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A NOTE ON Ngy CONFIGURATIONS AND
THEOREMS IN PROJECTIVE SPACE

Davib G. GLYNN

A method of embedding n, configurations into projective space of k—1 dimensions
is given. It breaks into the easy problem of finding a rooted spanning tree of
the associated Levi graph. Also it is shown how to obtain a “complementary”
np-x “theorem” about projective space (over a field or skew-field F') from any n;
theorem over F'. Some elementary matroid theory is used, but with an explanation
suitable for most people. Various examples are mentioned, including the planar
configurations: Fano 73, Pappus 93, Desargues 103 (also in 3d-space), Mébius
84 (in 3d-space), and the resulting 74 in 3d-space, 9¢ in 5d-space, and 10; in
6d-space. (The Mobius configuration is self-complementary.) There are some n;
configurations that are not embeddable in certain projective spaces, and these will
be taken to similarly not embeddable configurations by complementation. Finally,
there is a list of open questions.

1. INTRODUCTION

DEFINITION 1: A combinatorial ny configuration is an incidence structure (P, B, I)
with a set P of n points and a set B of n blocks, (which may be considered to be
subsets of P), such that each block contains k of the points, and each point is on &
of the blocks. A point p € P is on a block b € B if and only if pIb, where I is the
“incidence relation”. N.B. We usually omit the term “combinatorial”.

For us the problem of embedding these n; configurations is to find n points and
n hyperplanes in k — 1 dimensional projective space (coordinatised by a field or skew-
field) such that incidence in the configuration is preserved. (A skew-field satisfies the
same axioms as a field but with a multiplication that need not be commutative.) Some
extra incidences may appear but usually these are ignored. Note that, to the contrary,
some authors appear to require that an embedding, or realisaton, may not have any
extra incidences at all. See for example the survey by Gropp [7], and the 163 of
Figure 8 there. Further, a “standard” embedding should have the property that the
points in each hyperplane generate that hyperplane, and form a minimal dependent set
(“circuit”). Dually, the k hyperplanes through each point may intersect precisély in
that point, and so form a dual “circuit”. But this condition is not always achievable.
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If it is embeddable the configuration can be called “geometrical”, but note that this
property usually depends upon the base field (or skew-field) that is chosen.

We have a slightly different notion of embedding to that in [2, Section 3.2]. There,
they assume that the configuration is of rank 3; that is, possibly, embedded in a
plane. Here, we try to embed the ny configuration as a rank k matroid into (k — 1)-
dimensional space. We think that this is a more natural generalisation of n3 configu-
rations.

It is shown in Section 2 that the embedding problem reduces to that of finding a
rooted spanning tree of the related Levi graph, and this can easily be found by using a
well-known greedy algorithm. Although a “standard” embedding might not exist for a
given field, if the base field is chosen large enough (for example, it is algebraically closed)
and with the right characteristic, such embeddings should usually appear, although in
some cases it can be shown that embeddings (with all the points and hyperplanes
distinct) can never appear. (One of the 103 configurations is a case in point.) A single
algebraic equation can be found involving many free parameters. This generalises and
explains a similar result for ns configurations for which various methods have already
been found.

A “closed” n, configuration is one for which the last incidence (for example, using
our spanning tree algorithm above) is always trivially satisfied. Naturally this might
depend upon the field that is chosen. 'If this holds we call it a theorem, (or “Satz” in
German). The complement of closed (standard) configurations (“theorems”) is shown in
Section 3 to be closed, so that we can show that the well-known Pappus and Desargues
theorems in the plane, imply theorems in 5- and 6-dimensional space respectively as
well. At present we know of ny theorems that have parameters 73, 74, 84, 93, 9,
103 and 107. These are discussed in the later Sections, while the last Section contains
some conjectures and ideas for further research in this subject. For each n > 2 there is
also a ‘degenerate’ ny theorem, whose Levi graph (defined below) is a 2n-cycle. In the
present discussion we assume that k > 3. The Pappus and Desargues configurations,
in 2 or 3 dimensions, are only briefly dealt with, since they are so well known that a
huge number of publications deal with their properties. However, geometrical diagrams
and Levi graphs can be found in [5)].

2. EMBEDDING CONFIGURATIONS INTO PROJECTIVE SPACE

The survey by Steinitz [12] contains reference to his algorithm that gives a method
of embedding an nj3 configuration into a plane (over a field). A discussion and appli-
cation of Steinitz’s method appeared recently in [8]. Let us note that the points of the
configuration are chosen in sequence so that the lines are then constructed from the
points, and the lines have no independent freedom.
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Other methods have appeared (see [2, Section 3]; [5, 13].) In particular, the
author’s method [5] was to use the Levi graph (defined below). It deletes a certain flag,
that is, a point/line incidence (P,!), from the graph, and then orders the points and
lines so that the vertices (points and lines) lie at increasing distances from P or {.

