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Summary

As an alternative to multiple-interval mapping a two-step moment method was recently proposed
to map linked multiple quantitative trait loci (QTLs). The advantage of this moment method was
supposed to be its simplicity and computational efficiency, especially in detecting closely linked
QTLs within a marker bracket, but also in mapping QTLs in different marker intervals. Using
simulations it is shown that the two-step moment method may give poor results compared with
multiple-interval mapping, irrespective of whether the QTLs are in the same or in different marker
intervals, especially if linked QTLs are in repulsion. The criteria of comparison are number of
identified QTLs, likelihood ratio test statistics, means and empirical standard errors of the QTL
position and QTL effects estimates, and the accuracy of the residual variance estimates. Further,
the joint conditional probabilities of QTL genotypes for two putative QTLs within a marker interval
were derived and compared with the unmodified approach ignoring the non-independence of the
conditional probabilities.

1. Introduction

Approaches using a multiple-QTL model for simul-
taneously mapping QTLs should improve the identi-
fication of multiple QTLs, allow testing for epistatic
interactions between QTLs and be able to improve
the precision of QTL position and effect estimates.
Kao & Zeng (1997) presented for backcross and F2

designs a maximum likelihood strategy for mapping
multiple QTLs using multiple marker intervals simul-
taneously. Their approach is based on a finite normal
mixture model and the expectation maximization
algorithm is used to obtain the QTL estimates. Kao
et al. (1999) called this method multiple-interval
mapping. Nakamichi et al. (2001) proposed as an
alternative a two-step moment method as a mapping
strategy. Although they state they use a multiple-QTL
model, their approach actually uses single-interval
mapping to obtain crude (biased) estimates of the
additive genetic effect, the dominance effect and the
population mean and residual variance. In a second
step a moment method is applied to these crude
estimates to remove the effects of the other QTL.

Nakamichi et al. (2001) state that the two-step
moment method may be less statistically efficient
than multiple-interval mapping, but the merit of the
moment method is its simplicity and computational
efficiency. The differences between true maximum
likelihood estimates and the results of the two-step
moment method were found to be negligible in several
simulated data sets in their study. In this paper it will
be shown that although the two-step moment method
may approximate multiple-interval mapping in some
cases, the differences between the two methods can
be very large, irrespective of whether the QTLs are
in different marker intervals or closely linked.

2. Material and methods

(i) Two-step moment method

For the analyses using the two-step moment method
of Nakamichi et al. (2001), the computer program
GAQTL (download version 0.2) in C++ language
as provided on the worldwide web under http://lbm.
ab.a.u-tokyo.ac.jp/~naka/software.html was used.
Recently on this web site a second program GAQTL2
(version 0.1b) was provided that is supposed to use* e-mail : mmayer@fbn-dummerstorf.de
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joint conditional probabilities of QTL genotypes for
two (or more) putative QTLs within a marker inter-
val. But this program is not recommended by the
authors as they describe it as ‘unstable’.

The programs of Nakamichi can be used for map-
ping QTLs in F2 populations and consider additive
and dominance effects, but do not allow the analysis
of epistasis. Further, a general mean is estimated.
Thus, an observation yi (i=1, 2, … , n) can be
modelled as follows:

yi=m+
Xm
k=1

(akxik+dkzik)+ei (1)

where xik and zik are the indicator variables of the
additive (ak) and dominance (dk) effects at putative
QTL locus k. The number of QTL loci considered is
m. The general mean is m and the residual effect for
observation i is eiyNID(0, s2).

