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ABSTRACT: The development of interdisciplinary Smart Products involves complex architectures and processes,
which results in new challenges like managing heterogeneous and unstructured data causing inefficiencies. Model-
Based Systems Engineering (MBSE) addresses these issues through precise system modeling but encounters
obstacles like a lack of model reuse and complexity. This paper introduces a novel framework integrating Artificial
Intelligence into MBSE to enhance sustainability and circularity by automating model generation and reusing existing
system models. Using ontology-based knowledge management and large language models, model creation,
interoperability, and decision-making can be enhanced and automated and visualized in real-time. The framework's
capabilities and benefits are demonstrated through the instantiation of a wireless charger system example.
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1. Introduction
Interdisciplinary connected products, such as smart products, are inherently complex in both their
architecture and development processes (Abramovici, 2019). One of the main challenges in their
development is the management of heterogeneous and unstructured data, which can lead to delays and
quality issues (Kamm et al., 2021). In this context, unstructured data refers to information presented in
non-identifiable and non-normalized formats, such as images or textual content. These challenges arise
from various factors, including different modeling environments, methodological approaches, and the
integration of diverse components. Model-Based Systems Engineering (MBSE) serves as a crucial
enabler for managing and controlling this complexity by providing more precise and comprehensive
system modeling than traditional document-based approaches. This involves the formalized application
of modeling to facilitate activities such as system requirements definition, design, analysis, verification,
and validation throughout the engineering lifecycle (INCOSE, 2023). Harmonizing existing model-based
solutions can facilitate engineering resource reuse and conservation. The integration of Artificial
Intelligence (AI) into MBSE presents promising opportunities to enhance sustainable modeling practices.
AI can improve efficiency and automation in model generation by automating model creation and
management, thus making the development process more resource-efficient (Sultan and Apvrille, 2024).
Furthermore, AI facilitates the integration and management of large datasets, promoting knowledge
exchange and interoperability among different modeling environments or stakeholders (Zhang and
Yang, 2024). Existing approaches focus single parts of the MBSE-concept, for example, the AI
supported requirements definition and modeling (Dehn et al., 2023). Especially the aspect of
management of the large data amount in these early phases needs to be secured, thus the following
lifecycle phases have an ensured and early access to it and act as a basis for the AI approach (Aldoseri
et al., 2023). This becomes important while developing collaboratively in large value creation networks
and the integration of various stakeholders (Allee, 2009). By employing ontologies and semantic rules,
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AI supports sustainable development through improved data management. At the same time, it offers
valuable support in decision-making through real-time visualization, enhancing the understanding of
complex systems and fostering innovative approaches. Especially ambiguous nomenclature of different
stakeholders which may pose a challenge in collaboration engineering (Sankowski et al., 2021), can be
homogenized. Focusing on these general facts this paper aims to explore how the integration of AI into
MBSE can improve the management of heterogeneous and unstructured data to enhance sustainability in
the development of complex, interdisciplinary system models.
This paper presents a framework that enables AI supported and tool independent modeling in an
MBSE-approach. By using different layers and configuration solutions, the framework results in an
environment that saves engineering resources and enables sustainable engineering.
The Design Research Methodology (Blessing and Chakrabarti, 2009), was used to provide the critical
context of the approach. In chapter 2 existing approaches were analyzed for their strengths (Research
Clarification and Descriptive Study I), clarifying the need for a more comprehensive framework using
existing standards and best practices where applicable (Prescriptive Study), as it is presented in
chapter 3. In chapter 4 the framework was validated using an existing system model to highlight the
improved traceability (Descriptive Study II). Chapter 5 provides a conclusion and outlook to finalize
the paper.