The common thread between all these algorithms is that all the points and lines
can be put into the projective plane (with a certain freedom) so that 3n — 1 incidences
are satisfied. The last incidence is not automatic but in most cases the freedom of the
configuration allows for the last incidence to be satisfied (since it is just the same as
solving an algebraic equation in many variables).

When the configuration is a “theorem” then the last incidence should be automat-
ically satisfied, while if the configuration is not embeddable, then the last incidence is
satisfied only when the configuration degenerates by some of the points or lines becom-
ing the same.

Here we can generalise and at the same time simplify things with a method that
will produce all the above algorithms as special cases, while also doing it for the more
general ny configurations in (k — 1)-dimensional projective space.

First, we define the Levi graph of an nj configuration [10], (first lecture).

DEFINITION 2: A graphis an ordered pair (V, E), where V is a set of vertices and
E is a set of subsets of size 2 in V', called edges. A graph is bipartite if the vertices V
can be partitioned into 2 non-empty subsets such that only edges containing one vertex
from each of the two subsets appear in E.

DEFINITION 3: The Levi graph of an ny configuration C with point-set P and
block-set B is the bipartite graph (P U B, E), where {p,b} is an edge if and only if
p€ P, be B, and p is incident with b; that is, (p,b) is a flagof C.

Examples of Levi graphs of n3 configurations appear in [5, 8].

NoTE 1. It is well-known that a given trivalent graph (having three edges through
every vertex) is the Levi graph of an n3 configuration if and only if it is bipartite and of
girth at least 6. (The girth is the size of the smallest circuit in the graph. For example,
if the girth is 6 there is a triangle in the configuration.)

NoTE 2. We consider only connected configurations now, since disconnected configura-
tions can be split into independent smaller connected ones.

In [5] it was shown that the problem of embedding an n3 configuration into the
plane is equivalent to drawing the 2n vertices and edges of the associated Levi graph
(minus one edge) in the Euclidean plane so that there is one vertex at the bottom,
(having 2 edges going up), and no other vertex has all 3 of its edges going up. Then
the way to embed the configuration is to put the elements (points or lines) at the
top of the graph into the plane (with the appropriate freedom which is 2 minus the
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number of edges going up from that vertex), and then to work one’s way down the
graph, eventually reaching the bottom. The final deleted edge of the graph then gives
an algebraic condition for the embeddability of the configuration.

The method given in [5] to draw such a “well-ordered” Levi graph in the Euclidean
plane was to start with the bottom vertex and then to put vertices of distance 1 just
above it, then distance 2 above those, and so on.

Of course, any embedding algorithm, such as that of Steinitz, gives an alternative
way of drawing a “well-ordered” Levi graph, although it may have additional favourable
properties. For example, the well-ordered graph coming from Steinitz’s algorithm has
the additional property that for any line of the configuration, the corresponding vertex
is always joined to two (point) vertices immediately above it. Thus the points of the
configuration are the only elements able to have any positive freedom in the algorithm.

It is clear that similar processes can be used to embed the more general ny config-
urations into (k — 1)-dimensional space. It is only necessary to draw a “well-ordered”
Levi graph (with one edge missing) in the Euclidean plane, so that the only vertex with
all edges going up is the one at the bottom (having k¥ — 1 edges, one being deleted).
The freedom of a vertex is now given by the expression k — 1 minus the number edges
going up from that vertex. Then to actually embed the configuration we again start
at the top of the “well-ordered” Levi graph and go down, leaving the final edge of the
graph (or in other words the final flag of the configuration) as an algebraic equation to
be solved.

We can now say precisely how to find “well-ordered” Levi graphs. First, we recall
a definition from graph theory.

DEFINITION 4: A spanning tree of a (connected) graph with v vertices is a set of
v — 1 edges containing no circuit: thus each vertex appears on at least one of the edges
of the tree.

NOTE 3. A spanning tree is equivalent to a basis of the (binary and graphical) matroid
which has, as set of points, the set of edges of the graph.

THEOREM 1. A way that always constructs any “well-ordering” of the Levi graph
of an ny configuration is first to find a spanning tree T of the graph. Then, select any
vertex R (or “root”) of the tree. Next, label any vertex on the outside of the tree (a
vertex having valency one) at the top. Delete that vertex from T, and repeat by finding
another vertex on the outside of the tree. Put that vertex down from the first one, and
repeat the loop, working inwards so that R is the last remaining vertex. Finally, put
R at the bottom of the ordering.

Proor: This algorithm produces a well-ordering because after each step the vertex
that has been last put in order is connected in the tree T to another vertex that has
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not been put into order. The only case where this does not happen is the final vertex
V. The algorithm relies on the existence of a spanning tree, but this is easily found
by a greedy algorithm as in matroid theory. (Just keep choosing edges so that no
circuit is formed in the graph. Eventually a spanning tree arises.) Also, given any
well-ordering of the graph, it is clear that it will come from some spanning tree, which
can be constructed by choosing a sequence of vertices from the bottom of the ordering,
subject to the condition that no circuit is formed. d

3. THE COMPLEMENTARY 7n; THEOREMS

DEFINITION 5: The complementary configuration C to an ny configuration
C := (P,B,I) is the n,_; configuration (P, B,I'), where pI'b <= p [b. Equiva-
lently, the incidence matrix of C is the complement of the incidence matrix of C. (An
incidence matrix of an ny configuration (P, B,I) is an n x n (0,1)-matrix with rows
corresponding to the points, and columns to the blocks, with a 1 in a position (p, ) if
and only if pIb, and 0’s otherwise.)