In the two-step moment method of Nakamichi et al.
(2001), crude estimates of the genetic effects (ak, dk),
the general mean m, and the residual variance s2 are
obtained assuming a single QTL and applying single-
interval mapping using maximum likelihood meth-
odology. These crude estimates are biased because of
the effects of the other QTL. Therefore, in a second
step a moment method is applied with the intention of
removing the effects of the other QTL from the crude
estimates. Therefore, in the approach of Nakamichi
et al. (2001), the final estimates are obtained by solv-
ing the following linear equation system:

~aakk=
Xm
k=1

{(1x2rkkk)âk} (2a)

~ddkk=
Xm
k=1

{(1x2rkkk)
2 d̂k} (2b)
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Here, the tilde (y) indicates the single-interval map-
ping estimates and the hat ( ˆ ) the estimates of the
moment method; rkkk is the recombination rate be-
tween QTLs kk and k.

The computer programs compute the ‘fitness ’ of
putative QTL locations as a function based on the
likelihood plus an Akaike’s information criterion-like
(Akaike, 1974) penalty function. In the programs of
Nakamichi the fitness score is computed as 1/2r

(likelihood ratio test statistic using the two-step mo-
ment method estimates as described abovex6 times
number of QTLs) and a genetic algorithm is used to
identify the model with the highest ‘fitness ’.

(ii) Multiple-interval mapping

The likelihood of the multiple-interval mapping
model is a finite normal mixture. Given trait values
y={yi} and genomic positions and, therefore, the
probabilities of QTL genotypes given marker data
(M), the likelihood function for parameters h=
{ak, dk, m, s

2} can be formulated as (Kao & Zeng,
1997; Kao et al., 1999):

L(hjy, M)=
Yn
i=1

X3m
j=1

pijw(mij, s
2)

" #
(3)

where pij are the conditional probabilities for the
QTL genotypes with the corresponding genotypic
values mij and w representing the normal density
function. Kao & Zeng (1997) proposed general for-
mulas for obtaining the maximum likelihood esti-
mators using an expectation-maximization (EM)
algorithm (Dempster et al., 1977; Little & Rubin,
1987). With these general formulas QTL mapping
analysis could be extended to using multiple marker
intervals simultaneously for mapping multiple QTLs
and estimating the QTL effects. This method was
called multiple-interval mapping by Kao et al. (1999).
Further details of the method can be found in Zeng
et al. (1999).

(iii) Parameter definition

To avoid confusion in the comparison and interpret-
ation of QTL estimates, the definition of the QTL
parameters in the various computer programs must
be observed. Let us assume that (as usual) the homo-
zygous genotypes of the marker and the QTL in the
first parental line are coded as 0 and in the second
parental line as 2, and further the heterozygous
genotypes are coded as 1. Then in the program of
Nakamichi et al. (2001) the additive genetic effect of
a QTL k (ak) is defined as +ak if the genotype is
coded as 0 and xak if the genotype code is 2. The
dominance effect is defined as dk if the genotype is
1 and is 0 otherwise. In the programs of QTL Carto-
grapher (Basten et al., 2001) or in the F2 QTL analysis
servlet in the QTL express package (Seaton et al.,
2002), for example, the definition of the additive
effects is just the opposite, i.e. xak if the genotype
coded is 0 and +ak if the code is 2. As the main pur-
pose of this paper is to study the properties of the
two-step moment method, the parameter definition of
Nakamichi et al. (2001) is used.
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(iv) Models

Two different models were used to simulate the data.
In the first model 100 replicates of an F2 population
with 500 individuals were simulated and analysed.
Five QTL at positions 8, 15, 25, 35 and 42 cM on a
chromosome of length 50 cM were postulated. The
five QTLs had additive genetic effects a1=x0.5,
a2=1.0, a3=x1.0, a4=1.0 and a5=x0.5, respect-
ively, using the parameterization as described above.
There were no dominance effects. The markers were
located at the positions 0, 10, 20, 30, 40 and 50 cM,
respectively. The residual variance (s2) was 0.12.

