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Abstract

No-tillage (NT) systems are currently recommended because they are assumed to support more
ecosystem services than conventional tillage (CT) systems. Although NT systems have shown
long-term success in agriculture in subtropical regions, no clear evidence of NT-driven
improvements in soil properties and crop growth conditions has been put forth in temperate
climates. The current study summarizes the findings of 26 previously published studies, in
which the authors compared 76 experimental sites in temperate regions to represent changes in
soil bulk density (BD) and soil organic carbon (SOC) contents under tillage practices. The
studies were grouped by soil texture and experiment duration, and the results were tested for
significant changes under NT relative to CT. Statistically significant differences in SOC were
found for loamy soils, and differences in BD were found for silty soils. For loamy soils, the
average increase in the carbon (C) concentration was 0.16%, which corresponded to a C stock
increase of 6.48Mg C/ha and an increase of BD for silty soil 0.01 Mg/m3 in the NT system. Two
agroecosystem models, HERMES2Go and MONICA, were tested for their sensitivity in
simulating these differences in SOC between NT and CT systems. In a 60-year simulation, the
HERMES2Go model predicted a C stock loss of 0.31 Mg C/ha under NT for loamy soils,
whereas the MONICA model predicted a gain of 0.53 Mg C/ha. At present, neither model can
effectively reproduce the increase in SOC content observed under NT in experiments.

Introduction

In recent years, there has been increasing emphasis in Central Europe on replacing traditional
conventional tillage (CT) with no-tillage (NT) soil management to reduce greenhouse gas
emissions in agriculture. The European Union aims to reduce greenhouse gas emissions to a
level at least 55% below the 1990 levels by 2030, and the main goal is to achieve carbon neutrality
by 2050 (European Commission, 2020). Reducing emissions from the industrial, heating and
transport sectors is the main target. Nevertheless, carbon sequestration in agricultural soils is
considered a key policy measure to sequester some of the CO2 present in the atmosphere into
long-term storage (Olhoff and Christensen, 2020). The amount of carbon contained in the soil is
two to four times greater than that in the atmosphere and four times greater than that stored in
vegetation (Hussain et al., 2021). Carbon is a natural component of soil; its active incorporation
into the soil can increase the current levels of soil organic carbon (SOC) and reduce the amount
of carbon present in the atmosphere, mitigating the effects of climate change (Hussain et al.,
2021; Li et al., 2021). Throughout history, tillage has been part of field practices in crop
production. The tillage practice was initially targeted to ensure good contact between seeds and
soil for proper seedling emergence. Over time soil tilling has evolved into a technique that is also
used to mix crop residues with soil to foster rapid decomposition before the next crop is sown.
Tillage influences many soil physical properties, such as bulk density (BD), pore size
distribution, hydraulic conductivity, water infiltration rate, soil aggregate size and stability and
structure, and leads to the redistribution of SOC in the tilled soil horizon (Maharjan et al., 2018).
Furthermore, well-timed mechanical tillage of soil can kill weeds (Cordeau et al., 2017), and
surface tillage (harrowing, hoeing) for weed control can be applied even when a crop has already
emerged, allowing for multiple weeding operations during a season.

In some cropping systems, farmers and researchers see good reasons for not tilling the soil
because this approach supports carbon sequestration (Sombrero and De Bonito, 2010; Huang
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et al., 2015; Chen et al., 2022), which is related to an increase in the
formation of macroaggregates (Huang et al., 2015; Chen et al.,
2022) and an overall increase in soil biological functions (Kladivko,
2001; Mbuthia et al., 2015; Fiorini et al., 2020). The main approach
in NT involves direct seeding without disturbing the soil surface.
The most common method of direct sowing involves the use of a
disc furrower to cut crop residues and open a slit in the soil, into
which a seed is placed; the slit is then closed by a press wheel. With
this approach, the soil surface remains covered with plant residues
(Nichols et al., 2015; Villamil et al., 2015; Kinoshita et al., 2017).
This mulch layer protects the soil from erosion (Strohmeier et al.,
2016; Lal, 2019; Hussain et al., 2021) and reduces evaporation from
the soil (Kinoshita et al., 2017; Liebhard et al., 2022). Moreover, NT
is a way to reduce costs for farmers (Soane et al., 2012), as fewer
field passes are needed, which reduces fuel consumption and
labour costs (Komissarov and Klik, 2020). In addition, repeated
ploughing to the same depth can lead to the formation of a
compact layer at the bottom of the ploughing layer (hardpan),
which reduces root growth beyond that depth (Batey, 2009). The
periodic mixing of soil each year causes a reduction in the number
of aggregates with C storage capacity (Sekaran et al., 2021) and in
soil aggregate stability (Sapkota et al., 2012), which is accompanied
by a faster decomposition of biomass (Liang and Zhu, 2021;
Wulanningtyas et al., 2021) and thus an increase in the rate of
carbon dioxide release (Sombrero and De Benito, 2010; Karlen
et al., 2013). Therefore, it is assumed that abandoning practices in
which the soil is frequently mixed can result in a reduction in CO2

emissions from fields. Nevertheless, there is a downside to not
tilling soil: farmers express concerns about higher amounts of
postharvest residues with subsequent problems related to
inhomogeneous seed emergence and the lack of weed control,
which increases the demand for herbicides (Van Donk et al., 2010).