Recall from Section 1 that an n; “theorem” for a (k — 1)-dimensional projective
space over a given field (or skew-field), is an n; configuration such that the final in-
cidence is automatically satisfied, when we embed the configuration in that space, for
example, using the algorithm given in Theorem 1 of Section 2.

Examples of such “closed” configurations (or theorems) are the Fano 73 in planes
over fields of characteristic 2, Pappus 93 for field planes, or Desargues for skew-field or
field planes. Other examples are discussed in the remaining sections. However, now we
can show how to obtain a “bonus” theorem from a given one.

First, for people not fully conversant with matroid theory, let us recall some basic
notions, applied to the case of “representable” matroids, which are the linear structures
induced by finite sets of points in a projective space over a field or skew-field F'.

DEFINITION 6: The matroid dual of a set S of m points (spanning (k — 1)-dimen-
sional projective space over F) is a set S of m points spanning the (m — k—1)-
dimensional projective space over F', unique up to linear collineations of that space.
A way to obtain this set of points is to first write the homogeneous coordinates of the
points of S (with respect to any fixed basis) as the columns of a k£ x m matrix M over
F. Then the orthogonal space to the row space of M (with the usual inner preduct)
can be written as the row space of another matrix N, the columns of which give the
points of S+.

Note that there is a natural 1-1 correspondence between the m points of § and
the m points of S*, given by the ordering of the columns of the two matrices M and
N. So it is possible to identify the points of the two sets in some sense.
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There are many well-known properties of the matroid dual. Perhaps the defining
property is that a subset of S is a basis, that is, maximal independent set, if and only
if the complement of that subset corresponds to a basis of S*. (This can be used to
define the dual for matroids more general than representable ones.) However, we need
some other related properties here. They can be proved quite easily from the idea of
basis in the matroid.

We recall the concepts of “circuit” and “hyperplane”. Assume as above that S is
a set of points of rank k in (k — 1)-dimensional projective space.

DEFINITION 7: A circuit of a matroid $ is a minimal dependent set of points; that
is, a non-empty subset of S for which the deletion of any point makes an independent
set. (The fundamental theorem of geometry tells us that any circuit of size s in a
representable matroid is projectively equivalent to {e1,... ,e;—1} U {e1 + - +es-1},
where e; is the i’th unit point, with all zero’s, except a 1 in the i'th position.) A
hyperplane h of S is a subset of rank k — 1, such that for any point P of S\ &, the
rank of hU{P} is k, that is, h is a maximal proper subspace of S. (Equivalently, any
basis of the matroid induced on S by the restriction to h can be extended to a basis
of § by the addition of any point of S\ h.)

After these definitions we note the main matroid property needed for the following
theorem. It is an easy exercise, found in many matroid theory books.
NOTE 4. The complement of a circuit in a matroid S corresponds to a hyperplane in
S+, and conversely, a hyperplane of S corresponds to the complement of a circuit in
S+ . Thus, a certain subset of S is simultaneously a circuit and a hyperplane if and
only if the complement of that subset is both a circuit and a hyperplane of S+.

The matroid preliminaries above make the following result quite straight-forward.

THEOREM 2. Given an ny theorem C about a (k — 1)-dimensional projective
space over F (field or skew-field), the complementary n,,_; configuration C is then a
theorem for (n — k — 1)-dimensional space over F.

PRrooOF: Consider the configuration C, embedded in space, as a matroid. Then we
can assume, by the freedom involved in the embedding, that each hyperplane of C con-
tains k points which are a circuit (minimal dependent set). Thus, in the dual matroid
C+, the complementary set of n — k points also is a hyperplane and simultaneously
a circuit (from Note 4). But this means that C+ and C are identical (combinatorial)
nn_k configurations. Now if C were not a theorem then it would be possible to con-
struct it in the (n — k& — 1)-dimensional space so that all the circuit/hyperplanes existed
except one. Then we would get a contradiction to the theorem C when we took the
dual. So C must be a theorem. 1]

NoOTE 5. The geometrical dual (by interchanging points and hyperplanes, or equiva-
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lently by taking the transpose of an incidence matrix) of an n; theorem is also an ny
theorem.

DEFINITION 8: The “freedom” of an ny configuration C is the dimension of the al-
gebraic variety of all embedded configurations of C in the corresponding space, modulo
the group of collineations of that space.

THEOREM 3. The freedom of a general embeddable n; configuration is
fnk)=2nk—-1)-nk— (*-1)=(n—kk-2n+1=n(k-2) - k*+1.

If the ny configuration is a theorem then the freedom is n(k — 2) — k% + 2.

