Psychological Medicine

cambridge.org/psm

Original Article

*These authors contributed equally to this
work.

Cite this article: Wang J, Wang Y, Huang H, Jia
Y, Zheng S, Zhong S, Chen G, Huang L, Huang
R (2020). Abnormal dynamic functional
network connectivity in unmedicated bipolar
and major depressive disorders based on the
triple-network model. Psychological Medicine
50, 465-474. https://doi.org/10.1017/
S003329171900028X

Received: 7 August 2018

Revised: 2 November 2018

Accepted: 29 January 2019

First published online: 14 March 2019

Key words:

Central executive network; default mode
network; dynamic functional network
connectivity; salience network.

Author for correspondence:

Ying Wang, E-mail: johneil@vip.sina.com and
Ruiwang Huang, E-mail: ruiwang.huang@
gmail.com

© Cambridge University Press 2019

CAMBRIDGE

UNIVERSITY PRESS

Abnormal dynamic functional network
connectivity in unmedicated bipolar and
major depressive disorders based on the
triple-network model

Junjing Wangh2*, Ying Wang3*, Huiyuan Huang?, Yanbin Jia%, Senning Zheng?,
Shuming Zhong?, Guanmao Chen3, Li Huang® and Ruiwang Huang?

'Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou 510006, China; 2School
of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology &
MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal
University, Guangzhou 510631, China; *Medical Imaging Center, First Affiliated Hospital of Jinan University,
Guangzhou 510630, China and *Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou
510630, China

Abstract

Background. Previous studies have analyzed brain functional connectivity to reveal the neural
physiopathology of bipolar disorder (BD) and major depressive disorder (MDD) based on the
triple-network model [involving the salience network, default mode network (DMN), and
central executive network (CEN)]. However, most studies assumed that the brain intrinsic
fluctuations throughout the entire scan are static. Thus, we aimed to reveal the dynamic func-
tional network connectivity (dENC) in the triple networks of BD and MDD.

Methods. We collected resting state fMRI data from 51 unmedicated depressed BD II patients,
51 unmedicated depressed MDD patients, and 52 healthy controls. We analyzed the dFNC by
using an independent component analysis, sliding window correlation and k-means cluster-
ing, and used the parameters of dFNC state properties and dFENC variability for group
comparisons.

Results. The dFNC within the triple networks could be clustered into four configuration
states, three of them showing dense connections (States 1, 2, and 4) and the other one showing
sparse connections (State 3). Both BD and MDD patients spent more time in State 3 and
showed decreased dFNC variability between posterior DMN and right CEN (rCEN) compared
with controls. The MDD patients showed specific decreased dENC variability between anter-
ior DMN and rCEN compared with controls.

Conclusions. This study revealed more common but less specific dFNC alterations within the
triple networks in unmedicated depressed BD II and MDD patients, which indicated their
decreased information processing and communication ability and may help us to understand
their abnormal affective and cognitive functions clinically.

Introduction

The bipolar disorder (BD) and major depressive disorder (MDD) are two severe affective dis-
orders in our society with high suicide rates and a heavy social burden (Fountoulakis, 2010).
Clinically, BD shows recurring episodes of hypomania/mania and depression, while MDD
only shows depressive episodes. For their common depressive episodes and the higher preva-
lence of depression relative to specific mania symptoms in BD, it is necessary to highlight the
neural physiopathology of BD and MDD during depressive episodes and then to detect their
common and specific neural physiopathology.

