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POINTWISE CONTRACTION CRITERIA FOR THE 
EXISTENCE OF FIXED POINTS 

BY 

FRANK H. CLARKE* 

ABSTRACT We show that, in a complete metric space, every 
selfmap that is a "weak directional contraction" admits a fixed 
point. 

1. Introduction. Let (X, p) be a complete metric space, and let a function 
T.X-+X be given. The celebrated contraction principle of Banach asserts that 
if there exists a number a in (0,1) such that 

(*) P(Tx, Ty)<<7P(x, y)Vx, y eX, 

(T is then said to be a contraction) then T has a (unique) fixed point; i.e. a 
point x such that Tx = x. 

Our purpose is to investigate what can be said if (*) holds only in some local 
sense. For example, suppose for each x in X there is some neighborhood N(x) 
of x such that 

(**) p(Tx, Ty) < txp(jc, y)Vy e N(x). 

Must T have a fixed point? That the answer is negative follows from the fact 
that any function T satisfies this condition when p is the discrete metric (i.e. 
when the range of p is {0,1}). Thus any such "pointwise" criterion must be 
accompanied in some way by at least an indirect hypothesis concerning the 
metric structure. 

In the next section we discuss the main result of this paper, a fixed point 
theorem for "weak directional contractions". The proof of this result is given in 
§3. 

2. Weak directional contractions. Let x and y be points in X. The open 
interval between x and y, denoted (x, y), is given by 

(x, y) = {z £ X : z ± x, z * y, p(x, z) + p(z, y) = p(x, y)}. 
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Let T:X—»X be a given mapping. We define DT(x; y), the lower derivative 
of T at x in the direction of y, as follows: 

DT(x; y) = 0 if y = x, and otherwise 

DT(x; y) = lim inf p(Tz, Tx)/p(z, x). 
ze(x,y) 

This has the usual meaning: for each e>0, we take the infimum of 
p{Tz, Tx)/p(z,x) over .those z in (x, y) such that p(x, z)<e (this is +00 if no 
such z exist). The limit of these infima is DT(x; y). 

DEFINITION 1. T is said to be a weak directional contraction if T is continu
ous and if there exists a number a in [0,1) such that DT(JC; TX)^ a for all x in 
X. 

REMARK 1. Note that in order for T to be a weak directional contraction, it 
is necessary that (x, Tx) contain points arbitrarily near x whenever x¥=- Tx. Thus 
if p is the discrete metric, the only weak directional contraction on X is the 
identity mapping. This example shows that the fixed point whose existence is 
asserted in the following theorem need not be unique. 

THEOREM 1. Every weak directional contraction on a complete metric space 
has a fixed point. 

REMARK 2. M. Edelstein [2] [3] has investigated the question of fixed 
points for mappings which are contractions in a certain local and uniform 
sense, by adapting the Picard method of successive approximations (which is 
ineffective in the context of Theorem 1). Other extensions of the contraction 
principle are possible when a Banach space structure is present; we refer the 
reader to Chapter 5 of the monograph by D. R. Smart [6]. The following 
example lies outside the bounds of the results cited above. 

EXAMPLE. Let X = R2, with the norm given by: 

||(x,y)|| = |x| + |y|. 

If p((jc, y), (x', y'WHK* -*'» y ~y')||> then (X, p) is a complete metric space. It 
is easy to see that the open interval between any two distinct points (JC15 yx) and 
(*2> y2) consists of the closed solid rectangle having the two given points as 
diagonally opposite corners, with those two points deleted (this reduces to a 
line segment in the usual sense if xx and x2 or yt and y2 coincide). 

We define T:X—»X as follows: 

T(x,y) = (3x/2-y/3,Jc + y/3). 

It is easily seen that T is not a contraction (even in a local sense). However, T 
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is a weak directional contraction. For let T(x, y) ï (x, y). Then (setting 
T(x, y) = (a, b)) it follows that b^y, so that the open interval between (x, y) 
and T(x, y) contains points of the form (x, z) with z arbitrarily close to y. But 
for such points we have: 

p(T(x, z), T(x, y))/p((x, z), (x, y)) = 2/3. 

Note that the fixed points of T are all the points of the form (x, 3x/2), x e JR. 

The following extension of Theorem 1 applies to certain cases in which 
DT(x; Tx) is not necessarily bounded away from 1. 