PRrROOF: The general freedom of 2n points/hyperplanes is 2n(k — 1) since they are
in (k — 1)-dimensional space. This is reduced, firstly by the nk incidences that must
be satisfied, and secondly by the dimension of the group of (linear) collineations of that
space, which is k2 — 1. For an n; “theorem” there is one incidence that is not counted,
and this adds 1 to the freedom. 1}

For example, an n3 configuration in the plane has freedom n —8. If it is a theorem
then the freedom is n — 7.
Note 6. An nj and its complementary 7n,,_i should have the same freedom, since there
is a 1-1 correspondence between their embeddings in their respective spaces, modulo
the collineation groups of those spaces. This is proved once we check that

fnk)=nk-2)-k+1=f(ln,n—k)=nn-k—2)— (n—k)® +1.

NOTE 7. The geometrical dual, and complement of an n; configuration, all have
isomorphic automorphism groups.

The next sections are brief summaries of the known nj theorems. For each config-
uration C we denote the size of the group of automorphisms by |Aut (C),

4. FANO 73 AND ITS COMPLEMENT

The “Fano” 73, or in other words, the projective plane of order 2, is a theorem for
planes over fields of characteristic 2. The complementary 74 configuration is a theorem
for 3-dimensional space of characteristic 2. It is naturally embedded in PG(3,2) by
the deletion of a point P and 7 points of a plane 7 not through P. Then the 7 planes
of the 7, are those that are not passing through P and not equal to w. The freedom
of Fano (and its complement) is —1, indicating that it cannot be normally embeddable
in a plane, without it being a theorem.

By Theorem 3, for fields of characteristic 2, f(Fano) = 0, or —1 otherwise.
|Aut (Fano)| = 168.
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5. PAPPUS 93 AND ITS COMPLEMENT

The 93 theorem is due to Pappus of Alexandria, circa 340 CE. It is a theorem
for planes over fields. By Theorem 2 the complementary 9¢ is also a theorem for
5-dimensional space over a field.

THEOREM 4. The Pappus 9¢ in 5-dimensional space over a field lies on the
Veronese surface, and any embedding can be obtained by using the natural correspon-
dence between the points of an embedding of the 93 in the plane, and mapping via the
Veronese mapping (z,y,z) = (z2,y?% 2%,y2,1z,zy) onto the Veronese surface.

PRrOOF: The above mapping onto the Veronese surface (see [9] for many proper-
ties of these surfaces and generalisations to higher spaces) has the property that the
complement of any line, that is, 6 points on two other disjoint lines of the 93, lie on a
hyperplane of 5-dimensional space. This is because all the points on a line of the plane
are mapped to a “conic-plane” of the surface, and any pair of conic-planes intersect in
the point corresponding to the point of intersection of the pair of lines in the original
projective plane. Thus the Veronese mapping does indeed take any Pappus 93 of the
plane to a Pappus 9¢ of the 5-d space. By looking at the freedom of the configuration
now, we see that the freedom of the 9¢’s lying on the Veronese surface is the same as
the freedom of the 93’s in the plane. Thus as algebraic varieties the freedom of general
Pappus 9¢’s in 5-d space is the same as those on a Veronese surface. This shows that
the two algebraic varieties of 9¢’s are the same, and every Pappus 9¢ lies on a Veronese
surface. (Another proof can be obtained by knowing that any sufficiently general set of
9 points in 5-d space lies on a Veronese surface V2(2); see the following Lemma.) [

Let Vi(k — 1) denote the Veronesean or Veronese variety of hypersurfaces of de-
gree i in (k — 1)-dimensional projective space over a field. V*(k — 1) is a variety of

. . i+ k-1 . . Lo
dimension £ —1 in ((z + ; ) - 1> -dimensional projective space.

LEMMA 1. ([6]) The number of points that determine the Veronesean V'(k — 1)
is (i—i—l:—l) +k.

PROOF: The number of parameters of the group of the space in which the Verone-
sean is embedded is (z + ,; B 1)2 — 1, while the number of parameters of the group

of the Veronesean itself is the same as that of the projective geometry of dimension
k — 1, which is k2 — 1. To say that a variety of dimension k — 1 lies on a specified
point of n-dimensional space is to restrict that variety by n — k+ 1 parameters. Hence,
the number of points needed to uniquely determine the Veronese variety of index ¢
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corresponding to Sk_; is

i+k—1y2 _ 12 ; _
(.i ) -k _ z+kf 1 +k
GREL

1

0

Here we give a direct algebraic proof of the Pappus 9¢ theorem. Firstly, label the 9
points of the configuration 1,2, 3,4, 5,6, a, b, c, where 12345a, 13456b, 12456¢, 2346ab,
2356ac, 1236bc, 456abc, 124abc, and 135abc are the 9 block-hyperplanes. We have
omitted some commas in the following to make things more concise. Note that abc is
chosen so that it corresponds to a triangle contained in the planar Pappus 93 (that is,
a basis). Thus the complement 123456 is a basis of the 9¢ (see Section 3), which can
be coordinatised in the natural way by identifying 1 with the urit vector e;, 2 with
ez, et cetera.