The second model was identical to that used by
Nakamichi et al. (2001) to demonstrate the behav-
iour of their method for closely linked QTLs. An F2

population with sample size 500 was simulated and
100 replicates were analysed. Two QTLs at positions
43 and 47 cM on a chromosome of length 100 cM
were assumed. The QTLs had effects a1=2.0, a2=
x2.0 and d1=1.0, d2=x1.0. Markers were located
every 10 cM on the chromosome, i.e. the two QTLs
were not separated by a marker. The residual variance
was 1.0. In the two-step moment method analyses for
both models the default GA-controlling parameters
of Nakamichi et al. (2001) were used.

To study the influence of the distance between two
linked QTLs in a marker interval, two further settings
where the QTLs were very close (position 43 and
44 cM for QTL 1 and QTL 2, respectively) and where
the QTLs were farther apart (positions 43 and 49 cM)
were simulated and analysed.

For QTL detection in multiple-interval mapping
a stepwise selection procedure and the likelihood

ratio test statistic for adding QTL parameters accord-
ing to Kao et al. (1999) was applied. The Bonferroni
argument was used to determine the critical values ;
thus the critical values for claiming detection of
an additional QTL were x22, 0�05=5ð Þ=9�2104 and
x22, 0�05=10ð Þ=10�5970 for model 1 and model 2, re-
spectively.

(v) Extension of multiple-interval mapping to include
two QTLs in the same marker interval

If the QTLs are located in different marker intervals,
the probability of the jth ( j=1, 2, … , 3m for an F2

population) joint genotype of putative QTLs is the
product of the marginal conditional probabilities
of each individual QTL. The marginal conditional
probabilities for an F2 scheme can be found, for
example, in Kao & Zeng (1997, Table 2) ignoring
double recombination. In Table 1 the joint con-
ditional probabilities of QTL genotypes derived for
two putative QTLs within a marker interval are
shown. Because in the second simulation model two
QTLs were located within a marker interval, these
conditional probabilities were used to compare the
results with the unmodified approach, i.e. ignoring
the fact that the conditional probabilities are not
independent. I am very grateful to one of the referees
who called my attention to the paper of Jiang & Zeng
(1995). In Table 2 of their paper the probabilities
of QTL genotypes given flanking marker genotype
for two QTLs within a marker interval were also de-
rived. By comparing the probabilities in Jiang & Zeng
(1995) with the values in Table 1 in this paper it can
be seen that there are differences when the marker

Table 1. Conditional probabilities for two closely linked QTLs given flanking marker genotypes for an F2

population

Marker
genotypes

QTL genotypes

Q1Q1

Q2Q2

Q1Q1

Q2q2

Q1Q1

q2q2

Q1q1

Q2Q2

Q1q1

Q2q2

Q1q1

q2q2

q1q1

Q2Q2

q1q1

Q2q2

q1q1

q2q2

M1M1M2M2 1 0 0 0 0 0 0 0 0
M1M1M2m2 t3 t2 0 0 t1 0 0 0 0
M1M1m2m2 t3

2 2 t2 t3 t2
2 0 2 t1 t3 2 t1 t2 0 0 t1

2

M1m1M2M2 t1 0 0 t2 t3 0 0 0 0
M1m1M2m2 gt1 t3 g t1 t2 0 gt2 t3 1x2g(t1 t2+

t1 t3+t2 t3)
gt2 t3 0 gt1 t2 gt1 t3

M1m1m2m2 0 0 0 0 t3 t2 0 0 t1

m1m1M2M2 t1
2 0 0 2 t1 t2 2 t1 t3 0 t2

2 2 t2 t3 t3
2

m1m1M2m2 0 0 0 0 t1 0 0 t2 t3
m1m1m2m2 0 0 0 0 0 0 0 0 1

Double recombination ignored.
t1=rM1Q1/rM1M2 (where rM1Q1 is the recombination rate between marker 1 and QTL 1, etc.).
t2=(rM1Q2xrM1Q1)/rM1M2.
t3=1x(rM1Q2/rM1M2).
g=r2M1M2/[r

2
M1M2+(1xrM1M2)

2].