2. State of the art
Sustainability and circularity are increasingly recognized as essential components for the future, not only
from the perspective of products but also from the viewpoint of engineering processes. (Kirchherr et al.,
2017) differentiated circularity as a specific approach focused on reducing waste and optimizing resource
use within a closed-loop system. Thereby sustainability encompasses a broader framework that includes
environmental, social, and economic considerations. Circularity is one method to achieve sustainability
but does not always address all aspects of sustainability, and social equality / acceptability (Geissdoerfer
et al., 2017) in particular. The integration of these principles into engineering is crucial for fostering
sustainable science (Stojčić et al., 2019).
The approach presented in this paper emphasizes that circularity and sustainability should not only
focus on physical goods or climate-related aspects but also on the engineering process itself, with
particular attention to the role of engineers as key resources that must be preserved and supported. By
saving and protecting the resource engineer, due to reusing established knowledge, circularity can be
achieved.
Further research activities will only focus on the integration of circularity within the engineering process.
Engineering within a model-based environment, continues to face challenges related to both acceptance
and effective usage. Despite the potential benefits of MBSE, engineers often struggle with its efficient
application, as highlighted by (Chami and Bruel, 2018). Surveys indicate that engineers encounter
difficulties in adopting MBSE practices due to various factors, including technical complexity and
organizational resistance (Akundi et al., 2022; Henderson and Salado, 2024). One of the primary barriers
to MBSE adoption is the increasing complexity of modern systems, such as smart products and cyber-
physical systems. These systems integrate mechanical, electrical, software, and communication
components, which complicates holistic modeling efforts. The challenge of managing this complexity is
well-documented in literature. For instance, (Abramovici, 2019) and (Derler et al., 2012) emphasize that
the interconnected nature of these systems makes it difficult to create comprehensive models that capture
all relevant interactions. This complexity is further increased by the need to manage data across different
domains and ensure interoperability between various subsystems. Another significant issue is the
management and reuse of models. (Cameron and Adsit, 2020) and (Madni and Sievers, 2018) point out
that despite the potential for model reuse to reduce costs and improve efficiency, this practice is not
consistently implemented across industries (Robinson et al., 2004). Effective reuse approaches are
among others within Computer Aided Design (CAD) and the concept of Knowledge Based Engineering
(KBE), nevertheless it has a strong CAD-focus (Verhagen et al., 2012). Effective reuse requires
organizational commitment and appropriate tools for managing model libraries. Ontologies can support
the management, networking and the representation of large amounts of knowledge or data models. To
ensure potential reuse, the networking of the models is crucial. However, many organizations lack the
necessary infrastructure or incentives to prioritize reuse (Robinson et al., 2004). As a result, engineers
often face high costs associated with creating new models from scratch rather than leveraging existing
ones (Yang et al., 2017). The financial burden associated with developing MBSE models is considerable.
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(Ramadesigan et al., 2012) note that the initial investment in creating detailed models can be substantial,
particularly when model reuse is not fully exploited. This can lead to inefficiencies in the engineering
process, where time and resources are spent on redundant modeling efforts. To address these challenges,
integrating AI into MBSE processes offers promising solutions. AI can enhance model reuse by
automating aspects of model creation, validation, and optimization. For example, AI-driven tools can
analyze large datasets to identify patterns and suggest improvements in model design, thus reducing the
time and effort required for manual modeling tasks, as described by (Ghoreishi and Happonen, 2020).
Additionally, AI can support the circularity of models by enabling predictive maintenance, optimizing
resource usage, and facilitating reverse logistics in product lifecycle management (Madanaguli et al.,
2024). This integration not only improves efficiency but also contributes to sustainability by reducing
waste and promoting the reuse of engineering assets.
Nevertheless, there is a significant lack of approaches, to enable AI-based modeling in an MBSE
environment. (Chami et al., 2019) presented the Text-to-Model framework which enables the generation
of single parts of Systems Modeling Language (SysML) models from text by using AI. Different roles
are needed to ensure the correct data input, transformation and usage within the SysML tooling.
Importing text is divided into phases deployment and training, to ensure high-quality results on the
modeling parts. Regarding the problems of model interchanges combined with the often document based
engineering, the focus of using a text-based model creation enables a deeper and wider knowledge
baseline.
(Kourani et al., 2024) developed a Large-Language-Model (LLM) based framework for process
modeling along the engineering phase. Thereby the framework is LLM independent and each LLM that
offers code generation can be used. Users can input text in natural language which will then be supported by
additional information, such as an example code snippet or the SysMLv2 language specification file, to
craft a comprehensive prompt. With this prompt the LLM can then generate executable code, which can be
used by different environments, such as Business Process Model and Notation (BPMN), to generate the
process model. Through an integrated loop mechanism, models can be refined and potential errors handled.
The aspect of using an independent LLM for the code generation is effective and enables an easy model
generation. Through the natural language communication, the usage for unskilled users is ensured.
(Kestel et al., 2019) has created an ontology-based approach for the provision of knowledge and focusing
especially on simulation. Text mining is used to integrate and acquire knowledge from text-based
simulation documents. As a result, structured data sets will be created and can then be analyzed by a data
mining approach. Both steps are ensuring the later ontology generation and the transfer into an ontology
knowledge base. By the transfer from text-based knowledge into ontologies, the knowledge will be
automatically captured and structured. These networking concepts are the baseline for a later potential
AI-driven design and knowledge provision.
(DeHart, 2024) has developed a methodology that enables the interaction of LLM with SysML v2. The
LLM has interactions with several systems models via natural language queries. Thereby Python code
snippets are provided to execute data manipulations tasks. These steps ensure communication between
the model and the systems engineers via natural languages and is supported by the LLM due to the
automated script generation. Via the given Application Programming Interface (API) a direct
communication to the SysML v2 is given. Loop mechanisms are integrated to reduce code failures and
level up the quality. There is no active support for the systems engineer and the focus is only on the
SysML v2. In conclusion, a viable approach for AI-driven modeling within model-based systems
engineering, which would enhance circularity in engineering, is currently lacking. Based on the reviewed
state of the art on AI-driven model-based engineering, the following research questions can be
identified for this contribution:
How can large language models and ontology-based approaches improve model reuse in MBSE
environments, and what are the implications for engineering towards enhanced circularity?
What are the key technical and organizational barriers to the adoption of MBSE in complex systems, and
how can AI-driven solutions mitigate these challenges?
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3. Framework for AI-driven model-based Systems Engineering
Considering the challenges associated with reusing systemmodels and the necessity for AI-based support
for system engineers during the modeling process, a novel framework is proposed. The framework is
designed to meet several critical requirements. First, it must facilitate comprehensive support during the
early stages of model definition, leveraging the reuse of existing knowledge within a MBSE
environment. This support should be independent of specific tools, ensuring compatibility with various
established MBSE platforms. The integration of multiple knowledge models will be achieved by
ontologies and AI techniques, ensuring the required level of granularity and information condensation.
Additionally, lifecycle management considerations must be incorporated to ensure that early model-
based solutions are robust, and that development knowledge is effectively captured and utilized. The
framework relies on the integration of various lifecycle data sources with both structured and
unstructured data. Unstructured data may include implicit knowledge, while structured data can
encompass existing Product Lifecycle Management (PLM) models. Figure 1 illustrates the general
structure of the framework. The framework emphasizes the initial phases of model creation and
definition, particularly in requirements specification and both discipline-specific and interdisciplinary
system development. The approach is structured into four distinct layers to ensure sustained support for
the generated model environment. Some layers are further subdivided into additional levels, representing
essential steps for successful future implementation.