Long-term repeated tillage leads to the gradual degradation of
soil in arable land and to irreversible environmental changes
(Hussain et al., 2021). Conservation tillage systems reverse this
process and improve soil quality (Karlen et al., 2013; Idowu et al.,
2019). However, these effects often do not result from reduced
tillage alone but from a suite of management strategies that include
diverse crop rotations and intermediate crop planting (Serri et al.,
2022). In NT systems that leave the soil surface almost untouched,
a surface mulch layer is generated over time, which hosts a rich
population of soil fauna and microorganisms (Kladivko, 2001),
and these systems look like organic farming. This contrasts with
the widespread use of herbicides in NT systems (Okada et al., 2016,
2019), among which glyphosate is the most common. While
herbicides help to efficiently control weeds, they can affect the
activity of soil microorganisms (Kladivko, 2001; Vazquez et al.,
2019) and are suspected to be a cause of the significant declines in
insect numbers observed over the past decades in agricultural
landscapes (Habel et al., 2019), with consequences for the wider
food chain (Noman et al., 2020).

Literature suggests that the success of NT strategies strongly
depends on the pedoclimatic conditions of individual sites. To
determine whether NT practices help to reduce CO2 emissions
from agriculture without compromising the agronomic benefits of
CT, the literature was reviewed to compare the effects of NT and
CT on the changes in the SOC content and BD in temperate
climates under these systems. All the studies analysed included
values for SOC and BD under CT and NT, and a more detailed
description of the differences in management practices, crops,
fertilization rates and types, plot sizes and experiment durations is

available in the supplementary materials. Experiments were
performed on similar soils at each location, to at least a depth of
30 cm (topsoil), and the soils were classified by soil texture or soil
composition for further analysis. It was hypothesized that NT
would increase topsoil SOC over time, whereas the soil BD under
NT would be almost the same as that under CT (no compaction).
The use of soil compaction as an indicator to evaluate the effects of
CT versus NT has often been discussed, as it manifests differently
under different site conditions (Batey, 2009). Some studies have
shown a reduction in BD under NT (e.g. Chen et al., 2008; Alam
et al., 2014; Alhameid et al., 2017; Sekaran et al., 2021), whereas
others have reported increases in BD and compaction under NT
(e.g. Ogle et al., 2005; Soane et al., 2012; Sapkota et al., 2012; Dai
et al., 2013; Villamil et al., 2015) across different climatic zones.
However, changes in BD cannot be assessed without considering
changes in SOC, as both properties influence each other (Sekaran
et al., 2021).

The current study was also interested in determining whether
agroecosystemmodels are currently able to reproduce the effects of
different tillage strategies. A properly calibratedmechanisticmodel
can predict future developments in crop production and related
greenhouse gas emissions under changing conditions (e.g. global
warming) (Nendel et al., 2014). In the current research, two
mechanistic agroecosystem models, the HERMES (Kersebaum,
2007) and MONICA (Nendel et al., 2011) models, were tested for
their ability to reproduce differences in SOC under the CT and NT
systems. The soil properties, including SOC and BD, were
determined to be close to the original values for each soil type
when typical climatic data and crop rotation data for the Czech
Republic were used. The main goal of the study was to obtain
independent results from available sources and increase under-
standing of whether (i) NT is a plausible alternative for crop
production in the context of climate adaptation and climate change
mitigation in temperate regions and (ii) whether currently
available simulation models are fit for supporting this decision-
making process.

Materials and methods

The current study analysed data from multiple field experiments
conducted in temperate climatic regions to compare the effects of
NT and CT systems on two key soil parameters – BD and SOC.
These parameters were evaluated across a range of soil types and
experimental durations. Data were collected from independent
sources to ensure objectivity and allow for broader generalization.
Detailed descriptions of the individual experiments, including site
characteristics and management practices, are provided in the
supplementary material to support the reproducibility and
transparency of the analysis.

The following criteria were defined for this analysis:

a) Depth

NT agriculture implies that the organic matter remains close to
the soil surface. Consequently, SOC values only increase within the
top few centimetres of the soil profile, and C transport to lower soil
layers is an extremely slow process. In the analysed experiments,
some sites involved transitions from long-term CT to NT systems,
allowing the assessment of changes in SOC distribution across soil
layers in the absence of continued organic matter incorporation
through ploughing. Sampling depth is therefore an important
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parameter for determining the SOC content. Studies comparing
tillage practices at different locations have shown an increase in SOC
in the topsoil (0–10 cm, Álvaro-Fuentes et al., 2008; 0–15 cm,
Villamil et al., 2015) under NT. However, deeper soil profiles
(0–60 cm) presented no significant differences in carbon sequestra-
tion in CT and NT systems (Blanco-Canqui and Lal, 2008) or even
showed a lower content of SOC in the subsoil in NT systems
(Christopher et al., 2009). In the current study, a depth of 0–30 cm
was used. CT is often performed to a maximum depth of 30 cm, and
for this reason, the comparison was performed at this depth.

