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Summary. In [1], R. L. Goodstein has extended some well-known theorems on
functions and equations in a Boolean algebra to the case of a distributive lattice
L with 0 and 1. The purpose of this paper is to prove that most of Goodstein's
theorems, as well as some additional results, are still valid in the case when L
is not required to have least and greatest elements.

Throughout this paper, we shall always assume that <L, u, .> is a distributive
lattice.

The definition of a lattice function of n variables is as follows:

1. The elements a,b,c, ..., A, B, C, ... of L are lattice functions.

2. The functions e,, defined by

efau...,xB) = xl Vxu...,xneL {i = 1, 2, ..., ri) (1)

are lattice functions.

3. If f,g:L"-*L are lattice functions, then the functions fug and fg, defined
by

(fug)(xu ...,xn) =f(xu ...,xn)ug(xu ...,xn) Vxl5 ...,xneL, (2)

(/<?)(*i, •••,*„) = / ( * i , ••-,xn)g(x1, ...,xn) V*!, ...,xneL, (3)

are lattice functions.

Lemma 1. The inequality

aubx ^ cuclx (4)

is equivalent to the following system of inequalities:

a ^ c\jd, (5)

bx ^ cud, (6)

a ^ cux. (7)

Proof. Since cudx = (cud)(cux), the inequality (4) is equivalent to the
system consisting of (5), (6), (7) and bx g cux; but the last inequality is
identically satisfied.

E.M.S.
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Lemma 2. The inequality (4) is identically satisfied if and only if

a S c (8)
and

b <: cud. . (9)

Proof. If (4) is identically satisfied so are the relations (6) and (7). Taking
x = b in (6) and x = c in (7), we get (9) and (8), respectively. Conversely, the
relations (8) and (9) imply that avbx ^ cu(cud)x = cudx for all x eL.

Lemma 3. The equation
a^jbx = cudx (10)

is identically satisfied if and only if
a = c (11)

and
aub = cud. (12)

Proof. The identity (10) holds if and only if a ^ c, b g cud, c ^ a,
d ^ aub, by Lemma 2. These inequalities imply, in turn, a = c and

aub = cub ^ c\jd = aud ^ aub.

Conversely, (11) and (12) imply

aubx = au(aub)x = c\j(cad)x = curfx.

We come now to the study of lattice functions. It was proved in [1] that
every lattice function can be written in the form/(jc) = AKJBX, where A ^ B.
Let g(x) = CUDJC, where C ^ D, be another lattice function. Lemma 2
shows that the inequality f(?e) g g{x) is identically satisfied if and only if
A ^ C and B ^ D. H e n c e / = # if and only if A = C and B = D.

For every « + l elements a, xt, ..., x n e L and for every n indices a,, ..., an

equal to 0 or 1, let us put

( axh ... xim if atl = ... = a,m = 1, the other a,- = 0;

a, if all ay = 0 . K }

The above results can be generalized as follows.

Theorem 1. Every lattice function f:L"-*L can uniquely be written in the
canonical form

f(xu...,xn)= |J F(iu ..., iM-xlr, (14)
ii in

where F{iu ..., in) are elements of L such that

*i ^ju •••, in ^Jn imply F(h, •••, Q ^ F(Ju —Jn)- (15)
Theorem 2. Let (14) and

g(xu...,xn)= U G(iu ..., in)x\'...x-n" (16)
i l In

be the canonical forms of the functions f and g. The inequality f ^ g, that is

/ ( * ! , ..., xn) ^g(xu ...,xn) Sxu...,xnBL (17)
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holds if and only if

F(iu ..., /„) ^ G{iu ..., /„) V/lf .... i. e {0, 1}. (18)

Proof of Theorems 1 and 2. For n = 1, the theorems were proved before.
The next step of the inductive proof is carried out as follows.