Limitations of a two-step moment method 147

https://doi.org/10.1017/S0016672304007207 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672304007207


genotype is m1m1M2M2, which may eventually be
explained by typographical errors in the paper of
Jiang & Zeng (1995).

(vi) Two-step moment method and multiple QTLs
in the same marker interval

As the use of the ‘unstable ’ program GAQTL2 re-
sulted in some surprising results, a thorough scrutiny
showed that there are two programming errors in
the source code of the program GAQTL2. Firstly,
a wrong residual variance term is used in the com-
putation of the likelihood values for a no-QTL model,
resulting in likelihood test statistics or ‘fitness ’ values
that are too small. The larger the QTL effects the
more are the correct likelihood ratio test statistic
values reduced. The second error is in the use of
wrong conditional probabilities when the marker
constellation is M1M1m2m2 and m1m1M2M2, respect-
ively. But as this is rare in the designs under con-
siderations this aspect did not have a very strong
influence on the results. After correcting for these
two errors a comparison with own computer pro-
grams led to the same results and the modified
GAQTL2 program was also used for the analyses of
model 2 with linked QTLs to study the effects of using
the joint conditional probabilities on the results.

3. Results

(i) Model 1

Multiple-interval mapping indubitably identified five
QTLs in all the replicates. The partial likelihood ratio
test statistic for comparing a five-QTL model with a
four-QTL model was 366.3¡67.6 (mean¡standard
deviation) and ranged from 188.2 to 547.5. The mean
absolute likelihood ratio test statistic was 717.8 and
varied between 515.5 and 920.0. In contrast, as can
be seen from Table 2, the computer program GAQTL
using the two-step moment method found five QTL

in only 11 out of the 100 cases. In 89% of the rep-
etitions between 0 and 4 QTL were ‘ identified’. It
can further be seen from Table 2 that the computed
partial likelihood ratio test statistics were rather
small as compared to those from multiple-interval
mapping.

The relative QTL variance in model 1 was very
large, so as expected the position and effect estimates
from multiple-interval mapping were very accurate
and showed only small empirical standard errors as
can be seen from Table 3. It can further be seen that
the two-step moment method was not only problem-
atic in identifying the correct number of QTLs, but
also resulted in rather inaccurate estimates of the
QTL positions, the genetic effects and the variance of
the error term. The computer program (GAQTL)
of Nakamichi et al. (2001) can be forced to identify
five QTL. When doing so, the empirical standard de-
viations (Table 4) ranged from 4.71 to 6.36 cM (QTL
positions), from 0.075 to 0.114 (additive genetic
effects) and from 0.079 to 0.131 (dominance effects).
These values are comparable to those given in Table 3
for the 11 ‘significant’ replicates.

(ii) Model 2

When the two QTLs were located at positions 43
and 47 cM, the two-step moment method using inde-
pendent conditional probabilities found two QTLs
in 47 of 100 repetitions, three QTLs in 48 repetitions

Table 3. Means and empirical standard deviations of
QTL position estimates (in cM), effect estimates and
the residual variance estimates in the replicates where
five QTLs were identified for simulation model 1

True
values

Moment
method
(n=11)

Multiple-interval
mapping
(n=100)

Positions

(cM)

QTL 1 8 3.18¡7.36 7.82¡0.50
QTL 2 15 14.45¡3.67 14.59¡0.68
QTL 3 25 27.00¡6.18 24.81¡0.66
QTL 4 35 34.36¡5.30 34.64¡0.52
QTL 5 42 43.91¡5.34 41.92¡0.50