b) Soil type

The second parameter monitored that affects the SOC and BD
contents is soil texture (Blanco-Canqui and Lal, 2008). In theory,
clay soils have a much greater potential to protect SOM against
decomposition than arenic soils (Kaiser and Zech, 2000). It was
expected that soils with clay minerals and very small pores would
respond more significantly to changes in the distribution of
organic matter input over the long term. For this reason, all reports
used in the current study were sorted into four soil texture
categories according to the World Reference Base (WRB) for Soil
Resources (IUSS Working Group WRB, 2022) and were inves-
tigated separately (Fig. 1).

c) Experiment duration

A third important criterion is the time required for soil
properties to show differences that can be detected with certainty
in the CT and NT systems. This timeframe often exceeds 10 years
(Christopher et al., 2009). Therefore, a subset of the data, for which
the duration of the experiment was longer than 10 years, was
investigated separately.

Database

All the data used in the current study were collected from studies
containing the required parameters for the two different tillage
management practices (CT, NT) via the search engines (Web of
Science, Scopus and Google Scholar) for the period from 1 January
2000 to 30 September 2023. An overview of the analysed articles is
provided in the supplementary material because several of the
studies compared sites at different locations with different
experimental durations or management methods.

The search keywords ‘no-till’OR ‘zero tillage’ OR ‘conservative
tillage’ AND ‘conventional tillage’ AND ‘soil carbon’ OR ‘SOC’
AND ‘bulk density’ were used to search for peer-reviewed articles.
The inclusion criteria for the articles were as follows:

a) The observed data were from real field experiments (plot or
field).

b) The SOC and BD values were measured in soil under
different tillage practices (CT, NT) at the end of the
experiment, at specific depths (tables or graphs), at the same
site or at sites that were very close.

c) The experiment was performed in a temperate climatic zone.
d) Other monitored parameters were recorded: experiment

duration, country, coordinates, temperature, precipitation,
plot size, crop type, residue management practices, fertilizers
used and soil classification.

A total of 26 studies with 72 experimental sites were selected for
comparison. On the basis of the assumption that soil texture affects
SOC mineralization and BD, the selected studies were divided into
four different textural classes (Fig. 1). The textural boundaries for
each class were based on the WRB (IUSS Working Group WRB,
2022). Data analyses of the model outputs were performed via the

Figure 1. Overview of the duration of the studies analysed. The colours refer to soil textures according to the World Reference Base for Soil Resources (IUSS Working Group WRB,
2022).
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R statistical programming language in RStudio (RStudio Team,
2020), version 4.4.0 (R Core Team, 2020) and Microsoft
Excel (2024).

Analysis

In the current study, continuous randomized effects (Borenstein
et al., 2009) were used to assess changes in SOC and BD in the
topsoil (0–30 cm) over time under CT and NT practices.
Additional variables listed in the supplementary material (e.g.
plot size, cultivated crops or fertilizer management) were also
examined and recorded. The measured values at different depths
were integrated into a weighted summary value, primarily for BD
and SOC.

For SOC determination, automated gas analysers are commonly
used to measure total soil carbon, but they do not distinguish
between organic and inorganic carbon, as both forms are converted
to CO2 during analysis. However, the methods used to determine
SOC are explicitly stated in each referenced study. The primary
objective was to utilize SOC values specifically for CT and NT
systems, as determined within a single experiment with comparable
soil properties. The SOC values were recalculated as accurately as
possible following standard practices. Ideally, each study reported
SOC in both concentration (‘%’) and stock (‘Mg/ha’); if only one
value was available, a conversion formula was applied to calculate
the missing one.

For the conversion of SOC reported in Mg/ha (or conversely
to% – appropriatelymodified), the formula in Tadiello et al. (2022)
(without stone content) was used:

SOC %ð Þ ¼ SOC Mg=hað Þ
BD Mg= m3ð Þ � LT mð Þ � 100 (1)

where SOC (Mg/ha) is the stock of SOC within the selected depth,
BD (Mg/m3) denotes the bulk density within the same depth and
LT (m) denotes the selected depth to which the SOC stock is
calculated (in the current study: 0.3 m).

Student’s t-test (Student, 1908) was used to determine
significant differences between the means of the two groups,
which, in this case, involved differences under CT and NT among
the four textural classes.

Simulating the outcomes of different tillage practices via two
agroecosystem models

Two established agroecosystem models, the HERMES
(Kersebaum, 2007) and MONICA (Nendel et al., 2011) models,
were applied to test whether the models can capture the differences
in SOC that emerge from different tillage practices. The value of
bulk density is one of the basic input parameters that change range
during the crop season, but SOC offers higher dynamics over a
longer period, especially in the topic of carbon sequestration. Both
models are designed to simulate soil–crop interactions for crop
rotations and have been applied frequently in Central Europe
(e.g. Kollas et al., 2015; Yin et al., 2017; Pohanková et al., 2022).
Both models work on similar principles and input datasets.
However, HERMES was originally a nitrogen model and uses a
constant C:N ratio to calculate the SOC from two active and one
inert organic N pools (Kersebaum, 2007), whereas MONICA is a
complete carbon and nitrogenmodel that uses the DAISY (Hansen
et al., 1991; Jensen et al., 2001) approach involving seven carbon
pools. Both models simulate the effect of soil tillage by averaging

the soil properties and state variables of the impacted soil layers at
the date of a tillage event. Both models use a 0.1 m thickness to
discretize the soil into layers; i.e. tillage to a depth of 0.1 m or less
has no effect on the two models (Maharjan et al., 2018).