3.1. Data pre-processing layer
Accessing data across multiple sources is the framework’s foundation. The goal of the Data Preparation
and Acquisition level is to gather data from various heterogeneous IT systems and to find a way to access,
restructure and reorganize the data for the following steps. The database level then aggregates the data
and presents them to the following levels in a uniform structure. The simplest solution is to manually
upload data from the source systems. Another possibility is the use of an existing knowledge base as the
primary data source. The third option is to use a common API based on a federated data integration
platform like the architecture presented in (Eickhoff et al., 2020) or a standard like OSLC
(Speicher, 2019). Hybrid approaches are possible. The first two levels provide a unified structure as
an input for the next level, ontology-based Data Preparation. In this level, the data is integrated into a

Figure 1. Framework for Artificial Intelligence-supported model-based Systems Engineering
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single, multiple or hybrid approach of ontologies for the purpose of creating an easily human and
machine readable, uniform knowledge source. Single ontologies use source schemas that are related to a
shared global ontology, whereby multiple ontologies represent each data source by an own ontology.
Hybrid is the combination of single and multiple ontologies (Fahad, 2023). Ontologies serve the purpose
of basic reasoning to validate newly input knowledge against constraints such as a changing regulatory
framework. Additionally, they maintain consistency while importing knowledge from multiple different
stakeholders and collaboration partners using different nomenclature or the same tools, parts and
principles in different product development contexts. In relation to the upper layers of the framework, the
ontologies take on the role of a unified data source to enhance the AI in the context of Retrieval
Augmented Generation (RAG), to provide very domain specific knowledge that would otherwise not
be available or unlikely to be retrieved.