Based on resting state fMRI (RS-fMRI) data and functional connectivity (FC) analysis, the
triple-network model has been widely used to indicate the neural physiopathology of various
diseases. The triple-network model, which was proposed by Menon (2011), is a unifying
model to explain the neural physiopathology of psychiatric and neurological disorders given
the fact that the dysfunctions of these disorders occur at a network level rather than in an indi-
vidual brain area. This model examines ‘core’ brain networks supporting cognitive, perceptual,
affective, and social functions, involving the salience network (SN), default mode network
(DMN) and central executive network (CEN), which are thought to be abnormally organized
in many psychiatric disorders (Menon, 2011). Up to date, the altered FC properties within the
triple networks have been revealed in BD and MDD patients. In depressed BD patients, Gong
et al. (2019) detected disrupted FC within the DMN and SN compared with controls. For
depressed MDD patients, several studies (de Kwaasteniet et al., 2014; Wei et al., 2015; Gong
et al., 2017; Jiang et al., 2017) have revealed altered FC within the SN, DMN, CEN, as well
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as between the DMN and SN, between the SN and CEN, and
between the CEN and DMN compared with controls. For
depressed and remitted MDD patients, Dong et al. (2018)
found that both had decreased FC within the CEN, increased
FC between the SN and CEN, and decreased FC between the
DMN and CEN compared with controls, suggesting the
state-independent FC alterations within the triple networks in
MDD patients. Further, by including both depressed BD and
MDD patients, Goya-Maldonado et al. (2016) compared FC in
core regions of the fronto-parietal network (including the core
regions of CEN), cingulo-opercular networks (including the
core regions of SN), and DMN. They found increased FC in the
fronto-parietal network in depressed BD patients and increased
FC in the DMN in depressed MDD patients compared with con-
trols. Similarly, one of our studies (Wang et al., 2018) compared
FC alterations in the triple networks of depressed BD and MDD
patients compared with controls. We found FC alterations within
the DMN and SN as well as between the DMN and CEN in both
BD and MDD patients, but specific FC alterations between the
CEN and SN in BD patients. Taken together, the abnormal FC
properties within the triple networks existed in BD and MDD;
these abnormalities seem to be state-independent, and there are
some common and specific abnormalities between BD and
MDD. However, these studies above all regarded the functional
properties of the entire RS-fMRI scan as static but not dynamic.

In fact, human brain is never in static state and a growing num-
ber of studies have indicated that the FC shows noticeable varia-
tions at rest in the absence of any external stimuli (Tagliazucchi
and Laufs, 2014; Barttfeld et al, 2015; Gonzalez-Castillo et al,
2015; Karahanoglu and Van De Ville, 2015). This dynamic FC
(dEC) exhibits highly structured spatiotemporal patterns in
which a set of metastable FC patterns, known as dFC states, reli-
ably recur across time and subjects. A number of studies have
focused on dFC states and found that they may be associated
with ongoing human cognition (Gonzalez-Castillo et al., 2015),
consciousness level (Barttfeld et al, 2015), flexible behavior
(Shanahan, 2010; Tognoli and Kelso, 2014), brain development
(Hutchison and Morton, 2015), and neuropsychiatric disorders
(Zhao et al.,, 2017; Negwer et al., 2018). Specifically, in remitted
BD patients, Nguyen et al. (2017) studied dFC within the DMN
and found decreased dFC between the medial prefrontal cortex
(mPFC) and posterior cingulate cortex (PCC). In addition,
Rashid et al. (2014) compared dFC properties between schizophre-
nia, mixed psychotic and non-psychotic BD patients, and controls,
and identified different patterns of connectivity involving the
frontal and frontal-parietal regions between schizophrenia and
BD patients. They also found that the dFC was more informative
than stationary FC in classifying the BD patients from schizophre-
nia patients (Rashid et al., 2016). In depressed MDD patients, pre-
vious studies revealed abnormal dFC variability between the
mPFC and insular regions (Kaiser et al, 2016), between the
mPFC and PCC (Wise et al., 2017), and between the DMN and
CEN (Demirtas et al., 2016). Further, by including both depressed
BD and MDD patients, Pang et al. (2018) detected common and
specific alterations in dFC related to the insular cortex.
Altogether, these studies revealed that both BD and MDD had
dFC abnormalities; the abnormalities always involve in the SN,
DMN, and CEN from the perspective of network, and there are
some common and specific abnormalities between BD and
MDD. However, up to date, few studies have analyzed the dynamic
functional network connectivity (AFNC) between networks com-
posing the triple networks of BD and MDD.
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In this study, by combining RS-fMRI data with the triple-
network model, we aimed to reveal the dFNC alterations between
the SN, DMN, and CEN in unmedicated BD and MDD patients
during depressive episodes. In order to reduce the confounding
factors, such as the subtype-, medicine-, and states-related effects,
we only included the unmedicated BD-II (refer to BD in the fol-
lowing) and MDD patients during depressive episodes, matching
their number of episodes, age of onset, duration of illness and
clinical states. Based on the findings mentioned above and our
previous studies on depressed BD and MDD patients (Niu
et al, 2017; Wang et al, 2017b, 2017¢; Chen et al., 2018; He
et al., 2018; Wang et al., 2018), we made the following hypotheses:
(1) the BD and MDD patients have dENC alterations within the
triple networks; (2) there are more common and less specific
alterations between the BD and MDD patients.

