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A BOUND ON THE SCHUR MULTIPLIER OF A
PRIME-POWER GROUP

GRAHAM ELLIS AND JAMES WIEGOLD

For Bernhard Neumann on his 90th birthday

The paper improves on an upper bound for the order of the Schur multiplier of a
finite p-group given by Wiegold in 1969. The new bound is applied to the problem
of classifying p-groups according to the size of their Schur multipliers.

In a paper [6] dedicated to B.H. Neumann’s sixtieth birthday, the second author
used results of [5] to show that a d-generator group G of prime-power order p” has
Schur multiplier M(G) of order at most p(d—1(2n—d)/2 1p this article we use results
of the first author [3] to obtain a reduction of this bound. The reduced bound is then
applied to the problem of classifying p-groups according to the orders of their Schur
multipliers, at least in the case where the multipliers are large.

We begin by blending parts (i) and (ii) of Proposition 5 in [3] to produce the
following proposition.

PROPOSITION 1. (3] Let G be a finite p-group with centre Z(G) and lower
central series 1 = ¥.41G 97.G <4 --- 947G =G. Set G = G/Z(G) and consider the
homomorphism

—a G _
0" @G" 95" — %@‘G‘“”, ZRYO®Z~ [,y ®Z+ (1,2, ®F + 2,7}, ®F.
3

Here T denotes the image in G of the element z € G, and (z,y], denotes the image in
v2G/v3G of the commutator [z,y) € G. Then

. ab\|| 12G  mob|| 3G  mab| —ab
(1) |M(G)| |Gl |image(¥)| < |M (G 730®G 74G®G l7.G®G |

Proposition 1 leads to the following numerical bound on the order of the Schur
multiplier.
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THEOREM 2. Let G be a d-generator group of order p®. Suppose that the
Abelianisation G®® has order p™ and exponent p¢, and that the central quotient
G/Z(G) is a §-generator group. Then

(2) IM(G)I < pd(m-e)/2 + (6—-1)(n—m) - max{0,6—2}‘

Since e > m/d and d 2 §, inequality (2) implies
® [M(G)] < pa-Den-m2

Bound (3) is attained if G = Cpe X Cpe X -+ X Cpe .

PROOF: Recall that M(G®®) is isomorphic to the exterior square G A G of
Abelian groups [2]. Suppose that G®® = Cpny X Cpnp X -+ X Cyng Where ny < 1y <
---<ng=e€ and ny +n2+ -+ ng = m Then M(G) has order p*, where

a=(d-1n1+(d-2)na+ - +ng
=d(n1+n2+~-+nd_1)—(n1+2n2+---+(d—1)nd_1)

<4) =d(m—e)— (n1+2n2+ -+ (d ~ I)ng_1)
gd(m—e)—T;__le(1+2+---+(d—1))
=d(m —e)/2.

Since the tensor product is distributive with respect to direct sums, we have

—a G —a
'“I’YCG®G bl = ’(?—G@e’y‘:G) ®G b' spé(n—m).
3

'730 —ab
— QG
714G

Y2 G _—ab

Suppose next that 6 > 3. Since 42,G/73G is non-trivial, we can choose a generating
set {1, T2, - ,Ts5} for G/Z(G) such that [zq, 2], is a non-trivial element of v2G/y3G
and indeed is not a pth power of any element there since pth powers lie in the Frattini
subgroup. We shall establish now the critical point of the proof, namely that the § — 2

elements
(6) U (T, ®T2073), Y(T1QT2QT4), -, ¥(T1 QT2 @ Ts)

constitute & — 2 linearly independent elements in the Abelian group v2G/v:G ® .
Setting A := v2G/7v3G temporarily, we see that

ARG = (A®(T1) x -+ x (A® () ,
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and that ¥(Z; @ T» ® T;) is the only one of the § — 2 elements listed in (6) above to
have a non-trivial projection in A® (Z;), so that these § —2 elements are indeed linearly
independent and we have

(7) [image(¥)| > p*~2.

Inequality (2) is obtained by substituting inequalities (4), (5) and (7) into (1). g

The methods in [3] show that the quantity |image(¥)| could be replaced by a
(larger) product Iixnage(\Il)||image(\Il3)| e limage(\llc)l in inequality (1), thus leading
to an improvement in the bounds of Theorem 2.

On substituting the inequalities d < m < n into (3) we obtain a well-known
result of J.A. Green, namely that |M(G)| < p**=1/2 for any group G of order p".
In other words, for any group G of order p™ there is an integer ¢ > 0 such that
|M(G)| = p*(»~1/2=t_ Those finite p-groups with t = 0,1 have been classified by
Berkovich [1]. The classification has been extended to t =.2 by Zhou [7], and to t = 3
by the first author [4]. In light of this work we make the following formal definition.

DEFINITION: Let the corank of a finite p-group G be the integer t = corank (G)
for which |M(G)| = p**~1/2= with n = log, |G|.