Effects

a1 x0.5 x0.111¡0.035 x0.506¡0.018
a2 1.0 0.143¡0.077 1.007¡0.018
a3 x1.0 x0.029¡0.121 x1.002¡0.018
a4 1.0 0.075¡0.159 1.004¡0.025
a5 x0.5 x0.082¡0.128 x0.504¡0.021
d1 0 x0.005¡0.140 x0.001¡0.017
d2 0 x0.018¡0.173 x0.000¡0.018
d3 0 0.066¡0.192 0.002¡0.015
d4 0 x0.045¡0.197 x0.000¡0.020
d5 0 0.005¡0.089 x0.002¡0.017

Residual
variance

0.12 0.3892¡0.017 0.1192¡0.003

Table 2. Number of QTLs found for model 1 and
range of calculated LRT statistics (in parenthesis) by
the two-step moment method and multiple-interval
mapping for 100 replicates

No. of QTLs
found Moment method

Multiple-interval
mapping

0 8 0
1 1 (10.3) 0
2 27 (12.5–36.5) 0
3 27 (18.9–43.9) 0
4 26 (29.9–75.8) 0
5 11 (39.0–71.6) 100 (515.5–920.0)
o6 0 –
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and four QTLs in 5 repetitions (Table 5). This is in
contradiction to the results of Nakamichi et al. (2001),
who for the same scenario found that the moment
method detected two QTLs in 98 of 100 cases. In this
simulation study the moment method clearly tended
to identify too many QTLs for this scenario. In com-
parison, multiple-interval mapping, where two QTLs
were identified in 91% of the repetitions, was much
more accurate in identifying the number of QTLs.

Further, the absolute values of the QTL effect
estimates from the moment method were clearly
downward-biased. The closer together the QTLs were
located the more evident was the downward bias
(Table 5). In general, as for model 1 the bias of the

effect estimates has the consequence that the residual
variance is overestimated. Comparing the two-step
moment method with multiple-interval mapping
when the QTLs were very close (positions 43/44 cM)
the power of detecting two QTLs was much smaller
for the moment method, the position estimates were
biased and showed higher empirical standard devia-
tions.

The differences between the multiple-interval map-
ping approach based on the joint conditional prob-
abilities (Table 6) compared with the approach using
independent probabilities (Table 5) were only very
small. When applying the moment method the use
of the joint conditional probabilities resulted in

Table 4. Means and empirical standard deviations of QTL position estimates (in cM), effect estimates and the
residual variance estimates in the replicates when the two-step moment method was forced to identify five QTLs
for simulation model 1 (n=100)

QTL 1 QTL 2 QTL 3 QTL 4 QTL 5

Positions (cM) 2.17¡5.32 14.92¡4.71 25.06¡6.36 34.58¡5.16 45.28¡6.22
Additive effects x0.072¡0.075 0.110¡0.110 x0.031¡0.114 0.069¡0.114 x0.068¡0.087
Dominance effects 0.002¡0.086 x0.033¡0.116 0.052¡0.131 x0.021¡0.115 0.003¡0.079
Residual variance … … 0.3942¡0.015 … …

Table 5. Comparison of the two-step moment method with multiple-interval mapping for model 2 using
independent conditional probabilities. Number of identified QTLs, means and empirical standard deviations
of QTL position estimates (in cM), effect estimates and estimates of the residual variance

True QTL positions (cM): 43/47 43/44 43/49

Moment method

No. of identified QTLs
0 0 41 0
1 0 15 0
2 47 32 44
3 48 9 42
4 5 3 14

Estimates (2 QTL results)
Position (cM) 41.4¡1.2, 48.1¡1.5 39.7¡11.2, 53.1¡14.6 41.4¡1.0, 48.6¡1.2
Additive effects
(2.0/x2.0)

0.90¡0.27, x0.90¡0.28 0.25¡0.23, x0.25¡0.23 1.43¡0.32, x1.43¡0.32

Dominance effects
(1.0/x1.0)