The simulation in the current study was partly inspired by
Pohanková et al. (2022). The current study used the same crop
rotation and meteorological datasets for Domanínek (49°32´ N,
16°15´ E, 530 m a.s.l.), a locality situated in the Czech Republic
which experimental field data have previously been used for model
simulations (e.g. Hlavinka et al., 2015; Pohanková et al., 2022;
Thaler et al., 2023).

Both models were tested for the sensitivity of SOC content to
different tillage practices. The main difference between the CT and
NT simulations was that ploughing was omitted from the NT part;
otherwise, identical input data were used for both models, including
SOCcontent (range of SOC values for loamy textural classes for CT);
it was assumed that this range would be theoretically valid for central
Europe. The soil texture parameters were generated separately for
each location for loamy textural classes (Fig. 2).

A crop rotation of four crops over a 5-year period was used in
the following order: winter wheat, spring barley, silage maize,
winter wheat and winter oilseed rape (Pohanková et al., 2022). The
dates of sowing, harvest and mineral fertilization were automati-
cally determined by themodel using temperature and soil moisture
triggers within a given temporal window to find ideal conditions.
Postharvest residues were left in the field in both treatments (CT
and NT). Meteorological data from Domanínek (Czech Republic)
were used for all simulations.

The models were run for the period between 1951 and 2021,
including a 10-year spin-up. The spin-up period was designed such
that both models arrived at the SOC values, specified in the
literature review. Consequently, since the two models applied
different approaches for SOM turnover, the initial values to start
the spin-up period were different for the two models.

HERMES2Go
HERMES is a crop model based on plant–soil–atmospheric
interaction processes for arable land in agriculture (Kersebaum,
2007). During its history and development, it has been calibrated
several times for SOC modelling studies (e.g. Kersebaum 2007;
Hlavinka et al., 2015; Grosz et al., 2017). The model can consider
processes of plant growth and N uptake, which are related to net
mineralization, denitrification and the transport of water and nitrate,
which are modified by temperature, soil moisture and clay content
(Kersebaum, 2007). Soil organicmatter is represented inHERMESby
only two Norg pools with different turnover rates, with the size of the
slowly decomposable pool being initialized as 13% of the total soil
organic nitrogen. The SOC is derived daily from Norg by assuming a
constant C/N ratio. Ploughing is implemented by averaging all the
soil properties and state variables over the ploughing depth at the
time of the ploughing event. The model has been modified from its

Textural classes clay (%) silt (%) sand (%)
clay loam 34 34 32
loam 19 40 41
sandy clay loam 27 13 60
sandy loam 10 25 65
silty clay loam 34 56 10

Figure 2. Loamy textural classes and the amount of clay, silt, and sand fractions were
used as soil texture characteristics in the models.
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initial version, andmodel calculations for large datasets have recently
been accelerated with the use of a new programming language.
Detailed model concepts, including descriptions, are available in
Kersebaum (1995), Kersebaum and Beblik (2001), Kersebaum (2007)
and Kersebaum (2011). The new version, called HERMES2Go, was
used in the current study (version 0.3.1).

MONICA
The secondmodel used,MONICA (MOdel forNItrogen andCarbon
in Agroecosystems), was built primarily on the concept of HERMES
and was developed to predict the impact of climate change on the
environment and agriculture (Nendel et al., 2011). For this purpose, it
has been extended for the soil and plant carbon cycles on the basis of
theDAISYmodel (Hansen et al., 1991; Jensen et al., 2001). Themodel
uses crop-specific parameters, which describe the physiology and
development of a large range of crops, including wheat (Asseng et al.,
2013; Dueri et al., 2022), barley (Rötter et al., 2012; Salo et al., 2016),
maize (Bassu et al., 2014; Durand et al., 2018), oilseed rape (Wang
et al., 2022) and soybean (Battisti et al., 2017; Nendel et al., 2023), at
daily time steps. Soil organic matter turnover is governed by
temperature, moisture and clay content (Aiteew et al., 2024) and
decreases with increasing soil depth, mimicking the decrease in
oxygen concentration typically observed at deeper soil depths.
MONICA has been intensively tested and successfully calibrated for
its ability to reproduce short-term (Specka et al., 2016; Khaledi et al.,
2024) and long-term (Farina et al., 2021; Aiteew et al., 2024; Couëdel
et al., 2024) C dynamics in agricultural soil–atmosphere systems.

A detailed description of themodel is available at https://github.
com/zalf-rpm/monica/wiki. MONICA version 3.3.1 was used in
the current study.