In terms of the three points abc the conditions that the points of each block-
hyperplane are dependent (in general forming a circuit) are that:

(1) a € (12345),
(2) b€ (13456),
(3) c € (12456),
(4) (ab) N (2346) # 0,
(5) ({ac)n (2356) # 0,
(6) (bc)N(1236) # 0,
(7) (abc) N (456) # 0,
(8) (abc)M(124) #0,
(9) (abc) M (135) # 0.

From (1 — 3) we can write

a=al+d2+e3+v4+ 35
b=al+g3+ 064+ B85+ h6
c=al +i2 +v4 + ¢5 + j6

In this notation we are using the digits 1,...,6 as coordinates, and the «, d, e,
v, B, 9,06, h, i, ¢, j are variables. The latter are also non-zero because the 6 points
in each of the first three block-hyperplanes are circuits. The equality of the various
coefficients, a, v and B in the three equations above can be obtained from items (4)
and (5) above, because we can assume that a—b is in (2346) (that is, the coefficients of
coordinates 1 and 5 must be dependent) and a —c is in (2356) (that is, the coefficients
of 1 and 4 must also be dependent).

Further, (6) gives the condition that d¢ = v, (because the coefficients of 4 and
5 must be dependent).
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For the remaining conditions we have the following implications:

(7) = —-gi+ie+dg=0
(8) = eBj—ehp—gBj=0
(9) = déj ~dhy+ivh=0

These hold because the 3 x 3 determinants for the three equations (7 — 9), corre-
sponding to the restriction to columns 123, 356, and 246, must be zero.

In order to verify that the Pappus complement is a theorem we must show that
the four equations resulting from (6 — 9) above are dependent.

Firstly, (7) implies that dg = i(g — e), while (9) implies that d(87 — hy) = —ivh.
Multiplying this new (9) by g we obtain gd(dj — hy) = —givh. Replacing gd by
(g — e) means that we can cancel i’s on both sides, giving us (g — €)(6j — hy) = —vhg.
Simplifying, we obtain (g — €)dj + ehy = 0 which implies that géj = e(dj — h~y).

Now (8) is the same as e(B8j — h¢) = gBj. Multiplying both sides by ¢ implies
that ée(Bj — h¢) = 6987, and substituting gdj by e(dj — hy) we obtain de(8j — he)
= fBe(éj — hy). Cancelling e’s on both sides, then simplifying there holds —d&h¢
= —fBhv, and after dividing out by h we obtain the residual equation d¢ = 3, which
is equation (6). This tells us that equation (6) is dependent upon the others, and that
the Pappus 9¢ is a theorem.

For all fields, f(Pappus) =9 — 7 = 2, and for skew-fields it is 1. |Aut (Pappus)|
= 108. Pappus is also geometrically self-dual.

Note. We say that a projective plane is Pappian if Pappus theorem is satisfied in it.
We know that Pappian planes are those coordinatised by fields.

6. DESARGUES 103 AND ITS COMPLEMENT

Desargues 103 configuration I was discovered in the 17th century CE. It is a
theorem easily proved from the incidence properties of 3-dimensional projective space
(see for example [1]), and so it is valid for all planes over skew-fields. The complementary
107, D¢, will also be a theorem for any 6-dimensional projective space.

D can be represented using subsets of size 2 in a set of size 5, S := {1,2,3,4,5},
as follows. The points of D are the 10 members of the set P := {{i,j} | ¢,j € S,i # i}
Let us write each subset {%,j} more concisely as ij (= ji). The blocks of D are the
10 subsets l;jx := {¢j, jk,ik}, where ¢ # j # k # i. Then D¢ is the structure with the
same set P of points, but with blocks which are the complements of the blocks of D:
that is, bijk = P\l,‘jk.

Suppose that the 10 points and 10 blocks bjjx, now hyperplanes, of D¢, are
embedded in 6-dimensional space. Each block b;;x is a circuit, and so any proper
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subset of it is an independent set of points. In particular there are 5 subsets of P of 4
points each: viz. T; := {4 | j # ¢}, which are independent, and so they each generate
a 3-dimensional subspace (T;). For i # j the union T; UT} is the block bygr, where
{p,q,7} = S\ {i,j}. Note that by Grassmann’s formula for dimensions of joins and
intersections of two subspaces, since 3+ 3 =145, T; N T; = {ij} but (T3) N(T};) is
a line t;;, while (T3) U (Tj) = (bper) is a 5-dimensional subspace. We can show below
that these 10 “tangent lines”, ¢;;, all pass through a common point.

Consider, for any 1 € ¢ < 5, the intersection of the 4 block-hyperplanes bpgyr,
where none of p, ¢, r is equal to i. Then the intersection contains the 4 points of T;
and so a 3 —d subspace. This shows that these 4 hyperplanes are dependent, because 4
independent hyperplanes of 6-dimensional space always intersect in a plane. Dualising
(with the geometrical dual), the 10 block-hyperplanes become a set of 10 points of
6-dimensional space, such that there are 5 subsets of 4 points each, which form circuits
in 5 planes (since the geometrical dual of a 3-dimensional space is a plane). The next
lemma analyses the properties of such a set of 5 planes.