The function/can be written in the form

/(*!, ...,*„) =/ '(*!, - , *n-l)u/"(*l> ..., Xn-lK, (19)

where / ' and / " are lattice functions satisfying the identity

/'(*i Vi)^/'(»i VO- (20)
In view of the inductive hypothesis, we have

F'(iu ..., /„_!) g F"(iu .... in-i) V/L .... / ._! e {0, 1}, (21)

where F' and F" are the coefficients of the canonical forms of the functions
/ ' and / " , respectively.

It follows that the function/can be written in the form (14), with

F(iu ...,/„_!, 0) = F 0 1 ( ...,/„_,)
and

F(iu ..., /„_!, 1) = F'O'i, ..., /„_,).

By the inductive hypothesis, both F' and F" have the property (15); taking
into account (21), we see that the constants Fhave the property (15) too.

Furthermore, let g{xu ...,*„) = 0'(*i> ..., xn_1)ufif"(^1, ...,xn.i)xa, where
g' S g", be another lattice function. The inequality/ ^ g holds identically if
and only if the inequalities/' g g' and/" ^ g" hold identically, i.e. if and only if

F'(ii, •••, in-i) ^ GVu ••-, in-i) ^nd F"(iu ..., in.,) g G\iu ..., /„_!)
V/^ ..., /,,_! e{0, 1}. This means that the relation (17) is equivalent to (18).

Hence we deduce the uniqueness of the representation (14), which we state
separately, thus completing the proof:

Corollary 1. The identity f = g holds if and only if

F{iu ..., in) = G(iu ..., in) V / L . . . , / „£ {0, 1}, (22)

where F and G are the coefficients occurring in the canonical forms of the functions
fandg, respectively.

Theorem 2 and Corollary 1 generalize the so-called " verification theorem "
due to Lowenheim [4]. Theorem 1 and Theorem 3 below are also generaliz-
ations of a well-known result on Boolean functions.

Let us now determine the canonical forms of the functions fug and fg,
defined by (2) and (3), respectively.

Theorem 3. Let (14) and (16) be the canonical forms of the functions f and g,
respectively. Then

(fKjg)(xu ..., xn) = (J [/•(«„ ..., iJuGO',, ..., iB)]xV...*i» (23)
' 1 . . . . , in
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and
(fg)(x1,...,xn) = (J F{iu ..., in)G(iu ..., iM-rt (24)

»1. — , ' n

are the canonical forms ofthe functions fug andfg, respectively.

Proof. Relation (23) results immediately from (14) and (16). Since
ax'xj = axiKJi, it follows also that

(fg)(xu ...,xn)= (J [ (J F(jlt...,jl,)G{k1,...,kj]x'i...rt. (25)
'l in j<->k = i

where (J means that the join is extended over those indices
jut = j

J\> -Jn, h> •••> 4e{0> 1} which satisfy ^uA^ = iu ...,jnvkn = /„.

Since both F and G have the property (15), it follows that

(J F(ju ...Jn)G(ku ..., kn) = F(iu ..., in)G{iu ..., Q (26)
ju t = >

and hence (25) reduces to (24).

Since the constants F<oG, as well as the constants FG, have obviously the
property (15), it follows that (23) and (24) are actually the canonical forms of
f<ug andfg, respectively.

The above theorems can be applied to the study of lattice equations.
As was remarked in [1], any equation A = B is equivalent to the inequality

AKJB ;£ AB. Hence we shall focus our attention on inequalities of the form

/(*!, ...,xn)^g{xu ...,xn). (27)

We begin with the following

Lemma 4. The inequality

fix) ^ g(x) (28)

is solvable if and only if the relation

F(0) ^ G(l) (29)
holds. If this condition is fulfilled, then an element xeL is a solution of (28) if
and only if

F(l)x ^ G(l) (30)
and

F(0) ^ G(0)ux (31)

Proof. The result follows immediately from Lemma 1 and Theorem 1.

Corollary 2. / / x' and x" satisfy the inequality (28) and x e \x', x"], i.e.
x'x" ^ x ^ x'ujt", (32)

then x is also a solution o/(28).