3.2. Knowledge architecture layer
Whereas the ontologies used in the previous layer can potentially use logical reasoning to generate the
knowledge required for the following steps, the Knowledge Architecture Layer bundles all functionality
related to LLM. This includes functionality to analyze existing models, either based on inspecting the
model in a machine-readable format or by visually analyzing existing diagrams as images. Another basic
functionality of this layer is the generation of new model elements or partial models. This is based on the
generative capabilities of an LLM. To ensure the syntactic and factual correctness of this approach,
multiple techniques can be used, centered around providing the LLM with the data gathered in the
previous steps. This can be achieved by injecting relevant knowledge into the prompt (Retrieval-
Augmented Generation, RAG), or by allowing the LLM to call various functions during the generation
step. Additionally, approaches such as grammar-based decoding as well as automated checks have
been used to improve LLM accuracy in engineering contexts (Eickhoff et al., 2024). These capabilities
can support the user during model creation in different ways such as providing him with automatic
updates to regulatory changes using tools to scrape websites of relevant governmental bodies.
The scraped information can in turn be stored in the previously mentioned Data Pre-Processing Layers
and ontologies to later be retrieved and enable the respective engineers to adapt and control the newly
arising constraints. The newly generated knowledge can be modeled in different ways. Once using a
direct modeling approach in which the LLM writes the code corresponding to the model directly and
saves it in the required file format. This approach has the advantage of easier implementation but requires
the LLM to loop every time the output causes an error due to slight syntactical errors in the targeted file
format. An alternative approach is the option to use the LLM for indirect modelling of the knowledge
using function calling to improve the basic LLM capabilities by building agentic systems. Using this
methodology, the number of loops can be reduced as the LLM does no longer write the code for the
knowledge model directly but calls the functions responsible for generating the code of the respective file
and therefore reduces the risk of incompatible syntax. With the advent of current open-source models
such as the Llama, or Mistral family of models, providing and being optimized for function calling, this
approach becomes increasingly attractive to a wide audience of researchers.

3.3. Model generation layer
As previously discussed, a primary objective is to enable support for multiple tool environments in
connection within MBSE solution development. A key prerequisite for this is the availability of an open
API from the tool side. Additionally, the tool must adhere to an established open standard to facilitate
functionalities such as AI-driven function calls and automated model generation. For this framework
mostly standards from the Object Management Group are used, due to being based on the Meta-Object
Facility (MOF) and thus supporting the reuse of knowledge for different disciplines. For example,
through the MOF, which is integrated in all mentioned standards of the Model Generation Layer in
Figure 1 and the usage of different standards within different disciplines, the software discipline can
easier and more effectively reuse solutions from the mechanical disciplines.
The Model Generation Layer serves as the interface between the engineer and the developed ecosystem.
By leveraging API support, each tool environment can access the established knowledge network,
regardless of the specific tools or knowledge sources being used. The primary goals are to enable direct
and active integration of knowledge during the modeling process and to automate model generation
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based on this existing knowledge. An example of this is the utilization as a modeling support in SysML
v1. Here, prior knowledge in the form of a BPMN model can be reused to help generate an activity
diagram in a SysML Model. This means that the Model Generation Layer offers two kinds of usage, first
the direct communication via chat and the resulting automated model generation. The second kind of
usage would be the active assistance while modeling. These differentiated usage possibilities are
addressing different expert levels, thus can enable a wide range of possible usage and acceptance from
the user site. While non-experts can use the automated model generation, the expert can use the
sequential active support while modeling. This is only an unbiased recommendation, and at the same
time auto-generated models can actively be supported while models get extended, e.g., in their scope.