Materials and methods
Subjects

A total of 51 currently depressed adults diagnosed with BD II (24M/
27F, age =26.35 £ 8.79 years old) and 51 currently depressed adults
diagnosed with MDD (22M/29F, age = 28.45 + 8.47 years old) were
recruited from the Psychiatry Department of the First Affiliated
Hospital of Jinan University, Guangzhou, China. The diagnoses of
BD and MDD were based on the Structured Clinical Interview for
DSM-IV. The clinical state of each patient was assessed using the
24-item Hamilton Depression Rating Scale (HAMD) (Meda et al,
2014) and the Young Mania Rating Scale (YMRS) (Young et al,
1978) during the 7-day period prior to the scan. The inclusion cri-
teria were a HAMD-24 total score >21 for the MDD patients and a
YMRS total score <7 combined to a HAMD-24 total score >21 for
the BD patients (Wang et al, 2015). The exclusion criteria were
patients with other Axis-I psychiatric disorders (except for MDD,
BD, and anxiety disorders), Axis-II psychiatric disorders, a history
of organic brain disorder, neurological disorders, mental retardation,
cardiovascular diseases, alcohol or substance abuse, pregnancy, or
any physical illness. At the time of scanning, all patients were either
medication-naive or had been unmedicated for at least 5 months.
None of the patients had received psychotherapy or electroconvul-
sive therapy prior to participating in the current study.

In addition, we recruited 52 gender-, age-, and education-matched
healthy subjects (20M/32F, age = 29.71 + 11.19 years old) as controls
via local advertisements. They were carefully screened through a diag-
nostic interview, the Structured Clinical Interview for DSM-IV (non-
patient edition), to rule out the presence of current or past psychiatric
illness. Further exclusion criteria for the controls were any history of
psychiatric illness in first-degree relatives and any current or past sig-
nificant medical illness or mental disorders.

All subjects were right-handed according to their self-report. The
study was approved by the Ethics Committee of the First Affiliated
Hospital of Jinan University, Guangzhou, China. The procedures
were carried out in accordance with the approved guidelines. All
subjects signed a written informed consent form after a full written
and verbal explanation of the study. Two experienced clinical psy-
chiatrists (Y.J. and S.Z.) confirmed that all subjects had the ability
to consent to participate in the examination independently.

Data acquisition

All MRI data were obtained on a 3 T GE MR750 scanner with an
eight-channel phased-array head coil in the Medical Center of the
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First Affiliated Hospital of Jinan University, Guangzhou. The
RS-fMRI datasets were acquired using a single-shot gradient-echo
EPI sequence with the following parameters, repetition time (TR)
=2000 ms, echo time (TE) =25 ms, flip angle (FA) =90°, field of
view (FOV) =240 mm x 240 mm, data matrix = 64 x 64, thickness/
gap =3.0/1.0 mm, 35 axial slices covering the whole-brain, and
210 volumes acquired in about 7 min. During the RS-fMRI scan,
each subject was requested to keep their eyes closed but not to
fall asleep, and to relax the mind but not to think about anything
in particular. In addition, the routine axial T1-weighted fluid attenu-
ation inversion recovery and fast spin-echo T2-weighted MR
sequences were also applied to obtain brain images to confirm the
absence of brain structural and signal abnormality.

Data preprocessing

The RS-fMRI data were preprocessed using SPM 12 (https://www.
filion.ucl.ac.uk/spm/software/spm12/) and DPARSF Advanced
Edition (http:/restfmri.net/forum/DPARSF). For each subject,
the first 10 volumes of the RS-fMRI dataset were discarded to
allow for MR signal equilibrium, leaving 200 volumes for further
analyses. The remaining functional images were first corrected for
the acquisition time delay between slices within the same TR, and
then were realigned to the first volume for correcting the inter-TR
head motion. This realignment calculation provided a record
of head motion within the RS-fMRI scan. All of the subjects
in this study satisfied our criteria for head motion with displace-
ment <1.5 mm in any plane and rotation <1.5° in any direction.
The corrected RS-fMRI data were spatially normalized to the
Montreal Neurological Institute (MNI) space and were resampled
to a voxel size of 3 mm x 3 mm x 3 mm. Then the normalized
images were spatially smoothed using an isotropic Gaussian ker-
nel of 6 mm full-width-at-half-maximum.