0.57¡0.33, x0.60¡0.35 0.24¡0.20, x0.24¡0.21 0.92¡0.32, x0.95¡0.33

Residual variance (1.02) 1.102¡0.080 1.042¡0.034 1.172¡0.097

Multiple-interval mapping

No. of identified QTLs
0 0 22 0
1 0 1 0
2 91 74 92
3 9 3 8
4 0 0 0

Estimates (2 QTL results)
Position (cM) 42.4¡2.8, 46.6¡3.0 44.2¡9.8, 46.5¡9.7 42.8¡1.8, 48.7¡2.0
Additive effects (2.0/x2.0) 1.93¡0.29, x1.93¡0.29 1.55¡0.78, x1.55¡0.79 1.95¡0.19, x1.95¡0.19
Dominance effects (1.0/x1.0) 1.02¡0.23, x1.04¡0.25 1.09¡0.64, x1.10¡0.67 1.01¡0.18, x1.03¡0.19
Residual variance (1.02) 1.002¡0.066 0.992¡0.058 1.002¡0.062

Limitations of a two-step moment method 149

https://doi.org/10.1017/S0016672304007207 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672304007207


smaller rates of false discoveries as can be seen from
Tables 5 and 6. But these were still quite high and the
ability to identify the correct number of QTLs was
still far removed from that of the multiple-interval
mapping approach. The means and standard devia-
tions of the estimates of the QTL positions, QTL
effects and the residual variances for the replicates
where two QTL were identified are very close to the
values in Table 5 (independent conditional prob-
abilities) and showed similar biases. The likelihood
ratio test statistics when applying the two-step mo-
ment method were clearly smaller than the values
from the multiple-interval mapping approach.

4. Discussion

The computer program of Nakamichi et al. (2001)
makes use of a penalty function in model selection
related to Akaike’s information criterion. For a gen-
eral discussion of information criteria used in QTL

mapping see for example Zeng et al. (1999). It is well
known that Akaike’s information criterion is a rela-
tively liberal criterion. It can lead to comparatively
higher type I errors, i.e. in our context to false detec-
tion of QTLs. Although Nakamichi et al. (2001) state
that they are using Akaike’s information criterion in
their computer program, they strictly speaking do
not. As can be seen from the likelihood function (3)
the parameters of the multiple-QTL model are the
additive effects, the dominance effects, the general
mean and the residual variance. Thus the number of
parameters is 2rnumber of QTL+2 and the penalty
function in Akaike’s information criterion should be
2rnumber of parameters. In the computer program
the QTL position is also considered as a parameter.
Thus in the program, for an additional QTL to be
included the increase in the value of the likelihood
function must be 6 and not 4 as would be Akaike’s
penalty. To get an idea about the magnitude of the
type I errors of the two-step moment method in

Table 6. Comparison of the two-step moment method with multiple-interval mapping for model 2 using joint
conditional probabilities. Number of identified QTLs, means and empirical standard deviations of QTL position
estimates (in cM), effect estimates, estimates of the residual variance and means and range of the likelihood ratio
test statistics

True QTL positions (cM): 43/47 43/44 43/49

Moment method

No. of identified QTLs
0 0 40 0
1 0 13 0
likelihood ratio test statistics 8.1 (6.2–11.9)
2 73 37 77
likelihood ratio test statistics 72.3 (24.8–152.9) 18.5 (12.1–38.7) 135.7 (49.2–219.4)
3 22 7 19
likelihood ratio test statistics 88.3 (34.6–137.4) 26.2 (18.1–50.7) 138.0 (76.6–213.7)
4 5 3 4
likelihood ratio test statistics 78.2 (61.7–96.5) 30.1 (27.2–32.9) 168.7 (131.6–201.2)

Estimates (2 QTL results)
Position (cM) 41.4¡1.2, 48.1¡1.3 40.2¡10.9, 52.9¡14.0 41.1¡0.9, 48.6¡1.0
Additive effects

(2.0/x2.0)
0.92¡0.23, x0.92¡0.23 0.25¡0.24, x0.26¡0.23 1.34¡0.25, x1.34¡0.24

Dominance effects
(1.0/x1.0)

