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Abstract. We consider in this paper the problem

—Au = |x|*v", xe€,
—Av = |x]Put, xeQ,
u>0, v>0 xeQ,
u=v=0, X €082,

)

where Q is the unit ball in RY centred at the origin, 0 <a <pN, >0, N>3.
Suppose g. — ¢ as ¢ — 0" and ¢, ¢ satisfy, respectively,
N N N N

>N -2,

_— -+ — =N-2
p+1 g +1 p+1 q+1

we investigate the asymptotic estimates of the ground-state solutions (u,, v.) of (1) as
B — +oo with p, g, fixed. We also show the symmetry-breaking phenomenon with
a, B fixed and g, — g as ¢ — 0. In addition, the ground-state solution is non-radial
provided that ¢ > 0 is small or g is large enough.

2010 Mathematics Subject Classification. 35J50, 35J60.

1. Introduction. Inthis paper, we investigate the limiting behaviour of the ground-
state solutions of the problem

—Au = |x|*v", xeQ,
—Av = |x]Put, xeQ, )
Uu=v= 0’ X € BQ,

where Q is the unit ball in R centred at the origin, 0 <« <pN, 8 >0, N > 3. We
assume in this paper that g, — g as ¢ — 0" and ¢, ¢ satisfy, respectively,

N N N N
>N -2,

—+ — 4+ ——=N-=-2
p+1 g +1 p+1 q+1

Problem (2) has two features. First, it is a Hénon-type system. The Hénon equation
with Dirichlet boundary conditions

—Au = |x|*W, xe€,
{u:O, x €0 A
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was found in [10], which stems from rotating stellar structures. A standard compactness
argument show that the infimum

-, Jo IVul* dx

e HY@NOL (f, x| ulp+ ! dx)7

“4)

is achieved for any 1 < p < 2* — 1, @ > 0. In 1982, Ni [14] proved that the infimum

o Jo IVul* dx

ueH} (D\{0) alylP+l dx)it
0.rad (fo 1] ulp*1 dx)r

)

is achieved for any p € (1, 242£22) by a function in H{ 1,q(R), the space of radial Hy (<)
functions. Thus, radial solutlons of (3) exist also for (Sobolev) supercritical exponents
p. A natural question is whether any minimizer of (4) must be radially symmetric in the
range l <p < N +2 and @ > 0. Since the weight | - |* is an increasing function, neither
rearrangement arguments nor the moving plane techniques of [7] can be applied.

For @ > 0, Smets et al. proved in [15] some symmetry-breaking results for (3).
They proved that the minimizers of (4) (the so-called ground-state solutions, or least
energy solutions) cannot be radial for « large enough. As a consequence, (3) has at
least two solutions when « is sufficiently large (see also [16]).

Quite recently, Cao and Peng [3] proved that for p + 1 sufficiently close to 2*, the
ground-state solutions of (32) possess a unique maximum point whose distance from

N+

0Q tends to zero as p — F75.

For more results about symmetry breaking phenomena for solutions of problem

(3) either « is large enough or p — %, see for instance [2, 1] and references therein.
Second, the system in (2) is a Hamiltonian-type system, which is strongly indefinite.

The existence of solutions of the Hamiltonian elliptic system

—Au=v", xeQ,
—-Av=ul, xeQ, (6)
u=v=0, xe0dQ

was first con51dered in [5] and [11] with > N¥=2: the curve of (p, g) € R?

+ _

p+l q+1
satisfying +1 + 7 +1 = TZ is called critical hyperbola. Afterwards, various results
were obtalned in the literature. Extensions of problem (6) can be found in [6] and
[13]. In [13], existence problems for Hardy-type systems and Hénon-type systems were

established. Particularly, for Hénon-type systems

—Au = |x|*V, xe€Q,
—Av = [x]Pul, xeq, (7
u=v =0, X € 082,

the critical hyperbola is p%(l + %)+ ﬁ(l + %) = Nsz

In recent years, a study of the limiting behaviour of ground-state solutions of
elliptic problems has attracted considerable attention. For the system (6), the limiting
behaviour of solutions of (6) as 5 +1 + 3 +1 — N 2 was discussed in [8]. For the system
(7), Yang and He [9] proved that for - +1 + q+—1 — 1; , the ground-state solutions
of (7) possess a unique maximum point whose distance from 92 tends to zero as
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1 + W — 2=, Such problems are closely related to solutions of the following
problem
—AU = VP, y e RN,
—AV =UY, yeRN, ®)
U@y) >0, V(y) >0, ye[RN,
uo)y=1, U—0, V — 0as|y| — oo,
where m + m = =21t was proved in [12] that U € DZ’th]([R{N), Ve Dz’%(RN),