LEMMA 2. A set of 5 planes, pairwise intersecting in 10 points, with precisely
2 planes through any point, and with no three of the 10 points collinear, generates at
most a 5-dimensional subspace.

PRrROOF: We may assume that 4 of the planes intersect pairwise in 6 points that
are independent. Then the remaining plane intersects each of the first 4 planes in points
that generate that plane. Hence the fifth plane is contained in the 5-dimensional space
generated by the other 4 planes. 0

We assume that any three block-hyperplanes intersect in at most a 3-dimensional
subspace, that is, that when dualising the three points are not collinear. (This appears
to be a reasonable condition for a general embedding of D¢ and it can be justified di-
rectly by matroid duality.) The five 3-spaces (T;) dualise geometrically to five planes
satisfying the conditions of Lemma 2 above, and this shows that the 10 points, cor-
responding to the geometrical duals of the block-hyperplanes, actually generate a 5-
dimensional subspace: that is, the block-hyperplanes all pass through a common point
N, which we call the nucleus of D°.

Thus we have:

THEOREM 5. The 10 block-hyperplanes of an embedding the complementary De-
sargues theorem D¢ in 6-dimensional space (assuming the most general position of the
points and hyperplanes), all pass through a common point N that is not equal to any
of the 10 points of D°.

COROLLARY 1. The general embedding of D¢ in 6-dimensional space can never
be self-dual. More specifically, the geometrical dual of the configuration is actually in
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a 5-dimensional subspace.

We can confirm these properties most easily by considering the Desargues config-
uration embedded in 3-dimensional space. As in the 2-dimensional embedding, there
will be 10 points and 10 lines, labelled similarly, but there are also 5 planes, each con-
taining 6 points on 4 of the lines: that is, the points that are not in Tj, for 1 < ¢ < 5.
Since planes are the same as hyperplanes in 3-dimensional space the subsets of 4 points,
T;, will be circuits in the 5-dimensional matroid dual of the 3-dimensional embedding.
Thus these T; will be 5 planes that pairwise intersect in a point in 5 dimensions.

Any planar Desargues configuration is the projection of a 3-dimensional configura-
tion from some point M of that 3-space. Hence we consider the matroid dual of the 11
points formed by M and that Desargues in 3-dimensional space. We obtain 11 points
of an 11 —4 —1 = 6-dimensional space such that the deletion of the corresponding point
N (corresponding to M) is the configuration D¢. Note that deletion and projection are
dual concepts in matroid theory. The block-hyperplanes of D¢ (passing through N') are
complementary to the lines of Desargues in the 3-dimensional embedding, which are
circuits. This confirms the fact the block-hyperplanes are all passing through N. Also,
the 5 planes of the 3-dimensional embedding containing 6 points each, are comple-
mentary to the sets T; U {N}, which must be all circuits of 5 points in 6-dimensional
space. This also confirms that the corresponding 3-spaces (T;) all pass through N,
which forms the fifth point with T} for the circuit. Thus we indeed have tangent lines
passing through each point of D¢, and also the nucleus point V.

There are many other properties that can be found but let us finish this discussion
of D¢ by noting several ways to get a set of 5 planes in 5-dimensional space, pairwise
intersecting in a point. Both of these ways involve the Veronese surface V := VZ%(2);
see [9] for a discussion of general properties of V. (It is necessary to assume that the
characteristic of the field is not two, because the Veronesean looks different in this case.)

First, we consider 5 points of the plane, no 3 collinear (forming a “5-arc”). The
repeated lines through each of the 5 points form 5 conics in planes on V (called conic
planes). These planes will pair-wise intersect in a point.

Secondly, we consider 5 lines of the plane, no 3 concurrent (forming a “dual 5-
arc”). Each of these lines, multiplied by a general line of the plane, are mapped by the
Veronese mapping to a point of the cubic hypersurface Q attached to V' {corresponding
to the degenerate conics in the plane). These points form 5 planes, also pairwise
intersecting in a point. As in Lemma 2 above, the 5 planes lie in a 5-dimensional
space, while the set of 10 points formed by the pair-wise intersections of the planes is
the matroid dual of a Desargues configuration in 3-space.

An interesting problem is to determine when the 10 points of the matroid dual
(in 5 dimensions) of Desargues in 3 dimensions lies on a Veronese surface. Another
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problem is to determine when a dual k-arc of lines of the plane, mapping to a set of
k tangent planes of a Veronese surface, are also k conic planes of another Veronese
surface. (We conjecture that it happens when the k lines of the dual k-arc lie on a
dual conic. Notice that 5 general points in the plane determine a unique conic.)