0.59¡0.24, x0.61¡0.25 0.22¡0.20, x0.24¡0.21 0.78¡0.27, x0.82¡0.26

Residual variance (1.02) 1.142¡0.095 1.042¡0.070 1.152¡0.092

Multiple-interval mapping

No. of identified QTLs
0 0 22 0
1 0 1 0
2 92 74 93
likelihood ratio test statistics 102.7 (45.5–178.7) 30.5 (15.2–83.7) 162.8 (83.1–241.8)
3 8 3 7
4 0 0 0

Estimates (2 QTL results)
Position (cM) 42.6¡2.5, 46.8¡2.7 44.1¡9.7, 46.4¡9.6 42.4¡1.7, 48.7¡1.9
Additive effects

(2.0/x2.0)
1.94¡0.29, x1.94¡0.29 1.57¡0.76, x1.56¡0.78 1.95¡0.19, x1.95¡0.19

Dominance effects
(1.0/x1.0)

1.02¡0.23, x1.05¡0.25 1.10¡0.65, x1.11¡0.68 1.02¡0.18, x1.04¡0.19

Residual variance (1.02) 1.002¡0.065 0.992¡0.057 1.002¡0.060
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the designs of this study, the simulated data were
reanalysed setting the QTL effects equal to zero. In
the first simulation model (QTL in different marker
intervals) the empirical type I error was 23% (in 15
cases one QTL and in 8 cases two QTLs were wrongly
identified) and in the second model (closely linked
QTL) the error rate was 38% (in 20 cases one QTL
and in 18 cases two QTLs were wrongly identified,
respectively). As in the first simulation model there
were 5 marker intervals and in the second simulation
model 10 intervals, the higher type I error for the
second design is not surprising. As has been shown
above, the critical values in multiple-interval mapping
based on the Bonferroni argument are much higher,
namely 9.2104 (model 1) and 10.5970 (model 2), re-
spectively.

But despite the large type I errors, when five QTLs
with rather large effects were present in simulation
model 1 the two-step moment method clearly ident-
ified too few QTLs, whereas multiple-interval map-
ping did not have any problem in correctly identifying
the number of QTLs involved. The likelihood ratio
test statistics calculated from the score values of
the moment method computer program were much
smaller than those obtained for the maximum likeli-
hood estimates from the multiple-interval mapping
method. In the cases where five QTLs were identified,
the empirical standard deviations of the position
estimates were about 10 times larger than those
from multiple-interval mapping. The mean QTL
effect estimates were close to zero, but showed as for
the position estimates very large standard deviations.
Further, the residual variance estimates were grossly
overestimated.

Generating 100 000 repetitions where five QTLs
were distributed on a chromosome of length 50 cM
using a uniform distribution, the following means¡
standard deviations of the locations were obtained:
7.99¡6.77, 16.49¡8.55, 25.00¡9.08, 33.49¡8.58
and 41.99¡6.77. Comparing these values with the
estimates of the two-step moment method in Table 3
it turns out that distributing the location of QTLs
randomly over the chromosome would be almost as
accurate as the moment method.

In the scenario of model 2, i.e. when two QTLs were
located in one marker interval and when the QTLs
were very close together (positions 43/44 cM), the
two-step moment method clearly showed more re-
petitions where no or only one QTL was identified.
Thus multiple-interval mapping was again much more
accurate in estimating the number of QTLs. The mean
position estimates of multiple-interval mapping were
closer to the true values and showed smaller standard
errors. The effect estimates of the moment method
were clearly biased towards zero. Theoretical studies
have shown that, when using least squares, it is
impossible to map multiple QTLs within the same

marker bracket (Whittaker et al., 1996). Maximum
likelihood can in principle separate the location and
effect although it is known that the amount of infor-
mation contained in the distribution of the data is
small relative to the amount of information contained
in the mean marker contrasts. When the QTLs were
not so close together (positions 43/47 cM and 43/
49 cM, respectively) the two-step moment method
overestimated the number of QTLs involved and the
QTL parameter estimates (effects, residual variance)
were biased. The false discovery rates of multiple-
interval mapping were in the expected range.