where D>"(R") is the completion of C5°(RY) with respect to the norm || A - ||, Actually,
U and V are radially symmetric for p > 1 as showed in [4]. Moreover, U and V" are
unique and decreasing in r. In the discussion of one equation problem, one uses the
instanton for the best Sobolev constant. However, no explicit form of (U, V) was
found for p > ﬁ up to now. Instead, the asymptotic behaviour of (U, V') as r — oo
is sufficient for this purpose. It was found in [12] that

rlim N2U@r)=b if p> %,
N2 . N
lim M2V (1) = a, rIEEo Togr U= itp =57 )
rlglolo PND2U(r)y =b  if ﬁ <p< %,
and
rU'(r) : N
V() im Ty =2-N ES =1
im 70 =2-—N, (10)
F—>00 r r .
lim 7 =2 - p(N=2) ifp <.

In this paper, we are interested in the symmetry of ground-states solutions of (2).
Now, we denote

E,(Q) = {ue w* o N W1 W(Q) / [x]~ 11|Au| > dx < oo}
and
EP(Q) = {u € Ey(R) : u(x) = u(|x])}.

Our main results are as follows.

THEOREM 1.1. Suppose N >3, 0 <a <pN, B >0, p > +>5, q. > % then

there exists 8* > 0 such that the ground-state solutions uy g . are non-radial provided
B> B

THEOREM 1.2. Suppose N >3, 0 <a <pN, >0, p > ﬂ’ Ppqe > 1, then there
exists " > 0 such that the ground-state solutions u,, g . are non-radial provided ¢ < &* or
q—q. <é&*.

This paper is organized as follows. In section 2, we give some preliminaries which

turn out to be essential. In section 3, we present some estimates for radial ground-
state solutions of (2) with «, p, ¢, fixed and 8 — oo. This will lead us to get the first

https://doi.org/10.1017/50017089510000662 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089510000662

248 HAIYANG HE

symmetry-breaking result, stating that for g sufficiently large, the ground-state solution
of problem (2) is non-radial. In section 4, another symmetry-breaking result is proved,
with «, B8, p fixed and g, — gase — 0.

2. Preliminaries. Before proving our main results, we want to introduce some
simple calculus lemma which turns out to be essential:

LEMMA 2.1. Let u be a radially symmetric function of @ (unit ball in RN ) with
u(1) = 0, v/ (0)exists. Then

(i) lu(x)| < ! (o 1Vul'7 dy)it
M _ip(N —=1) = 1)p+1 (|x|p<1v-1)_1)m

N+ lﬁ 1 o o1 11%
- N( ) ( / 5 A dx) ,
N+a wy-1 JB,©)

where wy_, is the surface area of the unit ball in RV .

Proof. (i) For

1
u(l) — u(x) = /| 1o d

1
lux)| < | W (0)]dt
[x]
P 1

1 ptl P+ 1 P
< (/ [/ (t) 7 V1 dt) (/ ~N=bp dt) )
[BY x|

Since
1
/ ~N-Dp gy 1 ( | 1) - 1 1
1l PN — 1) = T\ [xJpV=D-1 p(N — 1) — 1 |x|pV=D-1
and
! ptl 1 1 Pl |
/ W () 7 N de = f(/ W/ (1) 7 N dz) w() do
|x| WN-1 Ix|
1
= / Vul " dy
WN-1 Jixl=lyl<1
1
< f IVl " dy,
WN-1
we find that

p+l P
Ul < ! U1Vl * dy)7
Wi (N — 1) — DT (Ixp®=D=1)i
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(if) For
ou r
[N 5/ N Al de
or 0
" N lta)prD) % o Pt 17%
5([: ) (/(t ) Aul) dt)
0
rN+Ot m 1 o« Pl ﬂ%
= / X7 |Aul7 dx)
N+a WN-1 JB,0)
we have
1 .
ou rN+o( T o)
dul _ o /|x| Flau dx)"
ar N+« Wxy_1

As a result of Lemma 2.1, we obtain the following corollary.

