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An autonomous system of differential

equations in the plane

R. F. Matlak

In the present note the equation y" = x y is reduced, under

appropriate conditions, to a quadratic autonomous system of

differential equations in the plane. In pursuance of this new

approach, the main geometric features of this autonomous system

are determined and a method of solving it is outlined.

1. Introduction

The equation

(i) *" = X1""1 ym (•=£)-

where m is real, and both x and y are positive, has been investigated

extensively by both mathematicians and physicists. (See Bellman [3],

Chandrasekhar [4], Davis [6], Hi Ile [7]-[9].) The treatments of various

aspects of (l) have, however, met with considerable difficulties, and may,

by and large, be considered only a partial success.

In the present note, we suggest a new way to approach the equation

based on the geometric theory of differential equations. (See Lefschetz

[I/], Poincare [/Z].) This includes a geometric characterisation of an

autonomous system in the plane, obtained from (l) by a suitable

transformation, and a method of solution of the system. From the results

thus obtained we hope to be able to examine the behaviour of the original

equation in. a more systematic fashion. This next step, by no means easy,
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must, however, be postponed for some time.

2. The autonomous system and its geometric properties

With a view to further discussion, let m =f -1. 1» 2, 3 . Assuming

that y' ^ 0 and applying the transformation

, 2-m m
(2) C = SL- , n = x ,y , t = in|s|

y y

appropriate to equations of the Emden-Fowler type (see Coppel [5]) to the

equation ( l ) , we obtain

(3) d*

| | = n[C2-m; + mE, - n ] = eCe.n; , say,

which is a quadratic autonomous system in the ('C>T1/'-plane with t as the

independent variable.

It follows from the general theory of systems of differential equations

that through every point of the f£,r|-'-plane passes a unique trajectory

(path) of the system. Moreover, by virtue of a result established by Bautin

[2] (see also Coppel [5]) in a more general case, no trajectory of (3) can

be a closed curve (cycle).

Using the methods of the geometric theory of differential equations

we next study the critical points of the system (3).

There are four such points 0, U, V, W, say, specified by

(k) 0 i (0, 0) , U = (1, 0) , V = (0, 2-m) , W = ( g , -^) ,

representing stationary solutions of (3) in the finite part of the

(£,,T\)-plane. Moreover, since £, n are, respectively, factors of the

£-, r|-components of the vector field of (3), the coordinate axes consist of

paths of the system (the "point"-paths 0, £/, V included). Now if A(C)

is the coefficient matrix of the linearised system associated with (3) at a

given point C of (h) then
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(5)

A(U) =

A(W) = -

-1

_ 0

X

L-m

0

2_
>

pi-3 3-m"

-2

A(0) =

A(V)

With regard to (3), the identities (5) imply that:-

(i) The origin 0 is a node or a saddle point according as m < 2

or m > 2 ;

(ii) the unit point, U , of the £-axis is always a saddle point;

(iii) the point V is a saddle point or an unstable node according

as (m-2)(m-3) is positive or negative, and becomes a

one-tangent node when m = ~ ;

(iv) the point W is a saddle point if 1 < m < 3 ; it becomes a

node when m\ < m < 1 or 3 < m < ni2 , where

mi = i-m- = - 0.01+1*8 , m2 = yfll+8/2j = 3.1858 .

If m < m\ or m > m<i , V is a focus which is unstable if

7̂ 2 < m < 5 , and stable otherwise. When m = m^ or m = m^ ,

W becomes a one-tangent node.

Moreover, the system (3) possesses three critical points at infinity

specified as the points X^, F^ and X , say, on the £-axis, the line

r| = yfm+l,)? and the r|-a-xis, respectively. Similarly as before we find

that, with regard to (3),

(v) X is a node or a saddle point according as m > -1 or

m < -1 ;

(vi) Fa is a node or a saddle point according as

Iml > 1 :

\m\ < X or

(vii) y is aUoays a node.

The above results thus yield seven non-singular cases of the system (3)

which, on putting a, n and / for the saddle point, node and focus

singularities, respectively, can be set out as below.
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[mi = -i-ai-8/2; = -0.01A8 , m2 = yfll+8/2) = 3.1858] .

Since cases 1 and 2 are topologically equivalent, as are cases k, 5

and 6, the system (3) yields essentially four distinct types of Poincare

maps (phase-portraits) in the extended (E,,T))-plane.

3. A method of solution of the system

One can solve the system (3) t>y applying one of the standard

transformations related to Abel's differential equations of the second kind

(see Kamke [703)- Indeed, the transformation

(6) 5 = ?[i - 1 + n]

reduces

(7) ?|| - ifr-m) + (m-3)Z,}t, + Z(l-V [ (3-m) + (m-VKi = 0

to which, owing to its simple form, the standard processes of power series

expansion can be readily applied.

If m = 5 (and then only) equation (7) admits of an integrating factor

of the form \a(V + &(E,)$\a , with a - 1 or a = - y ,

a(V = ̂ (a+l)o l[(k-m) + (m-3)g]dZ = ̂ (a+l)a^(^-l) , and &(V = a ,

a constant of integration (see Abel [?])•
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