After preprocessing, we further processed the residual
RS-fMRI data (the preprocessed data) according to the following
steps illustrated in Fig. 1.

Group independent component analysis and post-processing

The preprocessed fMRI data were decomposed into different func-
tional networks using a group-level spatial independent component
analysis (ICA) in GIFT package (version 3.0a) (Calhoun et al.,
2001; Calhoun, 2004). First, the data reduction was conducted to
decrease computational complexity using a two-stage principal
component analysis. Precisely, the preprocessed fMRI data for
each subject were first dimension-reduced temporally and then
the reduced data from all subjects were concatenated into a single
dataset, or the grouped data, along the temporal dimension and
passed through another dimension reduction. Second, ICA was
performed to decompose the grouped data into automatically esti-
mated 29 independent components (ICs) using an Infomax algo-
rithm (Bell and Sejnowski, 1995). In this step, the spatial map
and the time course of BOLD signal were generated for each IC.
This step was repeated 100 times using the ICASSO algorithm
for assessing the repeatability or stability of ICs (Himberg et al.,
2004). Finally, the ICs for each subject were derived from a
group ICA back reconstruction step and were converted into
z-scores (Calhoun et al, 2001). This provided subject-specific spa-
tial maps and time courses which were further used to make group-
level random-effects inferences (one sample ¢ test). Thus, a group
level t-map was generated for each IC and this f-map was used
to identify the brain regions involved in the corresponding IC.
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Then we identified ICs of interest by using the automatic iden-
tification method and the visual screening based on previous
reported spatial maps. The detailed descriptions were displayed
in online Supplementary materials. At last, we determined the
five ICs, which correspond to the anterior DMN (aDMN), poster-
ior DMN (pDMN), left CEN (ICEN), right CEN (rCEN), and SN.

In addition, we applied post-processing steps, including linear,
quadratic, and cubic detrending, regression of their temporal
derivative, removal of detected outliers, and low-pass filtering
with a high-frequency cutoff of 0.1 Hz, to the IC time course to
remove trends associated with scanner drift and movement-related
artifacts. We have detected the outliers based on the median abso-
lute deviation, as implemented in 3D DESPIKE. Outliers were
replaced with the best estimate using a third-order spline fit to
the clean portion of the time courses. At last, we used the residual
time courses to do the following dFNC analyses.

dFNC estimation

We computed Pearson’s correlations between time courses of
ICs using the sliding window approach, creating tapered windows
by convolving a rectangle (length =22 TRs) with a Gaussian of
o=3 TRs. The onset of each window progressively slid in steps
of one TR from that of the previous one, resulting in 178 win-
dows. The window length of 22 TRs was chosen because previous
studies (Allen et al., 2014; Leonardi and Van De Ville, 2015) have
shown that a window length of 22 TRs may provide a good trade-
off between the quality of the FNC estimate and the temporal
resolution. To characterize the full covariance matrix, we esti-
mated covariance from the regularized precision matrix or the
inverse covariance matrix (McGuffin et al., 2003). Following the
graphical LASSO method of Friedman (Vandeleur et al., 2014),
we placed a penalty on L1-norm of the precision matrix to pro-
mote sparsity. The regularization parameter A was optimized
separately for each subject by evaluating the log-likelihood of
unseen data (windowed covariance matrices from the same sub-
ject) in a cross-validation framework. Then the 5 x 5 dFNC win-
dows were concatenated to form a 5x 5 x 178 array which was
used to represent the temporal changes of inter-network covari-
ance (correlation) as a function of time for each subject.

dFNC variability

The temporal variability in dFNC was estimated using the stand-
ard deviation of inter-network correlation across sliding windows.
Larger standard deviations indicate more variable (or less stable)
FNC between networks.