The freedom of Desargues embedded in 3 dimensions can be calculated as follows.
A general tetrahedron of 3-space has freedom 4.3 = 12. By taking a general plane
of the space (of freedom 3), one produces Desargues by adjoining the 4 points of the
tetrahedron to the intersections of its 6 edges with the plane. Since the group of 3-
space has freedom 15 this shows that the freedom of Desargues (reduced as usual by
the group) is 12+ 3 ~ 15 = 0. Thus there is basically a unique {(or at least finite)
number of classes of 3-dimensional Desargues configurations in space up to the group
of collineations. Since the 5 planes, pairwise intersecting in a point, are the matroid
dual of Desargues in 3 dimensions, they also have freedom 0, and must be conic-planes
(or tangent planes) of some Veronese surface.

Thus, we expect that every embedding of the Desargues 107 in 6-dimensional space
is on a cone, with vertex that is the nucleus of that configuration, and base which is a
Veronese surface.

f(Desargues) =10 — 7 = 3, while |Aut (Desargues)| = 120.
Indeed, Aut(Desargues) = Ss. Desargues 103 is geometrically self-dual, although
surprisingly the 107 is only combinatorially self-dual, and can never be geometrically
self-dual; see Corollary 1.
NoOTE. We say that a projective plane is Desarguesian if Desargues theorem is satisfied
in it. We know that Desarguesian planes are those coordinatised by skew-fields.

7. MOBIUS 84

In 1828 Mobius [11] discovered his 84 theorem. It is self-complementary, which
can be seen from an incidence matrix such as

I J-1I
(J~I I )’

where I and J are the 4 x 4 identity and all 1’s matrices respectively. Often it is
described as two tetrahedrons being circumscribed simultaneously about the other.

Using the above incidence matrix let us label the 8 points of the 84 from 1 up to
8. Then the blocks are: 1678, 2578, 3568, 4567, 2345, 1346, 1247, 1238.

One of the best ways to construct the configuration in 3-d space is to start with a
quadrangle of 4 points (labelled 1,6,7,8) in a plane a, with a line ! of @ not passing

through the 4 points. The 6 secants of the quadrangle (joining the pairs of points)
intersect ! in 6 points of an “involution”; see [1, Volume I, Section 1, Exercise 10,
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p. 61]. Thus let 17 intersect ! in a, 68 in b, 18 in ¢, 67 in d, 16 in e, and 78 in the
point f on l. (The involution induced on ! is actually the one taking a < b, ¢ & d
and e & f.)

Now construct another plane S through ! containing a similar quadrangle of 4
points (labelled 2,3,4,5) such that the 6 secants of this quadrangle determine the
same 3 pairs of two points in involution on /. We do this by letting 24 intersect
lina, 35 in b, 23 in ¢, 45 in d, 34 in e, and 25 in f. (Notice that this is a
kind of “complementary” association of the pairs of the quadrangle 2,3,4,5 with the
involution in comparison to the association with 1,6,7,8. It is not achieved by a 1-1
correspondence, or projection, between the points of the two quadrangles.)

This can be done if the plane is Pappian. The union of the two quadrangles is then
the set of points of the 84, while the two planes a and 3, and the 6 planes that are
generated by the corresponding pairs of secants of the two quadrangles, that intersect
on [, comprise the 8 planes of the 8,.

Thus the Mobius 84 is a theorem for 3-dimensional projective space over a field. An
alternative proof (not using Pappus or the idea of involutions coming from quadrangles)
is to note that this 8, has 4 pairs of disjoint planes which contain 4 points. Thus there
are 4 degenerate plane-pair quadrics through the 8 points. Now the dimension of the
space of quadrics in 3-d space is 9. Thus 9 general points determine a given quadric
and so 8 general points determine a pencil of quadrics. But we have actually a net
(2-dimensional space) of quadrics through the 8 points. By Bezout's theorem three
general quadrics intersect in 23 = 8 points. Following from this we may use [1, Volume
IV, Section 1, Exercise 12, p. 61}, where it is stated:

“In space of n dimensions, all (n — 1)-dimensional quadrics which pass through
(1/2)n(n + 1) + 1 general points are expressible linearly, when their equations are in
point-coordinates, by n linearly independent quadrics passing through these points; all
such quadrics, therefore, pass through 2" — 1 — (1/2)n(n + 1) other points.”

Thus, in the case n = 3, we have that quadrics passing through 7 points, also pass
through an eighth point. Using this, it is clear that the last incidence of the Mébius 8,
is equivalent to the fact that the degenerate quadric consisting of one of the 4 plane-
pairs, passes through all 8 points, which indeed follows by the algebraic method as
stated in [1].

As noted in [1, Volume IV, Section 1, pp. 18-20], Wallace’s theorem of 1806 ([14])
is equivalent in some sense to Mdbius 8,. We recall Wallace's theorem: given any 4
lines of a quadrilateral in a plane over a field, any 3 of these lines determine a triangle
of points and a circle that passes through these points. (A “circle” in a general Pappian
projective plane is really a non-degenerate conic that passes through two fixed points
on a line not passing through any of the 6 points of intersection of the lines of the
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quadrilateral.) Now we have 4 “circles” passing through the 4 triangles associated
with the quadrilateral. Then Wallace’s theorem says that these 4 circles pass through
a common point.

