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Dedicated to Robert Rankin in admiration and respect

1. Introduction. If a is a real irrational number, there exist infinitely many reduced
rational fractions p/q for which

Pa

and v5 is the best constant possible. This result is due to A. Hurwitz. The following
generalization was proposed in [2]. Let F be a finitely generated fuchsian group acting on
H+, the upper half of the complex plane. Let i? be the limit set of F and SP the set of
cusps (parabolic vertices). Assume coei?*. Then if a e i ? - ^ , we have

Pa

for infinitely many p/q e F(°°), where k depends only on F. Attention centers on

= supfc, (1.3)

k running over the set for which (1.2) holds. We call h the Hurwitz constant for F. When
F = F(1), the modular group, (1.2) reduces to (1.1) and h(F(l)) = V5. A proof of (1.2)
when F is horocyclic (i.e., i? = U, the real axis) was furnished by Rankin [4]; he also found
upper and lower bounds for h. See also [3, pp. 334-5], where the theorem is proved for
arbitrary finitely generated F.

In the present paper we consider the Hecke groups

where
\q = 2 c o s - , q = 4,5,... (1.4)

These are horocyclic groups. It is our object to evaluate, or at least estimate

h(Gq) = hq. (1.5)

The Hecke groups include G3 = F(1), for which h3 = \fE as stated above, and

a subgroup of F(l), for which h«,= 2, as proved by W. T. Scott [6] —see also [4, p. 289].
We shall therefore confine our attention to q>4 .
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118 J. LEHNER

Our results are contained in the following theorems.

THEOREM 1. h2l=2, 1 = 2,3,

r/ 2 \ 2 "|1/2

THEOREM 2. 2<h2 i_1< ( - -AJ +4 ,

A = A2i-i, / = 4, 5 , . . . ,

2<h5<2.036.

2. The lower bound. We wish to show first that

hq>2, q > 4 (2.1)

as proved in [2]. Here we sketch the argument.
From now on we write

A = Aq, G = Gq.

A fundamental region for Gq is the triangle

Ro = {z = x + iy : y > 0, |x| < A/2, x2+ y2> 1}. (2.2)

This may be regarded as a quadrilateral with i as one vertex, the sides being labelled
1, 2, 2', 1', starting with the left-hand vertical and proceeding counterclockwise. The sides
1,1' are conjugate under G, and likewise 2, 2'. The set of cusps *3* is G(°°), as °° is the only
cusp in RQ. The elliptic vertices are i, p = exp iri/q, and —p.

Let ae[R-G(oo). The vertical line La=L : = {a + iy, y>0} crosses infinitely many
fundamental regions, say Rlt R2,... in order. Let /x; = LPiRt be the directed segment of
L lying in Rt. The transformation VJl6 G maps Rt on Ro and p.; on the directed arc
fx'j= VrV; lying in Ro.

LEMMA 1. For each a eU — G(°°) there exist infinitely many j , and corresponding points
t] on yu\, such that

I m t ; > l . (2.3)

Proof. Consider the sequence of fjb't. Each fi't cuts two sides of Ro, say fcj, fci+1 in that
order. Denote the conjugate of fc by fc' and set (fc')' = fc. Then fj,-+1 cuts fc-+1, fcj+2.
Suppose kt, ki+1 are not consecutive sides of Ro; since juj (when extended) is orthogonal to
U, this means (fcf, fci+1) = (1, 2'), (2,1'), (1,1') or their reverses. Then it is clear there is a t•
on ix\ satisfying (2.3). Hence if the lemma is untrue we must assume the sequence of fc's is
eventually k,l;l',k';k,l;..., where (fc, I) = (1, 2), (2', 1'), or their reverses. In the first
case, for example, this would mean that infinitely many sides of fundamental regions issue
from the elliptic vertex - p . This is impossible.