COROLLARY 2.1. Under hypothesis of Lemma 2.1, and if ];/j:f ’ZI;" >N-2,
then
plg+D)
1 _a ptl p+1
f [x1? Ju(x) |7 dx < C(/ |x]” 7 |Aul » dx> ,
Q Q
where

() () )
WN-1 N—l—,B—(N—2 N+a)(q+1) N — 2—2’3’ N+a ’

Proof. From the above Lemma 2.1, we have

1 1 },.N+0t [ﬁ [)+]
lu(xDl < [ [/ ()l dr < =N dr |x| PlauT dx)
N
Ix| x| + o WN-1

Since

1 N+a \ 7 Lo
/ (r )]H r]_Ndr=< ! >/ l/ P =N gy

i AV +a N+a I
_1

1 1 P 1
o N 2— N+a <N+0(> |X|N 2-Th

we have

PN u(r) 9!

plg+1)

(]+1 1 p+1
BN-1[__ 1 (1 \ 1 1 e Pt
E rer N—2— JI\’IY (N+0t)p+ rN,Z, 1,\]’1111 Wy_1 o |x| ! |AL{| 4 dx ’
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which implies

| 1 { oy ot
B N—1 +1 ’
/0 I dr = (N—Z— s <N+a> )

1
1 P+ plg+1)
1 1 q+ 5 N1 1 e Pl p+l1
X — YT dr |x|” 7 |Au| 7 dx .
0o \ AN wy-1 Jo

Thus, the conclusion holds. O

3. Asymptotic estimates. Consider the minimization problem

Sstad = inf Ry p.(u), 11
@PE T ueEmi@)\(0) ap.o(t) an

where

_a L
Jo IxI77 | Aul 7 dx

Ra,ﬁ,a(u) =
(foy 12618 [ua] 21 dx) e+

. u€ Ey(2)\ {0}, (12)

is the Rayleigh quotient associated with (2). Similar to [14], we can also prove that

o Pl

. x| 7|Au| 7 dx

Sll;ag S(Q) = lnf fQ | | | | ptl
” ueEZI()\{0} (fo 118 u)ae+T dx) e

rad
a.B.e

rad

e is also a solution

is attained by some positive function u
of (2).

Now, we provide an estimate of the energy S“j‘gy‘9 as B — oo.

.

After scaling, u

LEMMA 3.1. If N > 3, there exists C > 0 depending on N, p such that

P+2+qe
S;a% . = CBra+D as B — oo.

Proof. Let u € E™4(Q) and define the rescaled function v(|x|) = u(|x|*), where
s= MLN Then

1
/ Pl dx = wy_ / AN () dr = s / BN [y 0 4 dix,
Q 0 Q

and from Lemma 2.1, we have

P+l
P

ou
ar

1 (+DHWNV-D—(N+a)
P

_a Jaz 2tl 1
/;2|x| P|Aul 7 dx = wy (N +a)rr
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which implies that
p+l 1 8 s
(P+DH(N-1)—(N+a) u p
|x|™ PIAuI , dx > wy 1(N—}—oz)l’/ » — r
Q 0 or
p+1
ol 1 (p+1><1v—1)—<zv+a> _prl 1esprl | OV &
=w,_ 1(N+oe)p » s o | — dr
0 ot
PIN=D)(s— V(l+u)+<1 ptl
=wN ](N+a)Ps , |x| |Vv| 7 dx.
Thus, we obtain
_e Pl LUEECORE el
Jo IxI77 | Aul 7 dx wN 1(N—i—o:)ﬂs pr |x] Vvl 7 dx
>
p+1 — +1 N
(fQ |x|ﬂ|u|‘h+1 dx)p(qgﬂ) (S fQ |v(x)|‘h+1 dX)/’(‘“’“)
It follows that
PN=D)(s=D)—s(1+a)+(1—s)
rad ; : Ja I¥] ’ Vol7 dx
S pe = Wy 1(N—i—oz)ﬂs bt 1nfl
et oG doi
, ra