Results

Locality descriptions

Using keywords, 76 experimental sites from 26 studies were
identified that contained the values required for BD and SOC
content under the CT and NT systems. All the experimental sites
are depicted in Fig. 3. The background of the map represents the
global aridity index (Trabuco and Zomer, 2022), which is the ratio

of the mean annual precipitation to the mean annual reference
evapotranspiration. Given that the dataset was limited to
temperate climatic conditions and similar soil management
practices, most of the sites were located in North America (mainly
the USA) and Europe. The colour of the points in Fig. 3 indicates
different texture classes according to the WRB (IUSS Working
Group WRB, 2022).

Changes in bulk density

The left upper part in Fig. 4 represents detected changes in BD for
all studies. The results of the comparison of all the experiments and
the durations of experiments lasting longer than 10 years (Fig. 4,
lower left) show similar patterns. The t-test revealed a statistically
significant difference only for silty soils, even though a slight
increase in compaction was observed for both of the well-
represented soil classes (silty and loamy soils). For the other two
classes, the number of data points was much smaller and was too
small to detect significant changes. The supplementary material
shows that, on average, the increase in BD of the silty soil under NT
was 0.01 Mg/m3, with no difference observed across all the
experiments or for those with measurements older than ten years.

Changes in soil organic carbon

The SOC dynamics were compared both in terms of concentration
(Fig. 4, centre column) and as the SOC stock, which includes the
soil bulk density (Fig. 4, right column). The SOC stocks show a
trend similar to that of concentration, but in some cases, slightly
different results are noticeable, according to the values given in the
selected studies. The SOC concentrations for all the studies
significantly increased for both the loamy and clayey soils. In
contrast, the soils that were most represented, silty soils, did not
show any significant changes. For studies containing experimental
data older than ten years, clayey soils have inconclusive differences
in SOC content. However, similar to arenic soils, only two studies
included clayey soils in this group. Additionally, with respect to the
C stocks, the loamy soils were the only group that presented
significantly greater SOC stocks under NT than under CT; all other
soil textural classes showed no statistically significant differences.
The difference in the significance level for C concentrations and C

Figure 3. Map of the global aridity index, where points denote the sites analysed in the current study and classified by soil texture (IUSS Working Group WRB, 2022).
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stocks in the clayey soils is explained by the fact that we
consistently used the values that were reported in the respective
studies, even when a different formula was used for interconver-
sion. Equation 1 was only used for studies that reported either C
concentrations or C stocks.

For the loamy soils, the average increase in C concentration was
0.16%, which corresponds to a C stock increase of 6.48 Mg C/ha
across all years and of 0.20% or 8.45 Mg C/ha for experiments with
durations longer than 10 years. The slope of the CT–NT regression
in both durations indicates that, for higher SOC contents, the SOC-
increasing effect of NT was greater than that for lower SOC
contents.

HERMES2Go and MONICA simulations

Since significant SOC differences between CT and NT were
observed only for loamy soils, the capability of the models was
tested only for the subset of sites with loamy soils. The SOC
concentration in the simulations was compared at the end, after a
continuous run of 60 years from 1961 to 2020 (with a spin-up
period 1951–1961). While the HERMES2Go model generally
predicted decreasing SOC concentrations over time under NT
compared with those under CT, MONICA predicted increasing

SOC concentrations, as suggested by the observed data. In general,
both models showed only slight differences in SOC dynamics
between the NT and CT systems at the end of the simulation
(Figs. 5 and 6). After the spin-up period, both models started from
SOC concentrations that corresponded to the CT values of the
experimental data at each location, which covered a range of
0.004–0.025 kg C/kg or 21.80–108.11 Mg C/ha. After 60 years of
simulation, the HERMES2Go simulation values remained closer to
those initial values, arriving at 0.004–0.023 kg C/kg (Fig. 7), or
21.65–96.96 Mg C/ha, with an average loss of C stocks over 60
years under NT of –0.308 Mg C/ha. In contrast, the MONICA-
simulated values ranged from 0.008 to 0.021 kg C/kg (Fig. 8) or
43.02 to 91.52 Mg C/ha under NT, with an average increase of
0.529 Mg C/ha, corresponding to an average increase of 1.33% of
the initial values. The MONICA simulations also resulted in a
slightly larger range of SOC concentrations for CT than for NT,
indicating that SOC accumulation in the top layer under NT led to
more uniform SOC dynamics across sites.

The results of both models (Figs. 7 and 8) represent trends in
the SOC content (%) of the upper 30 cm of soil, and a wider range
was determined for CT at the end of the simulation using the 5th
and 95th percentiles. The results of the HERMES2Go model
(Fig. 7) indicate smaller differences, whereas the MONICA model

Figure 4. Effects of NT management on soil BD and SOC. The upper plots contain data from all the studies (experiments), and the lower plots contain data from experiments
lasting longer than 10 years. The t-test result is represented by a P valuewhen the significant correlation value S * is less than 0.05 and S ** is less than 0.01. The colours of point and
linear regression lines (dashed) refer to the WRB soil qualifiers. Note that the soil texture classes arenic and clayey contain a very small number of samples.

The Journal of Agricultural Science 325

https://doi.org/10.1017/S0021859625000292 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859625000292


Figure 5. Results at the end of the 60-year simulation of SOC
dynamics via HERMES2Go on the loamy soil subset of the
experimental data for CT and NT management. The blue points
represent the experimental data as references, with a linear
regression and confidence interval applied. The black points
represent the results of the simulations in HERMES2Go, which are
close to the identity line (grey colour).