Having proved the lemma, we now write 1,-= Vj-tJ-e L (j = l , 2 , . . . ) . Thus 11 =
a + iy,, j > 0. Let V,"1 = {q\, -p\: qy, -py). Then

Im t\ = - ^ 2~^> 1-
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DIOPHANTINE APPROXIMATION ON HECKE GROUPS 119

Since the arithmetic mean is not less than the geometric mean, we get

y, > {qfii -py)2+ q 2 y 2 s2 \q,oc - p , | q,y,.

Hence
a —

c

which implies (2.1).

3. Approximation by A-fractions. One of the standard ways of proving Hurwitz's
theorem (1.1) is to use regular continued fractions. One first shows that if (1.1) is satisfied
by any rational number P/Q in lowest terms, then P/Q must be a convergent in the
expansion of a as a regular continued fraction. The problem is thus reduced to studying
the approximation of a by its convergents.

We follow a similar route. For a given A = Aq, q >4, a A-fraction (A CF) has been
developed by D. Rosen [5]. A A CF is a finite or infinite continued fraction

[rok, ej/rjA, . . . ] = r 0 A + ^ p , (3.1)

where the integers rb i > 1, are positive and e = ±1. If the fraction is finite, we can write

[rok, eiY^A,. . ., £n/rnAJ = S "TS " . . .S "nT(o°),

where S = (l, A :0, 1), T- (0, - 1 : 1 , 0) are the generators of G. It follows that every finite
A CF has a value that is a cusp of G (belongs to G(°°)) and conversely. An infinite
convergent ACF, then, converges to a point in R —G(°°).

In the ACF (3.1) define

P =rkP=+eP P ° = r ° Q = r ^ Q = 0 + e Q Q O = 1 ' « > 1 ^

Then we derive the following equations.

[rok, ejrik,. .., ejrnk] = PJQn

. . . 6B.

If a is represented by the convergent A CF (3.1), we have

a = lim PJQn.
n—*°°

Defining the "tail" of (3.1) by

an = [rnk, en + 1/rn + 1A,. . .] ( n>0 ) ,

we get

a = \rok,..., - , — . (3.4)
L rA aj
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Now this is a finite A CF whose value is PJQn. Using (3.2) we obtain

(rial) (3.5)
«nQn-l+enQn-2

"-fe^'VtoL"6" (3-6)
with

nin-^a) = mn_i = an + enQn_2/Qn-i

(3.7)
= rnA, , . . . + en/\ rn_iA, , . . . , — .

Rosen calls (3.1) reduced if certain conditions on rt and ef are fulfilled; these will be
given later. He establishes the following properties of reduced A CF.

(3.8) An infinite reduced A CF converges.
(3.9) Every real number a can be expanded uniquely by the "nearest integer al-

gorithm" in a reduced A CF. If the fraction is infinite, it converges to a.
(3.10) In a reduced kCF we have Q n > l , Qn is non-decreasing, and Q , , ^ 0 0 as

n—»°o.

We denote the expansion of a in a reduced A CF by A CFa.

REMARK. The A CF is a type of semi-regular continued fraction, but as the above
shows, it possesses properties beyond those of the general semi-regular continued frac-
tion.

We are now ready to prove the following result.

THEOREM 3. For P/Q<=G(<x>) and aeU-G(^) let

|a-P/Q|<l/2Q2. (3.11)

Then P/Q is a convergent of the reduced A CFa.

Proof. Write

P 60 ,

Expand P/Q in a reduced A CF:

PIQ = [r0A, e i / r ;A, . . . , e ^ / r ^ A ] ; (3.12)

the fraction is finite because P/Qe G(°°). Call the convergents PJQi, so that

P_Pn-i

Q Qn-l'

https://doi.org/10.1017/S0017089500006121 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006121


DIOPHANTINE APPROXIMATION ON HECKE GROUPS 121

Next define a> by

a = ^ " " 1 " * £ ^ 2 , (3.13)

where we have introduced en by

Then using (3.3) we get

E0 P Pn_!<0 + enPn_2 Pn_!
— QJ

and so

Hence

because Qn_!> Qn_2 by (3.10)—Pn_1/Qn_1 is a reduced A CF—and 0 < 0 < 1/2, en = ± 1 .
We expand w in a reduced A. CF

w=[rnA,en + 1 / r n + 1A, . . . ] . (3.14)

