—, as n—x,
Qo
Now

2 2
(ao + 1/(10)2 = (ao_ (320)2 = (ao + 0—‘0)2”‘ 4ao@o= (m_ /\> +4,

a, being the other root of (5.4). So we get

lim m,,_, =M,
—>00

n
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where
1 ( 2 )2 ]1/2
= + —_—= _— + . 5'5

Mq %o [0 23 [ A— 1 A 4 ( )

Again, for j#0,1(mod s), m;_,=a;—1/aj_;<a; <2<M,. For j=ns—1,
M 1= Mps 2= Qus—1— Van»
1 1
=A+—+al, A >—+a=M,

Qg (¢ 1)
It follows that

hay 1 =M(ag)=M,, (5.6)

as asserted in Theorem 2. For example, M,=2-12. We observe that M, —2 as q — .
The final case, q=5(I=3), can be treated in the same way, the result being
M;=2-57. We can get a better result, however, by taking

[ 1 1 1]
ao=|A —5-, T

207 207 A
of period 3, which is reduced. The equation for ay is
2A-1
ag—Aag+ =0, (5.7

where we have replaced the rational functions of A that occur by polynomials, using
A2—A—=1=0, A = A5=(1++5)/2. The roots of (5.7) are (1:264, 0-354), ¢, being equal to
the larger one. Now

1 1 1 1
My =31 ™ T~ = -,
3n ap A—ap ap
1 1 1
M3, 41 = Q3427 > a;m—, ;=20 ——,
QA3n41 Qs Qg
1
M3p42= A3z~ > Qo= —=2a0—A.
3n+2 ay

Calculation shows that the largest of the right members is
lim ma, ., =2-036,

which gives the upper bound for hs in Theorem 2.
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