Figure 6. Results at the end of the 60-year simulation of SOC
dynamics via MONICA on the loamy soil subset of the
experimental data for CT and NT management. The blue points
represent the experimental data as references, with a linear
regression and confidence interval applied. The black points
represent the results of the simulations in MONICA, which are
close to the identity line (grey colour).
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(Fig. 8) shows greater differences between the CT and NT systems.
However, both models show a greater content of SOC in CT than
in NT. A smoother inner-annual dynamic was expected with the
HERMES2Go approach since the model does not consider a
temporal increase in the C:N ratio caused by the introduction of
crop residues with high C:N ratios, such as straw.

Discussion

Effects of no-tillage on soil properties

A range of studies have investigated the effects of NT on soil
properties. The total duration of NT and soil texture are the main
parameters affecting BD, wet aggregate stability and penetration

Figure 7. Results of a 60-year simulation of SOC content using the HERMES2Gomodel for CT and NT on different soils. The soil characteristics and initial SOC values for a 10-year
spin-up period (1951–1960) were selected according to the soils identified in the experiments presented in the review section of the current study.

Figure 8. Results of a 60-year simulation of SOC content using the MONICAmodel for CT and NT on different soils. The soil characteristics and initial SOC values for a 10-year spin-
up period (1951–1960) were selected according to the soils identified in the experiments presented in the review section of the current study.

The Journal of Agricultural Science 327

https://doi.org/10.1017/S0021859625000292 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859625000292


resistance (Blanco-Canqui and Ruis, 2018). Leaving postharvest
residues on the soil surface is likely the most influential factor
(Kinoshita et al., 2017). Crop residues on the soil surface support
an increase in humidity and a uniform temperature in the topsoil,
providing favourable conditions for microorganisms (Kladivko,
2001; Li et al., 2021). The effect of these factors on microbial
activity, in turn, influences the chemical and physical properties of
the soil (Serri et al., 2022). In general, NT, in combination with
other fertility-enhancing measures, has been reported to have a
strong positive impact on soil quality and health (Wulanningtyas
et al., 2021). However, the emphasis should be on the need for
further research into how SOC from surface residues in NT
systems can improve soil porosity, biopore formation and
resistance to compaction, as well as the long-term recovery of
soil structure after tillage and machinery traffic (Silva et al., 2023).

Changes in bulk density
Bulk density is an important indicator of soil quality, and many
farmers are concerned about increasing soil compaction. In many
cases, the impact of NT on soil compaction has been found to be
rather short-lived (Mondal et al., 2020). The current study
revealed, on average, no relevant changes for loamy, sandy or
clayey sites at which NT was previously implemented, but
significant increases in BD were identified in silty soils. In the
current work, a difference greater than 0.1 Mg/m3 was found in six
localities in the USA, whereas 28 other sites with silty soils did not
show any strong effect, and two sites from the USA presented a
decrease in BD (greater than 0.1 Mg/m3) (available in supple-
mentary material). In earlier studies by Castellini et al. (2019) and
Çelik et al. (2019), the compared plots had larger differences in one
location but, on average, showed only slight differences or non-
significant trends. Another study concluded that the stability of
organic matter and the structure of soil aggregates, and
consequently soil BD, improved with 15 years of NT; however,
that study was focused on only the top 10 cm of soil where the
organic matter had accumulated (Sapkota et al., 2012). In addition,
in the temperate region of Brazil, NT systems cause less soil
compaction and pressure from agricultural machinery compared
to CT, with NT being the least damaging to soil physical quality
(Silva et al., 2023).

The depth of sampling in tilled soils is a factor that affects
whether differences in BD can be identified. Under NT, four studies
reported a lower BD in the topsoil (0–10 cm) but, at the same time, a
higher BD was observed in the layers below (10–30 cm)
(Mazzoncini et al., 2011; Sapkota et al., 2012; Autret et al., 2016;
Awale et al., 2018), although, for the latter two, the differences were
not statistically significant. The opposite trends were presented in a
study by Dolan et al. (2006), where BD was greater in the topsoil
(5–20 cm) under NT, but under the ploughing layer, the soil under
CT was more compact due to tillage.

However, farmers are advised to pay attention to whether
additional measures to mitigate soil compaction (e.g. deep-rooted
intermediate crops) are necessary when implementing NT in fields
on the basis of their local conditions. The current study suggests
that silty soils in temperate climates are at greater risk for soil
compaction under NT.