Here rn ={w/A}= nearest integer to a>/X.. Since

it follows that r n > l .
We have two expressions for a :

^ Pn-ia) + enPn_2 = Pn-!an + enPn_2

Qn_!to + enQn_2 Qn_!an + enQn_2 '

see (3.13), (3.5). Hence a> =an and by (3.4), (3.14),

[ EX en_x en] [ £„-! £„ en + 1 ]
a = ro\, —— , . . . , , — = rok,..., , — , , . . . .

L rx\ rn_iA a n j L rn_xA rnX. rn+1k J
It follows from (3.12) that

and so P/Q is a convergent of a.
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4. Theorem 3 permits us to confine our considerations to approximations of a by
the convergents of its reduced A. CF. By (3.6) we have

Pn-X

n_1 = mn_1(a) being given by (3.7). Let

M(a)=lim mn_x(a); (4.1)

then we have

hq = inf M(a), a e R - G q K

In this section we treat the case q = 2l, where Z>2. To prove Theorem 1, it is
obviously sufficient to exhibit one a, say a0, for which

M(ao)<2, (4.2)

for this would imply h q <2 and we already know h q >2 from (2.1).
At this point we introduce the definition of a reduced A CF when q = 21. Let

s = [(q-3)/2]=l-2&0.

(4.3) The fraction [r0A, ej^k,...] is said to be reduced ([5, p. 555]) if the
inequality rjA + e j + 1 < l is satisfied for no more than s consecutive values of i, say

This inequality is equivalent to rt = 1, ei+1 = —1.
We shall define a0 as a (pure) periodic A CF. The infinite A. CF [r0A, eJr^X,...] is

periodic if for some integer p > l (the period) and v>0 we have

We shall write the periodic fraction as

(4.5)

Note that it is necessary to exhibit the term ep/r0A, since (4.4) does not distinguish
between ep = 1 and ep = — 1. The tails of a periodic A CF are also periodic:

a0 = ap = a2p = ... (4.6)

Now consider the periodic A CF

« s + 1 = . . . (4.7)

of period s + 1. This fraction satisfies (4.3) and so is reduced. By (3.8) it converges. Along
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with a0 we introduce the reduced A CF

ft+i = . . . , (4.8)

ao = 2A-l//3o. (4.9)

Let

«;=frnA,-^-,...,-^-l, (4.10)

so that by (3.7)

mn-1 = an + eja'n^1. (4.11)

In the present case, with p = s +1, we can write

mn p_i = a n p + £nvla.'nv_x = a0- Ha.'np_x,

lim mnp_! = a 0 - l/|30 = ao + ao"~2A = 2(ao~ A),

using (4.9).

We shall prove that

ao=A + l, (4.12)

so that

lim mnp_! = 2.

On the other hand, if j # 0 (mod p),

my-j = a, - I/a ;_! < a < X < 2 = lim mnp_!.

Hence (4.2) follows, and with it, Theorem 1.
It remains to prove (4.12). From (3.5) and (4.8) we get

00 = "^

! = 0, (4.13)

Pj/Qi being the convergents of /30. The value of Qt can be found in [1, p. 7] or is easily
checked by induction:

sin
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so (s = I-2)

sin((l-2)Tr/2l= COSTT/1

sinir/2J sinir/2I K ''

sm((l-3)TT/2lcos3ir/2l
sin ir/2/ sin TT/2I

By induction from (3.2),

Pi = Qi+i ( i ^ s - 2 ) .