3.4. MBSE-lifecycle management layer
The MBSE-Lifecycle Management Layer addresses various concepts aimed at the efficient handling and
governance of data throughout the engineering lifecycle. Unlike other layers in the framework, this layer
offers flexibility, allowing users to determine the specific management requirements that need to be
integrated into the modeling environment. During the modeling process within the proposed framework,
a significant amount of information and knowledge is generated, necessitating systematic management.
This layer will focus on discussing strategies for managing this data and exploring possibilities for its
subsequent utilization. Two key approaches already highlighted within the framework are PLM and the
Asset Administration Shell (AAS). The integration of PLM facilitates early-stage management of
engineering data, including the governance of various model-based systems. This early data management
is crucial for later validation processes and for ensuring a comprehensive, holistic model. PLM supports
continuous tracking and refinement of models, which is essential for maintaining consistency across
different stages of product development. In addition to PLM, the AAS concept plays a central role within
the MBSE-Lifecycle Management Layer by ensuring that model-based solutions are created and
represented as assets. The primary objective of integrating AAS is to enable early incorporation of
engineering data into assets, paving the way for the subsequent development of digital twins. By
embedding engineering models into digital twins from the initial phases, a holistic perspective of the
product is achieved, allowing for advanced considerations such as simulation data integration. This early
integration facilitates early-stage verification and validation of models, ensuring that potential issues are
identified and addressed before they propagate through later stages of development. Furthermore,
different management environments can be seamlessly integrated through APIs. By enabling direct and
automated communication between layers within the framework, results can be efficiently stored in these
environments without manual intervention. This automation enhances traceability and ensures that all
relevant data is systematically captured and made available for future analysis or decision-making
processes. In summary, effective lifecycle management through tools such as PLM and AAS ensures
comprehensive oversight of engineering data from its inception through to its utilization in digital twins,
facilitating early verification, validation, and continuous improvement throughout the product lifecycle.

4. Instantiation
In this chapter, the framework presented in Figure 1 is instantiated for a well-established engineering use
case, specifically, “enabling wireless charging (WLC) of mobile phones during driving a car”. Initially, a
configuration of the framework will be developed, followed by the utilization of both chat-based and
active support mechanisms to facilitate the AI-driven generation of various system models.

4.1. Enabling AI-driven model-based Systems Engineering
The development of AI-driven support relies fundamentally on a robust data foundation. For the selected
validation case, initial knowledge from prior tests and developments in WLC technology within the
consumer electronics sector is available across various modeling environments and knowledge
repositories. In terms of data acquisition and preparation, multiple departments and teams associated with
the engineering concept will be involved. It is crucial that the imported data is directly relevant to the
concept or its individual subsystems. An innovation engineering knowledge base, as established by
(Mollahassani et al., 2023), is integrated directly. Additional models and knowledge are imported via
API-based input as described by (Eickhoff et al., 2020). The innovation engineering knowledge base
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encompasses preliminary test results, system models, and requirements models. Concurrently, different
departments have concentrated on the development of components such as coils, microcontrollers, and
sensors. All related knowledge models are stored in distinct modeling environments, such as Cameo
Systems Modeler, which includes SysML v1 and BPMN models. Additionally, the PLM tool (CIM-
Database) is connected to ensure access to stored PLM data and other relevant system models with
MBSE relationships. Consequently, the initial data must be imported, organized, and integrated for
proper use. An ontology-based approach is used to relate these different models to one another.
A hybrid approach is utilized, wherein individual application ontologies are created to establish
connections between the various models and are managed by an upper domain level ontology. As a
domain ontology a smart product ontology (Mollahassani et al., 2024) is used to manage single
application ontologies, such as coil-, sensor- or service-ontology, which can be called “knowledge
chains”. Knowledge chains represent a subset of an ontology which in itself is a smaller ontology, where
different models are directly connected to the single different classes of the ontology. By networking the
ontologies, the connected models will be automatically networked too. Those single application
ontologies are created by the user and an excerpt of the creation process and possibilities is given in
Figure 2. This guarantees the correct data preparation and later creation of networking. In the next step
the Llama-LLM from Meta (Meta-llama, 2024) is used to enable the AI-based networking.
This condensed networking is supported by analyzing the content of the different models. By using a
created XML-reader different imported models can be analyzed, and the results are represented in a list
that includes the different model elements, naming and quantity. This result can then be used by Llama
for condensed networking, commonly with the results from the function-based, textual and visual
analysis. Several diagrams within the SysML v1 models were saved as SVG, to show how the framework
can incorporate existing models that are only available in visual form.