The impact of tillage on soil microbiome, aggregate stability
and carbon sequestration
According to the results of the current study, compared with CT,
NT in loamy soils significantly increased C storage in the topsoil
(0–30 cm), regardless of the duration of the experiment. On a

broader scale, it is important to consider not only organic carbon
but also soil inorganic carbon, primarily in the form of carbonates.
During analysis, it is essential to separate these two carbon
fractions, as various methods for carbon determination are
available (Wang et al., 2012). However, there are still many
discrepancies in the reported distribution patterns of SOC and
disagreements regarding relevant mechanisms (Liang and Zhu,
2021). In addition to the redistribution of C in the different soil
layers due to a lack of mixing under NT, one prominent reason for
the apparently greater loss of C under tillage (Karlen et al., 2013) is
the aeration of the soil, the destruction of aggregates, and the
subsequent exposure of SOC to oxygen and microbes, which then
results in higher rates of activity and organic matter mineralization
(Young and Ritz, 2000). Through physical protectionmechanisms,
soil aggregates play an important role in C storage. Liu et al. (2020)
reported that after agricultural land abandonment, macroaggre-
gates rapidly formed, and the SOC sequestration capacity was
calculated to be 64–83%. A similar observation was reported by
Sekaran et al. (2021), who reported higher C sequestration rates in
small macroaggregates (2−0.25 mm) than in larger ones. In plots
with straw cover or straw removal and manure application, the
highest amount of SOC and stable macroaggregates were found at
the soil surface (Huang et al., 2015). A significant increase in
macroaggregate and aggregate-associated SOC contents was
evident under NT and subsoil tillage to a depth of 40 cm (Chen
et al., 2022).

Soil aggregate stability is directly related to the presence of soil
biota, especially glomalin-producing earthworms and fungi.
The impact of tillage on earthworms is highly variable and site-
dependent (Chan, 2001), but scholars largely agree on the
detrimental effects of tillage operations on fungal hyphae, as the
ability of fungi to recover from rupture is limited (Kabir, 2005;
Orrù et al., 2021; Korniłłowicz-Kowalska et al., 2022; Li et al.,
2023). Schmidt et al. (2019) reported that NT changed the
functional composition of the fungal community in the soil profile.
However, the species phylogenetic diversity of the community
remained conserved, regardless of the tillage practice employed.

To date, the mechanisms by which SOC content decreases
under frequent physical disturbances have not been well
elucidated. Consequently, agroecosystem models are not well
equipped with algorithms that represent the feedback of tillage on
soil mesofauna and microbial activity and the related effects on
aggregate stability and SOC protection against microbial decom-
position (Maharjan et al., 2018).

Distribution of SOC over the soil profile
Many researchers have examined differences in soil properties in
the topsoil, but the lower soil layers have been largely overlooked
(Gál et al., 2007). This is one reason whymost studies report a large
increase in soil carbon in fields without tillage, as they often
disregard the simultaneous decrease in soil carbon in the lower
layers, which no longer receive organic matter inputs. This matter
has been addressed in recent reviews (e.g. Haddaway et al., 2017)
but must be reconsidered when examining individual studies.
Notably, numerous studies have confirmed that under NT, less
organic matter reaches soil layers below 5 cm depth. Under NT,
there is a continuous accumulation of SOC in the topmost layer,
while the zones below this layer are depleted in SOC. Frequent
mixing under CT results in equal SOC concentrations within the
ploughing layer, which, in comparison with NT, results in lower
SOC concentrations in the topmost layer and higher SOC
concentrations in the zone below the ploughing depth (e.g. Gál
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et al., 2007; Sun et al., 2011; Martínez et al., 2016; Alhameid et al.,
2017). However, a few exceptions exist: for the different tillage
treatments employed by Autret et al. (2016), the SOC content
remained constant in the 10–30 cm layer over time.

In temperate latitudes, studies on conservation agriculture in
Brazil have shown that soil sampling to a depth of 100 cm is crucial
for accurately assessing differences between CT and NT systems.
When considering the full soil profile to 100 cm, the potential for
soil carbon accumulation increased by 59%, with rates varying in
one year from 0.48 to 1.53 Mg C/ha, compared to accumulation
rates of 0.04 to 0.88Mg C/ha in the top 30 cm (Boddey et al., 2010).

Effect of postharvest residues
The effect of NT on soil properties is strongly affected by the
amount of postharvest residues left on the soil surface. These
residues provide shelter to soil fauna against climatic stress, and
larger soil organisms find suitable habitats in the mulch layer,
which leads to a greater abundance of soil organisms inNT systems
than in ploughed systems (Kladivko, 2001). A typical soil faunal
gradient over depth develops in NT systems (Kinoshita et al., 2017;
Wulanningtyas et al., 2021). Fiorini et al. (2020) reported an
increase in the abundance of earthworms and microarthropods in
all soil types under NTmanagement. At three monitored locations
(in Spain and Italy), researchers demonstrated that crop
diversification, together with reduced soil disturbance and
chemical inputs, helped to improve soil properties (SOCs) and
sustain crop yields (and profits) (Vanino et al., 2022). Straw return
from maize and wheat strongly enhances the capacity of NT
systems for SOC sequestration (Zhu et al., 2022). In contrast,
Villamil et al. (2015) reported that in an NT treatment, the SOC
content decreased to the levels observed in CT treatments when
postharvest residues were removed.

Advantages and disadvantages of no-tillage

In temperate climates, NT is an effective measure for improving
the biological and physical properties of soil. However, most of the
beneficial effects of NT often result from a broader management
regime that includes the use of intermediate crops and appropriate
nitrogen fertilization rates (Sapkota et al., 2012). In fact, some of
the observed effects of NT are amplified through high N supply,
which results in increased biomass that contributes to SOC
accumulation through root and aboveground residues
(Mazzoncini et al., 2011; Jug et al., 2021).