dFNC states

For all the windowed 5 x 5 FNC matrices, we applied the k-means
algorithm to divide the dFNC windows into separate clusters.
First, we estimated the variability of inter-network correlation
across sliding windows and selected the windows with local max-
ima in the FC variance as subject exemplars. Then, we performed
a k-means analysis on the set of all the subject exemplars with a
random initialization of the centroid positions. k=4 was deter-
mined using the elbow criterion (Allen et al., 2014). We repeated
the clustering algorithm 500 times to increase the chance of
escaping the local minima. The correlation distance function
was chosen because it is more sensitive to the dFNC pattern,
regardless of magnitude (Allen et al, 2014). These resulting
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Group ICA

components

Subject

time courses

Windowed
NC

Fig. 1. Flowchart for the dynamic functional network con-
nectivity (dFNC) analysis in this study. For the RS-fMRI
data of all subjects, we first used group independent com-
ponent analysis (grouplCA) to parcellate the data into 29
independent components (ICs), and then selected the ICs
corresponding to the networks of aDMN, pDMN, ICEN,
rCEN, and SN. Then we adopted the sliding window
approach to analyze the dFNC for the obtained 178 time
windows. In each of the time windows, the inter-network
FNC or Pearson’s correlation was calculated between the
time courses for each pair of networks. Afterwards, we cal-
culated the dFNC variability across windows, clustered the
time windows for all the participants using the k-means
algorithm, and estimated the dFNC properties. aDMN, anter-
ior default mode network; pDMN, posterior default mode
network; ICEN, left central executive network; rCEN, right
central executive network; SN, salience network.

dFNC
parameters

centroids were then used as starting points to cluster the dFNC
windows for all the subjects.

Finally, all time windows of all subjects were clustered into four
states, State 1, State 2, State 3, and State 4. Then we calculated the
dFNC properties, including the reoccurrence fraction and dwell
time in each state as well as the transition number between different
states for each subject. The reoccurrence fraction is the proportion of
time spent in each state as measured by percentage. The mean dwell
time represents how long the participant stayed in a certain state,
which was calculated by averaging the number of consecutive win-
dows belonging to one state before changing to other states. The
transition number represents how many times either state changed
from one to another, counting the number of times a switch
occurred, with more transitions representing less stability over time.

Statistical analysis

Group comparison
Considering that the data distribution may bias the statistical
results in parametric tests, we used the non-parametric tests in
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our statistics (p <0.05). A permutation one-way analysis of vari-
ance (ANOVA) was used to detect differences in age and educa-
tion level between the BD, MDD, and control groups. A Pearson’s
x’-test was used to detect difference in gender between the BD,
MDD, and control groups. For clinical variables, a permutation
two-sample ¢ test was used to detect differences in the number
of episodes, age of onset, duration of illness, HDRS24, and
YMRS scores between the BD and MDD groups.

In addition, a permutation one-way analysis of covariance
(ANCOVA) was conducted to detect the group effect on the
dFNC parameters, including the dFNC variability, reoccurrence
fraction and dwell time for each dFNC state, and transition num-
ber between states (p <0.05). In the calculations, we took age,
gender, and years of education as covariates. A post-hoc analysis
was also carried out for the dFNC parameters that showed group
effects.

I

Variance matrix

Brain-behavioral relationship
For each of the dFNC parameters showing significant group
effects (one-way ANCOVA, p<0.05), we estimated Pearson’s
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Table 1. Demographics and clinical characteristics of the BD patients, MDD patients, and healthy controls in this study
Parameters BD (n=51) MDD (n=51) Controls (n=52) p-value
Age (years old) 26.35+8.79 28.45 +8.47 29.71+£11.19 0.20°
Gender (female/male) 27/24 29/22 32/20 0.68°
Education (years) 13.98 +2.60 13.22+2.89 14.23+2.82 0.10%
Number of episodes 2.22+1.89 2.00+1.82 NA 0.26°
Age of onset (years) 23.24 +8.56 25.31+9.09 NA 0.12¢
Duration of illness (months) 29.08 +37.07 32.29+3.51 NA 0.35°
HAMD 25.80 £5.35 25.20+5.81 2.88+1.80 0.00%
YMRS 2.80 £3.67 2.92+3.63 0.47 £0.90 0.00°

BD (MDD), bipolar (major depressive) disorder; HAMD, Hamilton Depression Rating Scale; YRMS, Young Mania Rating Scale.

?The p-value was obtained from permutation ANOVA.

PThe p-value was estimated from Pearson’s y*-test

“The p-value was calculated from permutation two-sample t test
NA, not applicable

correlation between the parameter and each of the clinical vari-
ables in the BD and MDD groups, separately ( p < 0.05). The clin-
ical variables included the HAMD score, number of episodes,
onset age of illness, and total duration of illness. In this analysis,
we also took the age, gender, and years of education as covariates.