Proof. It follows from Lemma 4 that F(l)x' ^ (7(1) and F(l)x" ^ G(l);
hence F(l)x ^ F(1)(X'UJC") ^ G(l). The inequality (31) is proved similarly.
Therefore x satisfies (28), again by Lemma 4.
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Let us now associate with each lattice function/(x,, ..., xn), the lattice
functions

F(xu ...,xm; im+1, .... iB)= U F(iu ..., im, im+u ..., in)x\...x)n. (33)
11 im

Theorem 4. The inequality (27) is solvable if and only if relation
F(0,...,0)ZG(l, ..., 1) (34)

holds. If this condition is fulfilled, then a vector (xt, ..., jtn) e L" is a solution of
(27) // and only if it satisfies the relations

F(xu ..., xk_u 0, 0, ..., 0) ^ G(xu ..., xk_u 0, I, ..., l)vxk (35)
and

F(xu ..., xk.u 1, 0, ..., 0)xk g. G(xu ..., xk_u 1, 1, ..., 1) (36)
for k = 1, 2, ..., n.

Proof. For n = 1, Theorem 4 reduces to Lemma 4. The proof is easily
completed by induction.

Corollary 3. If the condition (34) is fulfilled, then every vector (xu ..., xn)e L"
satisfying

F(xu ..., xk.u 0, 0, .... 0) ^ xk ^ G(Xl, ..., xk_u I, I, ..., 1) (37)
for k = 1, 2, ..., n, is a solution of {21).

Theorem 4 can be specialized in the case when the lattice L is biresiduated,
i.e. when it is residuated with respect to the meet and join operations. In other
words, this means that for every two elements a, beL, there exists an element
a.beL and an element av.beL such that bx ^ a if and only if x ^ a:b, and
a ^ b^jx if and only if a: :b ^ x. Boolean algebras and totally ordered sets with
0 and 1 are examples of biresiduated lattices; the Cartesian product Ll xL2 of
two biresiduated lattices Lt and L2 is also biresiduated.

Theorem 5. Assume the lattice L is biresiduated. If the condition (34) is
fulfilled, then the solutions of the inequality (27) are given by
F(xu ...,xk-t,0, 0, ...,0)::G(X], ..., jct_,, 0, 1, ..., 1) g xk

g G ( x l t ..., x k _ u 1 , 1 , .... \ ) : F ( X l , ..., x k _ t , \ , 0 , ..., 0 ) , ( 3 8 )

for k = 1, 2, ..., n.

Proof. The result follows immediately from Theorem 4.

Theorem 5 generalizes a result proved by M. Goto [2] for the two-element
Boolean algebra and by the present author [5], [6] for arbitrary Boolean
algebras; see also V. N. Grebenscikov [3].

The next theorem refers again to the general case of an arbitrary distributive
lattice; it generalizes a theorem on Boolean functions which goes back to
A. N. Whitehead [7].

Theorem 6. Every lattice function f:L"->L maps L" onto the interval
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Proof (essentially given in [1]). Let c be an element satisfying

. . , 0 ) £ c £ G ( l , . . . , l ) ; (39)
we have to prove that the equation J{xu ..., xn) = c, which is equivalent to the
inequality

f(xu ..., xn)uc ^f(xt, ..., xn)c, (40)

is solvable. Taking into account Theorem 3, we see that the condition (34) for
the inequality (40) becomes F(0, ..., 0)uc ^ F(1, ..., l)c and it is satisfied,
because (39) implies that F(0, ..., 0)uc = c = F(l, ..., l)c.

Conversely, it follows from Theorem 1 that

F(0, ...,0)^f(xu . . . , * „ ) g (J F(iu . . . , / „ ) = F ( 1 , ..., 1).
l'l in

Assume now that the lattice L has least and greatest elements and denote
them by 0 and 1, respectively. Reasoning as in the proof of Theorem D in
[1], we see that the coefficients F(iu ..., /„) occurring in the canonical form of a
lattice function f(xu ..., xn) are simply F(iu ..., in) = f{iu ..., /„). Hence the
theorems proved in Sections 1-2 of [1] are particular cases of our results.
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