Many farmers in temperate climatic zones decide against the
use of NT, as weed control is their primary concern, and in narrow
crop rotations, natural weed control mechanisms are limited
(Nichols et al., 2015). For the successful integration of NT on
farms, appropriate crop rotation is key (Cui et al., 2022). In tropical
systems, the success of NT is closely related to the use of total
herbicides, such as glyphosate. However, Okada et al. (2019)
reported that glyphosate degradation in NT and CT was very
similar, which indicates the existence of glyphosate-degrading
microflora in both systems. Alternatively, occasional tillage in NT
systems may reduce weed pressure, and it has no obvious negative
consequences for the physical properties of soils. Furthermore,
occasional ploughing in NT systems may prevent the spread of
diseases whose vectors develop in residues (Blanco-Canqui and
Ruis, 2018). In the end, the combined use of three methods may

offer enhanced weed control: minimum tillage, appropriate crop
rotation, and the formation of a mulch layer on the soil surface
from postharvest residues (Nichols et al., 2015).

Evaluation of the capabilities of models to represent no-till
soil management

For predicting yield under the effects of climate change in sites in
the Czech Republic, both the HERMES2Go and MONICA models
have been previously tested (Pohanková et al., 2022). In the current
research, it was aimed to test whether both models are fit to
reproduce the effects of NT versus conventional tillage on SOC
dynamics. Since the experimental results confirmed a significant
effect of NT on SOC only in loamy soils, the model evaluation was
made exclusively to data from sites with loamy soil. The evaluation
revealed that the models were not sensitive enough in their present
versions to sufficiently reflect the observed differences between CT
and NT.

On the other hand, specific crop rotations with catch crops in
NT are an important factor when the DayCent model demon-
strated differences between CT and NT, showing that while NT
systems without cover crops would continue to deplete SOC, more
complex cropping diversification systems with cover crops
promoted significant SOC sequestration (Locatelli et al., 2025).
While the HERMES2Go model predicted a general depletion of
SOC under NT compared with CT, which contradicts the
experimental evidence, the MONICA model predicted an increase
in accordance with the experimental results, but the increase was
lower by a factor of 10. Both models revealed a distinct
stratification of SOC in the top three 10 cm layers, with an
accumulation in the top 10 cm and a depletion in the 10–30 cm
zone for no-till, which is in line with most results reported in the
literature (Luo et al., 2010). Both models lack a representation of a
mulch layer on the soil surface, which is why feedback from soil
moisture and temperature in the presence of such a mulch cannot
be simulated in the models, which includes the effects of soil
moisture and temperature on soil microbial population
dynamics (Zapata et al., 2021), as represented in the MONICA
model. Maharjan et al. (2018) concluded that ‘tillage affects the
system in a way that a pure temperature and moisture-dependent
decomposition approach is not sufficient to describe its impact.
Apparently, there are more feedback relationships that
determine the final effect of tillage on soil–crop systems, which
need to be considered in suchmodels’. This highlights the necessity
of including more process knowledge in agroecosystem models,
which requires rigorous testing against suitable datasets.
The model ensemble framework offers a strong mechanism for
propagating uncertainty across different scales, helping to
identify weak points in agroecosystem models. However, imple-
menting model ensembles in practice remains challenging
due to the limited number of available models, and future
research will need to address these challenges, including how to
handle model disagreements, align outputs, adapt individual
processes or interpret differences as uncertainty (Hassall et al.,
2022). At this stage, the current study prioritizes the following
improvements:

1) Mulch layer dynamics, e.g. as previously developed by
Findeling et al. (2007), Wang et al. (2021) or inspired by
Thorburn et al. (2001)
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2) Effect of aeration dynamics on microbial activity, e.g. as
previously described by Cook and Knight (2003) or inspired
by Lei et al. (2022)

3) Effects of SOC concentration in the mineral matrix on soil
hydraulic properties, e.g. as previously reported by Stătescu
et al. (2017) or inspired by Rawls et al. (2004)

4) Soil aggregate formation, e.g. as previously described by Laub
et al. (2024) or inspired by Wang et al. (2019).

Conclusion

After a comparison of 76 experimental sites under NT and CT
across the temperate zone, it was found that NT induced a slight
increase in BD in the top 30 cm of soil, which was statistically
significant for silty soils. No-till had a statistically significant effect
on increased SOC concentrations and stocks only in loamy soils,
and the effect was more prominent in studies older than 10 years.

In the context of an agroecosystem model study for the Czech
Republic, it was found that the employed models HERMES2Go
and MONICA are currently unable to sufficiently capture changes
in SOC content under NT practices. Mulch layer dynamics, the
effects of periodic aeration on microbial activity, feedback from
SOC content in the mineral matrix on soil hydraulic properties,
and soil aggregate formation and destruction were identified as the
improvements most needed to enhance the fits of the models. For
this purpose, targeted experiments that aid in the further
elucidation of the physical and biological processes triggered by
tillage events are urgently needed for a range of different site
conditions.
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