Now, we claim that for every 0 <s < 1, we have p(N — 1)(s — 1) — s(1 + @) +
(1 —s) < 0. Indeed, for

pPIN=Ds—1)—s(l+a)+(1—3)
=@PN-1D)=-2-a)s—(pWN-1)-1),
if p(N—1)—2 <o <pN, we have p(N—D)(s—1)—s(1+a)+(1—5)<0; if & <

p(N—1)—2 < p(N—1)—1,thenforevery0 < s < 1, wealso have p(N — 1)(s — 1) —
s(1 +a)+ (1 —5) < 0. Therefore,

L PN=D(s=D)—s(1+a)+(1—5) Pl
/|Vv| » dxf/ |x| » |Vu| 7 dx,
Q Q

which implies that

PN=Ds=D=s(1+e)+(1 =) Pt
. Jo X1 » [Vu| 7 dx
¢ = Inf

+1
ve Wol'r:f’l(sz) (Jg lv(x)|:+! dox) e+

is achieved by standard arguments. Since |x| <1, if p(N —-1)—2 <« < pN,

pPIN=Ds—-1)—s(I+a)+ (1 —5)<—(p@N —1)—1), which implies that c¢; >

co;ifa <p(N—=1)=2, p(N — 1)(s — 1)—S(1+Ol)+(1 —8)=PNN-1)—-2—-a)s—
p(N=1)(s—1)—s(14+a)+(1—s

((N — 1) — 1), then for every 0 < s < 1, |x|” B is non-increasing, which

implies that ¢, is non-increasing on [0, 1], then ¢; > ¢;. Thus,

rad 1 _ pt2+ge
Saﬁs > C(N +a)rs raeth, B — o0.
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By the assumptions on p, ¢, the inclusion Wz’pzirl(Q) <« L%*(Q) is compact. It
implies that

a ptl
. Jo Ix177 1AW dx
Sa,ﬁ,a(Q) = inf ¢ P+l
ueEy (Q)\{0} (/Q | x| B |u|9e+1 dx)reerD

is attained by some positive function u, g .. After scaling, u, g . is a solution of (2).
LEMMA 3 2. Assume N >3, for any p, q. satisfy - T q+1 >N —2 with p >

ﬁ’ qe = Np—2 “ there exists f* > 0 such that Sy p. < ng‘g_s provided 8 > B*.

Proof. For any fixed u € C§°(2), define ug(x) = u(,B(x — xg)), where Xﬁ = (1 —
%,0, ..., 0). For |B(x —xp)| <1, that is, |[x — xg| < &, then |x| > |xg| — 2 =1 — E

One has
_a ptl 2 = D) _ Pl
Ix|"7|Aug| 7 dx < {1—— B |Au| 7 dx,
Q B Q

2 B
[ gl = (1 - —) B [ et
Q ﬁ Q

Hence by definition, one obtains

and

_a ptl
Jo IxI77 | Aug| 7 dx

Sa‘ﬂ - p+1
(Jq |XIP|ug|a:+1 dx) a0
o 2(/z+)
(1_%) "B fQ|Au| p dx
<

T (1= 2) B [y et dx)
ptl
wen_ o Nesn  [o | Aul 7 dx

B e Plge+1) .
1 ptl
(.[Q |u|qs+1 dx)p(qaﬂl

IA

1
o JolouT dx
Since u is fixed and —— is independent of B, we have
(f lule=t1 dx)resn

2+ N(p+1)
Saﬁs <CB» N+Pqe+1)

. ad == and 22t 2(p+1> Np+1)
From Lemma 3.1 S , > CBrwe as  — oo, and 2-=4s > = N+ -, that

. N+
IS, ¢e > - 2p ;. Hence Sy p. < S{j‘g’g as f — oo. O

4. Analysis for ¢ close to 0. In this section, we analyse the case where ¢ is close
to 0, that is, ¢, is close to ¢. We will show that for any fixed 0 < o« < pN, B8 > 0, the
minimizer of R, g, is non-radial provided that ¢ is sufficiently small.
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LEMMA 4.1. If N = 3, there exists ¢y > 0, such that for every q. and for every
0<a<pN, B>0,