Results
Demographic information

Table 1 lists the demographic and clinical characteristics of the
BD, MDD patients, and controls. No significant difference was
detected in age, gender, and education level between the three
groups. Additionally, no significant difference was found in
depression severity, illness duration, and onset age of illness
between the BD and MDD groups.

ICs of interest

The five ICs of interest, aDMN, pDMN, ICEN, rCEN, and SN,
which were selected from the 29 ICs (one sample ¢ test, p < 0.001,
FDR corrected) were shown in online Fig. S1 in Supplementary
materials. The spatial layout of each IC was consistent with previous
studies (Beckmann et al., 2005, Damoiseaux et al., 2006, Smith et al.,
2009).

dFNC variability

Figure 2a shows the mean dFNC variability across windows in
the BD, MDD patients, and controls, respectively. Figure 2b
shows the dFNC variability with significant group effect (one-way
ANCOVA, p <0.05) and the corresponding box plots for post-hoc
analyses. Briefly, both the BD and MDD patients had decreased
dFNC variability between pDMN and rCEN compared with the
controls. The MDD patients had specific decreased dFNC vari-
ability between aDMN and rCEN compared with the BD patients
and controls.

dFNC states and properties

Figure 3 shows the four identified states with highly structured
FC that recurred throughout individual scans and across subjects,
as well as their occurrence time and percentage. In State 1, the
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DMN had negative FNC with ICEN but positive FNC with
rCEN. The SN had positive FNC with DMN and rCEN but nega-
tive FNC with 1CEN. In State 2, the DMN had positive FNC with
ICEN but negative FNC with rCEN. The SN had negative FNC
with DMN and ICEN but positive FNC with rCEN. In State 3,
the FNC within the triple networks was very sparse. In State 4,
the DMN had positive FNC with CEN, and the SN had negative
FNC with both DMN and CEN. Moreover, we found positive
connections between aDMN and pDMN in states with dense con-
nections (States 1, 2, and 4).

For dFNC properties (one-way ANCOVA, p < 0.05), we found
significant increased reoccurrence fraction (Fig. 4a) and dwell
time (Fig. 4b) in State 3 in both the BD and MDD patients com-
pared with the controls. However, no significant group effect was
found in transition number.

Discussion

The present study analyzed the dFNC in the triple networks of
depressed BD and MDD patients and highlighted the temporal
properties of dFNC states and the dFNC variability. The main
findings were as follows: (1) the dFNC within the triple networks
could be clustered into four configuration states, three of them
showing dense connections (States 1, 2, and 4) and one of them
showing sparse connections (State 3); (2) the analyses in temporal
properties of dFENC states showed that both the BD and MDD
patients spent more time in State 3 with significant increased
reoccurrence fraction and dwell time compared with the controls;
(3) the analysis of dFNC variability showed that both the BD and
MDD patients had decreased dFNC variability between pDMN
and rCEN compared with the controls, while the MDD patients
had specific decreased dFNC variability between aDMN and
rCEN compared with either the BD patients or controls. These
results validated previous demonstrations of abnormal FC within
the triple networks (Menon, 2011; Wei et al., 2015; Zheng et al.,
2015; Goya-Maldonado et al., 2016) and abnormal dFC properties
(Demirtas et al., 2016; Kaiser et al., 2016; Wise et al., 2017) in BD
and MDD patients. Our findings further highlighted the more
common and less specific dFNC alterations in the triple networks
of BD and MDD patients, and suggested that the dFNC in the tri-
ple networks of BD and MDD is characterized by more frequent
state of sparse connections and decreased dynamic variability.
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Fig. 2. The mean functional network connectivity (dFNC) vari-
ability across the time windows in the BD, MDD, and control
groups. (a) For each subject group; (b) Group effect. The sym-
bol of “+’ indicates the inter-network dFNC variability showing
significant group effect ( p <0.05, one-way ANCOVA). The post-
hoc analysis was performed for the dFNC variability showing
significant group effect. Symbols of ¢, A, and O in the scatter
plot indicate the value of dFNC variability for a subject in the
BD, MDD, and control groups, respectively. Red dots indicate
outliers. The box plot shows the median (red line), interquar-
tile range (blue lines), and sample minimum and maximum
values (dark lines). The horizontal lines on top indicate pair-
wise comparisons that survived statistical thresholds: **p <
0.01; *p <0.05. BD (MDD), bipolar (major depressive) disorder;
aDMN, anterior default mode network; pDMN, posterior
default mode network; ICEN, left central executive network;
rCEN, right central executive network; SN, salience network;
NA, not applicable.