THEOREM 2. Let Tbe a continuous selfmap on a complete metric space X such 
that DT(x; T x ) < l for all x. Suppose that every sequence {xn} in X such that 
DT(xn ; Txn) is not bounded away from 1 has a cluster point. Then T has a fixed 
point. 

REMARK 3. The example X = [1, °°), p = Euclidean metric, Tx = x + 1/x 
shows that the cluster point condition cannot be dispensed with. To see that 
Theorem 2 is indeed more general than Theorem 1, consider a differentiate 
function / : [0 , l ] -» [0 ,1 ] such that | / ' |< 1 but |/' | is not bounded away from 1. 

A metric space X is said to be (metrically) convex if (x, y) # <£ for every pair 
(x, y) of distinct points. A convex subset of a Banach space has this property. 

T is called a pointwise contraction if for some or in [0,1) we have, for all x, 

lim supp(Ty, Tx)/p(y, x) < a. 

COROLLARY 1. Every pointwise contraction on a complete convex metric space 
has a fixed point. 

That this follows from Theorem 1 is a consequence of the following: (a) 
every pointwise contraction is continuous and (b) in a complete convex space, 
(x, y) contains points arbitrarily near x whenever x ^ y . These imply that a 
pointwise contraction of a complete convex space is a weak directional contrac
tion. In fact, in the case of convex metric spaces, a stronger result is true. In the 
original version of this report [1], we asked the following question: is every 
pointwise contraction on a complete convex metric space a global contraction? 
A positive response to this question has now been given by W. A. Kirk and W. 
O. Ray [5]. 

3. Proof of the theorems. It suffices to prqve Theorem 2. We now state for 
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convenience the following theorem of Ivar Ekeland [4]: 

THEOREM. Let F : X - » [ 0 , oo) be a continuous function bounded below, and let 
e > 0 be given. Then there is a point u such that 

(i) F ( u ) < i n f F + e , 

(ii) F ( jc ) -F(w)>-ep(x , u)VxeX. 
Let us define F:X—» [0, o°) as follows: 

F(x) = p(Tx, x). 

Since T is continuous, it follows that F is continuous. Applying Ekeland's 
theorem, we deduce the existence, for each positive integer K, of a point uK 

such that 

( ' F (w K )< in fF+l /K, 

(2) F(x) + p(x, uK)/K > F(uK)Vx e X. 

If for any K we have F(uK) = 0, then uK is a fixed point and we are done. So 
let us suppose that F(uK) is positive for each K. 

CLAIM. DT(uK; 7uK) > 1 - 1/K 

Since wK^ T(MK) there exists a sequence {jcn} in (uK, TuK) such that p(uK, xn) 
converges to 0 as n ^ œ ? and 

(3) lim p(Txny TuK)/p(xn, uK) = DT(uK\ TuK). 
n—*oo 

By definition, 

(4) p(uK, TuK) = p(uK, xn) + p{xm TuK). 

We find (in light of (2)): 

p(uK, TwK)<p(xn, Txn) + p{xn, uK)/K 

<p(xn, TuK) + p(TuK, Txn) + p(xn, uK)/K 

<p(xn, TuK) + DT(uK; TuK)p(xm uK) + o(p(xn, uK)) + p(xn, uK)/K, 

where o(p(xn, uK))/p(xn, uK)-^0 as n->oo. 
Combining this with (4), we arrive at: 

(5) (1 - 1/X)p(xn, uK) < DT(uK, TuK)p(xn, uK) + o(p(xn, uK)). 

Dividing across by p(xn, uK) and letting n tend to <*>, we obtain the required 
inequality. 

The hypotheses now imply that the sequence {uK} has a cluster point u. In 
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view of (1), we have 

(6) p(x,Tx)>p(u,Tu)VxeX. 

If u = Tu we are done, so let us suppose the contrary and show that (6) leads to 
a contradiction. Arguing as we did to obtain (5), we obtain a sequence {*„} in 
(w, Tu) such that p(xn, u) tends to 0 as n—»o°, and 

p(xm u)<DT(w; Tu)p(xn, u) + o(p(xn, u)), 

where o(p(xn, w))/p(xn, u)->0 as n—»o°. This implies 

DT(u;Tu)>l, 

which contradicts the hypotheses. Q.E.D. 
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