The next step would be the LLM based modeling which compares the different knowledge chains
leveraging Llama. An excerpt is shown in the middle of Figure 2, where two different chains are merged
and generated new combined models. By the combination of different knowledge models, new models or
partial models will be created, ensured by the generative capabilities of Llama. For this purpose, the
LLMs capabilities are enhanced by enabling function calling. Function calling enables the language
model to call and execute functions for different tasks by defining the input parameters and keywords so
that a relevant framework can execute the functions and return the relevant information back to the LLM
for output quality. One example of this is calling the SysMLv2 API so the language model can implement
SysML models on its own. Other scenarios might include accessing web browsers or specific website
APIs to perform checks on regulatory constraints and changed laws and retrieve information from
standards or technical documentation documents (Manduzio et al., 2024). This is realized by using open-
source frameworks that enable developers to create agents and agentic networks such as CrewAI and
LangChain. By implementing the data and AI layer, users can leverage the framework to either generate
complete models or receive active assistance during the modeling process.
Both approaches are utilized in this specific case. For instance, using the prompt “Generate a system
model in SysML v2 that includes the requirements and functional architecture of a mobile phone

Figure 2. Creation of the framework
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wireless charger used in a car while driving”, a portion of the overall system model is created. An excerpt
of this generated model is shown in the left view of Figure 3. This initial model can then be further refined
by the user with the aid of Active-Modeling Assistance. For example, since the generated model does not
include a logical architecture for the WLC system, the user must manually define this part. As the
modeling process occurs within the textual SysML v2 environment, the generated code can be imported
and extended. The Active-Modeling Assistance, illustrated in the middle excerpt of Figure 3, supports
this process by providing suggestions for aspects such as the logical architecture of the
“WirelessChargingUnit”. These suggestions are presented as import and autofill options and are based
on continuous comparisons with relevant pre-existing solutions. In this case, potential solutions focus on
a pre-existing logical architecture for an energy transfer coil, which has been tested in various
environments to analyze transfer rates. This environment demonstrates support for iterative and circular
modeling of new systems by reusing and building upon existing model artifacts. Additionally, the
framework facilitates comprehensive management of these models by establishing direct integration
between different modeling environments and management tools. For the WLC use case, connections to
CIM and the AASX Package Explorer are employed to enable asset creation and lifecycle management
and is presented in the right view of Figure 3.

The collected data will subsequently be utilized for the development of the digital twin of the WLC,
incorporating simulation aspects to enhance its representation. The integration of PLM facilitates early-
stage management, which is essential for comprehensive validation and traceability throughout the
product lifecycle. In this case, both used management concepts operate autonomously and are
dynamically triggered by ongoing modeling activities, regardless of whether these are chat-based
interactions or active assistance processes. REST APIs achieve this functionality, enabling seamless
integration across diverse management environments. The application of the framework demonstrates its
capability to establish a circular modeling environment within MBSE. It supports users in both system
modeling and solution development for new systems by leveraging a highly interconnected network of
pre-existing models and solutions, which serve as foundational elements for further innovation.

5. Conclusion and outlook
MBSE solutions are applied across various disciplines and engineering phases. However, several factors
often constrain their holistic adoption, including insufficient support mechanisms, increased
implementation effort, and the prevalence of heterogeneous and unstructured data. Furthermore, the
current state of practice lacks robust methodologies to address these challenges, particularly in enabling
supported and partially automated model generation. Integrating AI into MBSE presents significant
potential to overcome these limitations by addressing the complexities associated with managing diverse
and unstructured datasets. The proposed framework leverages AI-driven approaches, such as ontology-
based knowledge management and LLMs, to enhance engineering processes' efficiency, sustainability,
and circularity. Automating model generation, facilitating knowledge reuse, and improving decision-

Figure 3. Validation of the framework along the wireless charger
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making through real-time visualization, this framework addresses critical barriers to MBSE adoption,
including technical complexity, organizational resistance, and high costs associated with redundant
modeling efforts. Its layered architecture, comprising the Data Pre-Processing Layer, Knowledge
Architecture Layer, Model Generation Layer, and MBSE-Lifecycle Management Layer, provides
comprehensive support for system modeling throughout various stages of the engineering lifecycle.
Key features include ontology-driven data integration for harmonizing diverse knowledge sources,
LLM-enabled model generation to minimize manual effort, and lifecycle management tools such as PLM
or AAS to improve traceability and validation. The application of this framework to a WLC use case
demonstrates its utility in establishing circular modeling environments while fostering innovation by
reusing existing models. A limitation of the approach lies in its dependency on networking capabilities
and quality, as these factors directly influence the outcomes. Additionally, the framework is restricted to
use standardized and structured MBSE-tools. Future research should prioritize addressing scalability and
interoperability challenges to ensure the proposed framework can effectively manage increasingly
complex datasets and systems. To further validate the practicality of the presented framework, industrial
or industrial-oriented test will have to be conducted.
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