A way to associate the 8, with Wallace’s theorem is as follows. It is well known that
the set of circles and lines of an affine plane (projective plane minus a fixed line) is the
same structure as the Mdbius plane, which is the set of non-tangent plane intersections
with an elliptic quadric (or “sphere”) in 3-dimensional projective space. The lines of
the affine plane correspond to those plane sections passing through a fixed point on the
sphere, and the circles are all the other non-tangent plane sections. Thus, transforming
Wallace’s configuration of 4 lines and 4 circles through 7 points in the plane we see that
there is a further point on the sphere through which 4 circles pass. It is easily checked
that the Wallace and M&bius configurations are the same with this transformation. The
fact that the Mdbius 83 lies on an elliptic quadric is obvious, once we know that there is
a large enough set of quadrics passing through the set of 8 points. (See the alternative
proof of the theorem via quadrics in the paragraph above.)

NoTE 8. Miquel’s theorem (see [1, Volume IV, Section 1], or [3, Section 6]),
is a theorem about 6 circles and 8 points on an elliptic quadric (or “sphere”). The
configuration is isomorphic to the 8 vertices and 6 sides of a cube. Clearly it is the
same as the Mobius 84 with one set of 2 disjoint planes omitted.

For all fields, f(Mobius) = 2, and for skew-fields it is 1. |Aut (Mébius)| = 8.24
= 192. It is geometrically self-dual and self-complementary.

8. CONFIGURATIONS THAT ARE NOT EMBEDDABLE

There are several different types of ny configurations in this list. We omit discus-
sion of configurations that are not embeddable due to compulsory extra incidences. For
example, Griinbaum’s 163, see [7, Figure 8]. Some configurations are not embeddable
because the space is just too small (not enough points in a finite space, for example),
or the “final” algebraic equation expressing the incidence of the last flag is not solvable
over the particular field. For example, the 83 is not embeddable in the real plane, but
it is in the complex plane.

Other than these types of situations there are certain configurations that are never
embeddable, no matter which field extension is taken, and we list the known ones here.

The known n3 configurations of this type are:

(1) the Fano 73, in planes of characteristic not 2;
(2) one of the 10 different 103 configurations for planes over a field; see [4].
Taking the complementary configurations we obtain:
the non-embeddable 74, for 3-spaces over a field of characteristic not 2;
and a non-embeddable 107 for any 6-dimensional space over a field.
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9. FURTHER COMMENTS

Here we note a few general directions in which to make progress.

A. Find more n; theorems. A good place to look first would be in 4-dimensional
space, since no ny theorems are known there. For example, we conjecture that there
are no more nz theorems to be discovered. Certainly we can show this when the ns
contains a triangle.

B. Find more nj; configurations that are not embeddable. From the preceding
Section we see that the list of these is very short at present.

C. Classify ni configurations/theorems that are self-complementary and geomet-
rically self-dual.

D. Find more relationships between ny configurations and algebraic geometry,
such as the fact that the Pappus 9¢ lies on a Veronese surface.

E. Find connections between ny theorems in different dimensions. For example,
Pappus and Mobius could be related in a more direct manner.

F. Find more n; “theorems” of incidence other than those of Desargues and its
complement (that are valid for skew-fields). In this regard it would be interesting to
find a direct proof using the properties of higher dimensional spaces of the Desargues
107 in 6 dimensions.

G. Given two Veronese surfaces V; and V, of 5-dimensional space, investigate
the intersections of the set conic planes of V) with the tangent planes of V5.

We conjecture that that maximum intersection is reached when the conic planes
correspond to the points of a non-degenerate conic of the plane, or the tangent planes
correspond to the lines of a non-degenerate dual conic of the plane. Related to this is
the fact that any 5 planes, each pairwise intersecting in a point {(otherwise in general
position in 5-space), are in the set of conic-planes of some Veronese surface, and at the
same time in the set of tangent planes of another Veronese surface.

H. Investigate generalisations of Desargues theorem et cetera.

For k > 2 consider a collection of k + 2 (k — 1)-dimensional subspaces of

( (k ; 1) -~ 1) -dimensional space such that each pair of subspaces intersect in a point.

Thus there are (k ; 2) points of intersection. Then it follows quite quickly that the

2 . . . k+2
matroid dual is a set of (k ; ) points of space of k dimensions having a set of ( -;- )

lines of 3 points each. For example, when k = 2 the latter configuration is the Pasch
axiom for projective space consisting of 4 coplanar lines and their 6 points of inter-
section (a matroid self-dual configuration). When k = 3 it is Desargues configuration
in 3d-space. The linear space of points and lines above in k-dimensional space may
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be represented combinatorially by the set of unordered pairs ab of size 2 as “points”,
with a and b in a set of size k + 2, with lines {ab,ac,bc}. Thus for k¥ > 3 it contains

(k ; 2) Desargues sub-configurations.
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