_ptl rad
cofres+h < Sa’ o

Proof. From Lemma 2.1, we obtain

plge+1)
p+1

f (el (o) o+ dst( / NEilVka dx) ,
Q Q

where

Plge+1) qet1

c ( 1\ 7 1 ( 1 )%“( 1 )1
S \wv ) N+ B (N =2- G+ DAN =2 5 Nto) =

Since u € E™(Q) is arbitrary,

_(p+D)

plge+1) d
co(N+,B — )) < Syge
which ends the proof. U

Let us denote by S the classical Sobolev constant

1)+]

Au| »
S = inf fQ |Aul 7

ueWz,"]t‘ 125 L) (fsz [ug|d+] dx)n(q+1>

It is standard that this Rayleigh quotient is invariant under translations and dilations.

LEMMA 4.2. If N >3 and0 <o < pN, B > 0, then

S = Sup0 < S,

o

Proof. Using Corollary 2.1, it is easy to verify that Srad0 is achieved, so that
S < Sf“ld Now, we claim that S =S, 0. From the definition of Se.8,0, We know
that S < Sa po- Thus we will prove that Sy g0 < S. Indeed, for § > 0, we can choose

xs=(1-— |1n8\ -, 0), Us(x) = U(752) and Vi(x) = V(=5*), where (U, V) is the
solution of (8). Let s € Cgo([RRN ) be a cut-off function satisfying
) 1, x € B(xs, 2\1}15|)’
@s(X) =
0, x € RV \ B(xs, ﬁ),

0 < @s(x) <1, [Vgs(x)| < C|Iné|, |Aps| < C|In§> in RN, where C>0, is
independent of 8. Set ws = @5 Us, similar to [9], we have

_a ptl
Jo IxI77 [ Aws| 7 dx
lim lim 7 =S,

300 (o 1x|Blwy o+t dx)r 7
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and

_e ptl
. Jo IXI77 [Aws| 7 dx
1 p+1

1
0 (fgz |x|8 | ws |2 dx)ert v
2 P+l
. fQ |x| F|Aua7/3’5| P dx
Z hm 1 p+l
=0 (fQ |X18 |t o |9+ dx)aer 7

Pl
.[Q |Aua,5,€| 7 odx

1 p+l ?
O ([ g e |7+ dx) 7T T

> lim

where 1 g . 1s @ minimizer of Sy g ¢; thus Sy 0 < S. O

LEMMA 4.3. Assume that N > 3. For any n € N there exists §, > 0such that Sy p . <
ngg,s provided 8 > % and e < §,,.

Proof. By contradiction, assume that there exists #» € N and sequences f; > % and
8 — 0 such that

Sa»lgkwak = Sragk.ék' (13)

o,

From Lemma 3.2, there exists ¢; independent of ¢;,, such that

20+ _ :V(pﬂl))
Sa,ﬁ,ak < Cl,Bk P sy, )
Lemma 4.1 implies that
p+1
i +1 .
Coﬂ/i(%k ‘< ;‘?g,sk'
Since
p+1 3 20+ 1) LN Np+1) (N —-2p—2)g, +1)—(p+ DN —1)
(g5 + 1) 14 p(gs + 1) p(gs, +1) ’
we have
(pN—Zp—Z)(t/,sk+1)*(P+1)(N*1)
P4, +D) < 28
By =
From ¢+1= NII\)’(_pZJ;l_)Z (%;_1)2(;’3) and ¢5, > ¢ as k — 4oo, it is implies that

(®N —2p—2) (g5, + 1) —(@+ 1)(N —1) > 0 as k — 4oo. Thus, B is bounded. We
can assume that gy — 8 > % as k — +o0.
Claim that

> d . > d
Sll;fﬂ,o = khm ll;:ﬂk,@k' (14)

—+00

Indeed, by upper semi-continuity, it follows that

rad : rad
Se8.0 = l}jnjup Se s
— 400
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On the other hand, from

asj, +1 4—4z;,

Tl T+l
/ 1P g |9 dxe < ( f |12 gy 4! dx) ( / |x| P dx) :
Q Q Q

rad O rad
Swp.o < lminf Sog -

we have

Similarly, by upper continuity,

Sot,ﬁ,O > lim sup Saqﬂ/\»ﬁk' (15)
k——+o00
We obtain from (13)—(15), Se g0 > S;fg,o’ which contradicts Lemma 4.2. ]
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