Hence

Ps_! = APS^2-PS_3 = AQS_! - Q,_2 = Q, -

= 2AQS-(2A2+1)QS_1,

We shall shortly see that Qsj=0. Substituting these values in (4.3) and dividing by QS, we
get

(^)o+l-A^i = 0. (4.14)

Now with C = exp(m/20, A = £ + C\

QS=2AQS_1-QS_2 =

2 sin 7r/2/

Q . - i = ^ 2 ~ 2
Qs A(A2-1) '

Thus (4.14) becomes

e2 e

2 sin TT-/2/

the roots of which are j30= 1/(A — 1), 1/(A +1). This gives ao = A + 1, A — 1. However, from
the definition (4.7), ao> 2A - 1 > A - 1, and so we have proved (4.12). Theorem 1 is now
established.

5. We turn now to the case q odd, q > 5 :

There are additional conditions besides (4.3) in the definition of an infinite reduced A CF
when q is odd.
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(5.1) If ri\. + ei+1<l for i = j , 7 + 1 , . . . , ;+ s - l , then r ] + s>2.

(5.2) If (B(s), -1/2A, -1/B(s)) occurs in the expansion, the succeeding sign is plus. Here

with n partial quotients.

One way to avoid these rather complicated conditions is to use fractions with less
than the maximum allowable number of consecutive sequences rt\. + ei+1< 1. For example,
let

ao = A, - - , . . . , - - ; - = h m — (5.3)

LA A AJ n— Qn

of period s, in which there are s - 1 consecutive sequences. Then

P.-1ttQ+P.-2

A calculation quite similar to that of Section 4 yields

ao+(A - ja 0 —1 = 0, (5.4)

where we have used

sin(sTr/(2f - 1)) COS(3TT/2(2? -1 ) )
s ~ ' " sin(Tr/(2l - 1)) ~ sin(ir/(2/ - 1 ) ) "

Continuing,

1 1 1 1

Hence

Now

1
— , as
«o

d0 being the other root of (5.4). So we get

lim 171^-! = Mv

2 \ 2

*>) +4,
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J_
«0

\ V12

Again, for / # 0,1 (mod s), m,--! = a,- - l/a,'-i < a, < 2 < Mq. For / = ns - 1 ,

= A + —

It follows that

(5.6)

as asserted in Theorem 2. For example, M-,~ 2-12. We observe that Mq -» 2 as q —* <».
The final case, q = 5(/ = 3), can be treated in the same way, the result being

M5=*2-57. We can get a better result, however, by taking

of period 3, which is reduced. The equation for a0 is

(5.7)

where we have replaced the rational functions of A that occur by polynomials, using
A 2 - A - 1 = 0, A = A5 = (1 + V5)/2. The roots of (5.7) are (1-264, 0-354), a0 being equal to
the larger one. Now

1 1 1 1
a'3n a0 A-a0 a0

1 1 1
2\

3n+2 = a3n+3 ',
aO = 2 a Q —A.

Calculation shows that the largest of the right members is

lim m3n+1 = 2-036,

which gives the upper bound for h5 in Theorem 2.

REFERENCES

1. A. Guillet et M. Aubert, Proprietes des Polynomes Electrospheriques, Memorial des Sciences
Mathematiques, Fasc. 107.

https://doi.org/10.1017/S0017089500006121 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006121


DIOPHANTINE APPROXIMATION ON HECKE GROUPS 127

2. J. Lehner. A diophantine property of Fuchsian groups, Pacific J. Math. 2 (1952), 327-333.
3. J. Lehner. Discontinuous groups and automorphic functions, Surveys No. 8 (Amer. Math.

Soc, Providence, 1964).
4. R. A. Rankin. Diophantine approximation and horocyclic groups, Canad. J. Math. 9 (1957),

277-290.
5. D. Rosen. A class of continued fractions associated with certain properly discontinuous

groups, Duke Math. J. 21 (1954), 549-562.
6. W. J. Scott. Approximation to real irrationals by certain classes of rational fractions, Bull.

Amer. Math. Soc. 46 (1940), 124-129.

INSTITUTE FOR ADVANCED STUDY

PRINCETON, NEW JERSEY 08540

U.S.A.

https://doi.org/10.1017/S0017089500006121 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006121