Nakamichi et al. (2001) wrote that in the model 2
scenario their approach detected the two QTLs in 98
cases out of 100 trials. In the other two cases one QTL
was detected and no cases of three or more QTLs
being detected were observed. These findings cannot
be confirmed. In this study, under identical simul-
ation conditions, the two-step moment method of
Nakamichi et al. (2001) identified two QTLs in less
than 50% of the repetitions and three or four QTLs
in more than 50%, as can be seen from Table 5.
The explanation for this difference may be found
in Section 2(vi). On the web site of Nakamichi it is
pointed out that Nakamichi et al. (2001) did not use
the method and computer program for these analyses
as indicated in their paper, but their computer pro-
gram GAQTL2. In agreement with Nakamichi et al.
(2001), it was found that in the cases where two QTLs
were identified the absolute values of the estimates
were too small rather than too large. In this down-
ward bias of the absolute effects Nakamichi et al.
(2001) saw the advantage that these estimates are
preventing researchers from being too optimistic.

The likelihood of the multiple-QTL model gener-
ally has the form as represented in (3). As the
conditional probabilities for the QTL genotypes (pij)
should be the same for the two-step moment method
and for the multiple-interval mapping method, the
differences between the likelihood values at putative
QTL locations using multiple-interval mapping and
the respective part of the fitness function using the
moment method are due to differences in the estimates
for the genotypic values, i.e. differences in the par-
ameter estimates and in the estimates of the residual
variance. As already mentioned, Nakamichi et al.
(2001) also observed that for the model 2 simulations
the absolute values of the QTL effect estimates of
the two-step moment method were seriously down-
ward-biased. In model 1 situation this had dramatic
consequences. For given QTL positions using effect
estimates shrunk towards zero and thus some mij*
instead of mij in (3) in conjunction with s* much larger
than s has an impact on the calculation of the fitness
and in consequence on model selection. As expected
in this situation, even if the computer program was
forced to identify the correct number of QTLs (m=5),
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this had very little consequence on the accuracy of
the position and effect estimates (Table 4), despite
the fact that the true error variance was very small.
If three QTLs were located at positions 17, 43 and
85 cM, respectively, with equal additive effects as in
the first simulation model of Nakamichi et al. (2001),
the differences between the two-step moment method
and multiple-interval mapping were small (results
not shown), although the moment method showed
an empirical type I error of 13% and the interval-
mapping method still gave somewhat more precise
estimates. Similarly if QTL effects were set in coupling
in model 1 and model 2, respectively, then the two-
step moment method gave fairly good approximate
maximum likelihood estimates (results not shown).

In conclusion it was shown that differences between
the two-step moment method of Nakamichi et al.
(2001) and multiple-interval mapping (Kao & Zeng,
1997; Kao et al., 1999) can be large, irrespective
of whether the QTLs are in the same or in different
marker intervals. The reason are differences in the
parameter estimates, which can be large, especially if
linked QTLs are in repulsion. The bias in the two-step
moment method estimates of the QTL effects and of
the residual variance directly influences the likelihood
ratio test statistics or fitness scores in the sense that
it leads to smaller values compared with multiple-
interval mapping and thus has a strong influence
on model selection. On the other hand the use
of Akaike’s information criterion in the programs of
Nakamichi as a liberal criterion in model selection
counteracts this in the way that it increases the
number of ‘ found’ QTL. If QTL effects were in
coupling then the two-step moment method resulted
in fairly good approximate maximum likelihood esti-
mates in the scenarios studied. But even in those cases

it would be desirable to have an option in the com-
puter programs by Nakamichi for selecting among
various penalty functions.
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