State 1

State 3

Fig. 3. The centroid of each functional network connectivity
state, and the total number and percentage of occurrence of
each connectivity state. aDMN, anterior default mode net-
work; pDMN, posterior default mode network; ICEN, left cen-
tral executive network; rCEN, right central executive
network; SN, salience network.

The four FNC configuration states detected in the present study
provided dynamic interactive relationship within the triple net-
works. Previous studies (Fox et al, 2005; Fransson, 2005;
Sridharan et al, 2008; Murphy et al., 2009; Chen et al, 2013;
Goulden et al.,, 2014) have used various measures to investigate
the functional relationship between the SN, DMN, and CEN, and
indicated that the SN drives the switching between DMN and
CEN, and the CEN and SN negatively regulated the DMN.
However, several previous studies reported inconsistent FNC pat-
terns within the triple networks (Manoliu et al., 2013; Manoliu
et al., 2014a; Abbott et al, 2016; Wang et al., 2017a) when taking
the entire RS-fMRI scan as a static duration. For example, Abbott
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et al. (2016) found that the DMN was negatively connected with
both the FPN and SN, and the FPN was positively connected
with the SN. Wang et al. (2017a) found that the SN was negatively
connected with the pDMN while the other FNC within the triple
networks were positive. Manoliu et al. (2013, 2014b) found that
the SN was negatively correlated with the ventral CEN and inferior
pDMN, the dorsal CEN was negatively correlated with the aDMN
and inferior pDMN, and the other FNC within the triple networks
were positive. These FNC patterns above were inconsistent with our
detected four FNC states, either. A possible reason for this incon-
sistency may be that the FNC pattern within the triple networks
during the entire RS-fMRI scan period is not static but dynamic,
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Fig. 4. Comparison of group effect of the functional network connectivity (dFNC)
properties in each dFNC state between the BD, MDD, and control groups (p <0.05,
one-way ANCOVA). (a) Reoccurrence fraction, and (b) dwell time. The post-hoc ana-
lysis was performed for the dFNC properties showing significant group effect.
Symbols of ¢, A, and O in the scatter plot indicate the dFNC properties for a subject
in the BD, MDD, and control groups, respectively. Red dots indicate outliers. The box
plot shows the median (red line), interquartile range (blue lines), and sample min-
imum and maximum values (dark lines). The horizontal lines on top indicate pairwise
comparisons that survived statistical thresholds: **p <0.01; *p <0.05. BD (MDD), bipo-
lar (major depressive) disorder.

resulting in various FNC patterns in different scan periods.
Considering that the brain activity during RS-fMRI scan is
dynamic, Marusak et al. (2017) analyzed the dFNC within the tri-
ple networks in children and revealed six different states. We can-
not directly compare the four states obtained in the present study
with their six states, because they recruited children but not adults
and they divided each network into several subnetworks and
focused on the FNC between subnetworks. But they also detected
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different sparse and dense connected states and emphasized the
roles of dFNC states and dFNC variability, which is consistent
with our study. In total, the four FNC configuration states detected
in the present study could provide more information about the
dynamic interactive relationships within the triple networks in
adults than only focusing on one static FNC pattern.

Further, both the BD and MDD patients spent more time in
State 3 with sparse connections compared with the controls,
including the increased reoccurrence fraction and dwell time
(Fig. 4). Correlation analysis revealed that the reoccurrence frac-
tion of State 3 was significantly positively correlated with the ill-
ness duration in the BD patients (online Fig. S2 in Supplementary
materials). This indicated that as the disease accumulates, the BD
patients spent more time in State 3. In State 3, the FNC within
and between the triple networks are much lower than in other
states (Fig. 3). The fact that patients spent longer time in the
state with sparse connections is indicative of decreased informa-
tion communication within the triple networks. The finding
may help to explain the previous reported conclusions of
decreased information communication ability in depressed
(Meng et al., 2014; Wang et al., 2017¢) and remitted MDD (Bai
et al., 2012; Li et al., 2017), as well as depressed (Wang et al.,
2017¢) and remitted BD (Leow et al., 2013). For the existed
decreased information communication ability across states, we
may infer that the decreased information communication is
state-independent in BD and MDD patients. In addition, consid-
ering that the interactions within the triple networks are respon-
sible for maintaining information processing, such as cognitive,
perceptual, affective, and social functions (Menon, 2011), we
deduced that the increased time in sparse connections within
the triple networks may account for the clinical symptoms of
abnormal affective and cognitive processing and communication
in depressed BD and MDD patients (Diener et al., 2012).