The known classifications of finite p-groups by corank are summarised in the fol-
lowing table. All groups G with corank (G) < 3 are listed. In the table C,: denotes
the cyclic group of order p*, D denotes the dihedral group of order 8, @ denotes the
quaternion group of order 8, F; denotes the extraspecial group of order p3 with odd
exponent p, and E; denotes the extraspecial group of order p® with odd exponent p?.

corank (G) p=2 p = odd prime

t=0 C)F, k=1 (€, k=1

t=1 Cy Cp2, Er

t=2 CoxCy, D Cp x Cp2, Ey

t=3 Cs, CaxCyxCyq, Q, DxCy; Cpa, Cpx Cp x Cp2, Ez, By x Cp xCyp

In [4] it is shown how the information in this table can be derived from a bound
on the Schur multiplier due to Gaschiitz, Neubiiser and Yen [5]. Since inequality (2)
is slightly sharper than the bound of Gaschiitz et alia, it too has ramifications for
the classification of p-groups by corank. Some of these are listed in the following
proposition. An interesting corollary to the proposition is that, for any given prime p
and integer t > 1, there are only finitely many p-groups G with corank (G) = ¢.

PROPOSITION 3. Let G be a non-cyclic d-generator group of order p™, with
commutator subgroup (G, G] of order p®, and Frattini subgroup {G,G]|GP of order p°.
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Suppose that the Abelianisation G*® has exponent p®, and that the central quotient
G/Z(G) is a é-generator group. Furthermore, suppose that corank (G) = t where
t > 1. Then:
(i) 0gc<t.
(i) c<aeg V2t —c.
(iii) 2 S d < (2(t + a) — a® — 3c)/(a — c) whenever a # c.

(iv) 2<d<t+2— (a?+a)/2 whenever a=c.
(v) (a —2a+ (d+3)c+ad—2(t+1))/(2c— 1) < 8 < d whenever ¢ # 0.
(vi) 1<e< (2t—2(d+1-68)c—d(a—c-1)—(a® — a)—2max{0,6-2})/d.

(vii) (1 + \/1+4)/2 < n < (2t + alc+e) + 2(6-1)c -
2max{0,6-2})/(c+e+a~1).

PrRoOOF: Note that a 2 ¢ 20, d 2> 20, e >2m/d >1and d > 2. On
substituting n = a + d,m = a + d — ¢ into (2) we obtain
(8) a®>-ag2(t—(d+1-108)c)+dlc+1—-a—e)—2max{0,6 — 2}.

We derive the inequality

(9) a?-a<2(t—c)—-(a—c){d—1)—2max{0,5 — 2}
2 —a > 0, inequality (9) implies (i).
Since d — 1 > 1, inequality (9) implies a? € 2t — ¢, from which we deduce (ii). We also
deduce (iii) from (9). On substituting a =¢, e =1, é > 2 into (8), we obtain

from (8) by substituting d > 6, e > m/d Since a

a’+a

(10) d+(d-08){a-1)<t+2— 5

The inequality § > 2 corresponds to the fact [2] that no non-trivial cyclic group is
itself a central quotient. Inequality (10) implies (iv). Inequality (9) implies (v), the
condition ¢ # 0 being used to obtain 4§ > 2. Inequality (8) implies (vi) and the right-
hand inequality of (vii). The left-hand inequality of (vii) follows immediately from the
definition of corank. 0

COROLLARY 4.

(i) For each prime p and integer t > 0 there exists at least one p-group with
corank equal to t.

(ii) For each prime p and integer t 2 1 there are only finitely many p-groups
with corank equal to t.

ProoOF: The formula for the Schur multiplier of a direct product [2], namely
M(G x H) 2 M(G) ® M(H) & (G*® ® H®), can be used to show that the Abelian
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group (C',,)t_1 x Cpz has corank equal to ¢ for each ¢ > 1. Any elementary Abelian
group has corank equal to 0. This proves part (i).

Suppose that G is a p-group with corank (G) =t > 1. Proposition 3 implies that
the order of G is bounded by a number, say f(t), that depends only on t. There are
only finitely many groups of order at most f(t). This proves part (ii). |

The following modification to the definition of corank provides a single numerical
parameter for measuring how far a p-group ‘deviates’ from being elementary Abelian.

DEFINITION: The relative corank of a finite p-group G is the number

corank (G)

rcrank (G) = og. [G]
P

Thus the relative corank is a rational number lying in the range

log, |G| — 1

0 < rcrank(G) < 5

Proposition 3(ii) shows that groups with a small relative corank also have a rel-
atively small Frattini subgroup. But relative corank captures more than the size of
the Frattini subgroup. For example, the dihedral and quaternion groups of order eight
have rcrank (D) = 2/3 and rcrank (@) = 1. For certain families of groups it is fairly
straightforward to compute the relative corank. For instance, letting ES(p, k) denote
an arbitrary extraspecial p-group of order p?**!, we have:

rcrank((Cp)") =0,

rcrank (Cpn) = (n — 1)/2,

rcrank((C’,,,)"—2 x Cp2) = (n—1)/n,

rerank((C,2) %) = n/4,

rcrank(ES(p, k)) = 1, for k > 2,

rcrank(ES(p, k) x ES(p, k)) =2+ 1/(4k + 2), for k > 2.

To obtain the last two calculations we have used the description of the Schur multipliers
of extraspecial p-groups given in [2], together with the following simple lemma whose
proof is left to the reader.

LEMMA 5. Let G and H be groups of orders p® and p™. Then

nm — log, |G®® x H®
rcrank (G) + ™ _ rcrank (H) + 8 | |

rcrank(GxH)=n+m n+m n+m
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