We also found decreased dFNC variability in the depressed
patients compared with the controls, such as the decreased
dFNC variability between pDMN and rCEN common to both
the BD and MDD patients, and the decreased dFNC variability
between aDMN and rCEN specific to the MDD patients
(Fig. 2). A higher brain variability may reflect a greater complexity
and greater capacity for information processing (Marusak et al.,
2017). Thus, the decreased dFNC variability in our study may
indicate decreased ability for information processing in depressed
BD and MDD patients. The DMN and CEN can co-active with
each other to perform particular mental tasks (Angst et al.,
2010). The abnormal stationary FC between DMN and CEN
has been reported in BD and MDD patients in depressive state
(Sheline et al., 2010; Ye et al., 2012; de Almeida and Phillips,
2013; Manoliu et al., 2014a; Dong et al.,, 2018) and remitted
state (Dong et al., 2018). Thus, the decreased dFENC variability
between DMN and CEN may indicate a state-independent
impairment in information processing in BD and MDD patients.

In addition, the dFNC variability between rCEN and aDMN or
between rCEN and pDMN has different roles in specific and com-
mon alterations of BD and MDD patients, which remind us of the
different roles of aDMN and pDMN in the physiopathology of
depression. The aDMN mainly includes the mPFC, which is
believed to be associated with social cognition involving the mon-
itoring of one’s own psychological states, and mentalizing about the
psychological states of others (Broyd et al., 2009; Kaiser et al.,
2016). The pDMN mainly includes the PCC or precuneus, which
is supposed involving the continuous sampling of external and
internal environments (Raichle et al, 2001), and may play a role
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in processing of emotionally salient stimuli related to episodic
memory (Maddock, 1999). In addition, the CEN is responsible
for high-level cognitive functions, such as planning, decision mak-
ing, attention, and working memory (Menon, 2011). Thus, the spe-
cific decreased dFNC variability between aDMN and rCEN in the
MDD patients may give us indications about their seriously imbal-
anced monitoring of own and others’ states, which may help us to
understand their abnormal self-referential processing during their
unique characterized episode of depression clinically. While the
common decreased dFNC variability between pDMN and rCEN
indicated their imbalanced sampling between external and internal
stimuli, especially in affective stimuli, which may help us to under-
stand their common affective dysfunction clinically.

Limitations

This study has several limitations. First, we cannot predict whether
some MDD patients will later switch to BD patients in the absence
of longitudinal data. However, we tried our best to reduce the pos-
sibility of misdiagnosis. Two experienced, senior psychiatrists car-
ried out the diagnosis. We also tracked the MDD patients after
we acquired the data and found that none of the patients had
switched to another diagnosis type by the time of the submission
of this manuscript. Second, considering that our study is an
exploratory one, our results should be interpreted cautiously
since the results cannot survive multiple comparison corrections.
Third, our results are specific to the depressive episodes of BD
and MDD patients. A longitudinal study is needed to test whether
the findings are state-dependent or trait-dependent in the future.
Thus, we can compare the differences between state and trait in
terms of dENC in the triple networks. Fourth, we only included
BD II type in the present study, which may limit the generalizability
of our findings to other BD types. Fifth, we did not collect any
questionnaires for supplementary analysis in our study and, in
future studies, we would better add this.

Conclusion

In summary, our study detected common and specific dFNC
abnormalities in the triple networks of unmedicated depressed
BD II and MDD patients. On one side, we detected the common
alterations of more frequent state of sparse connections and
decreased dFNC variability between pDMN and rCEN in the
BD and MDD patients. On the other side, we found the specific
alteration of decreased dFNC variability between aDMN and
rCEN in the MDD patients. Our findings suggested the decreased
ability of information processing and communication in BD and
MDD patients, which may help us to understand their abnormal
affective and cognitive functions clinically.
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