THE TYPE SET OF A TORSION-FREE ABELIAN GROUP OF RANK TWO

DAVID R. JACKETT

(Received 28 September 1978)
Communicated by R. Lidl

Abstract

In this paper we generalize a recent result of Freedman (1973) concerning the cardinality of the type set of a rank two torsion-free abelian group. We show that if A is such a group and A supports a non-trivial associative ring then the type set of A contains at most three elements.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 K 15.

Throughout, the groups that we consider are abelian groups and the rings are associative rings. A ring on a group A is a ring whose additive group is (isomorphic to) A. We write (A, \cdot) for a ring on A and say that A supports (A, \cdot). A group is called non-nil if it supports a non-trivial ring. The type set of the torsion-free group A is denoted by $\mathscr{T}(A)$, and the type of $a \in A$ by $t(a)$. For the subset S of the torsion-free group $A,\langle S\rangle_{*}$ denotes the unique minimal pure subgroup of A containing S.

Theorem 1. (Freedman (1973)). Let A be a torsion-free group of rank two. If A supports a ring with identity then $\mathscr{T}(A)$ contains at most three elements.

A partial generalization is contained in
Theorem 2. (Feigelstock (1976)). Suppose A is a torsion-free group of rank two, all of whose non-zero elements have non-idempotent type. Then either A is nil or $|\mathscr{T}(A)|=2$.

[^0]The major part of Freedman's proof consists of showing that for a torsion-free group A of rank two, $\mathscr{T}(A)$ contains at most two maximal elements. More generally we can prove

Proposition 3. Let A be a torsion-free group of rank n with the property that every pure subgroup of A of rank greater than one is non-nil. Then $\mathscr{T}(A)$ contains at most n maximal elements.

Proof. We use an induction argument. Clearly the proposition is true for a rational group; so assume that every non-nil group of rank $k(k<n)$ satisfying the conditions of the proposition has the property that its type set contains at most k maximal elements. Suppose A is as stated in the proposition, and let $a_{1}, a_{2}, \ldots, a_{n+1}$ be $n+1$ distinct elements of A such that $t\left(a_{i}\right) \neq t\left(a_{j}\right)$ for $i \neq j$, and $t\left(a_{i}\right)$ is maximal in $\mathscr{T}(A)$ for each $i=1,2, \ldots, n+1$.

First we show that any subset of n distinct elements from $\left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\}$ is a maximal independent set of elements of A. Clearly this amounts to showing that $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is an independent set of elements of A. If $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is not independent then there exists a $k \leqslant n$ for which $\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$ is independent but $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is not. If $A_{1}=\left\langle\oplus_{i=1}^{k-1}\left\langle a_{i}\right\rangle\right\rangle_{*}$ then $a_{k} \in A_{1}$ and, since A_{1} is pure in A, $\mathscr{T}\left(A_{1}\right) \subseteq \mathscr{T}(A)$. But then A_{1} is a rank $(k-1)$ torsion-free group satisfying the conditions of the proposition for which $\mathscr{T}\left(A_{1}\right)$ contains the k maximal elements $t\left(a_{1}\right), t\left(a_{2}\right), \ldots, t\left(a_{k}\right)$. Consequently $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a maximal independent set of elements of A.

We can now choose a non-zero integer m, and integers $m_{1}, m_{2}, \ldots, m_{n}$ such that

$$
m a_{n+1}=m_{1} a_{1}+m_{2} a_{2}+\ldots+m_{n} a_{n}
$$

If $i \in\{1,2, \ldots, n\}$ then the set $\left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\} \backslash\left\{a_{i}\right\}$ is independent and so $m_{i} \neq 0$.
Consider now any ring (A, \cdot) on A. For distinct i and j in $\{1,2, \ldots, n+1\}$, the maximality of $t\left(a_{i}\right)$ and $t\left(a_{j}\right)$ in $\mathscr{T}(A)$ shows $a_{i} \cdot a_{j}=0$. In particular for any $i \in\{1,2, \ldots, n\}$

$$
0=m\left(a_{n+1} \cdot a_{i}\right)=m_{i} a_{i}^{2}
$$

Thus $m_{i} \neq 0$ yields $a_{i}^{2}=0$. Hence (A, \cdot) must be the trivial ring on A. Since A is non-nil it now follows that $\mathscr{T}(A)$ contains at most n maximal elements.

Following Beaumont and Wisner (1959) we make the following definitions for the torsion-free group A of rank two. If $a \neq 0$ is an element of A then let

$$
Q_{a}^{\prime}=\{\alpha \in Q \mid \alpha a \in A\}
$$

where Q is the group of rational numbers. Now define the nucleus D of A to be the subgroup $D=\bigcap_{a \in A} Q_{a}^{\prime}$ of Q.

With the aid of Beaumont and Wisner (1959) the major result of Freedman (1973) can now be generalized.

Theorem 4. Suppose A is a torsion-free group of rank two that supports a nontrivial ring (A, \cdot). Then $\mathscr{T}(A)$ contains at most three elements.

Proof. We consider two cases separately.
Case (i). (A, \cdot) is non-commutative. Theorem 2 of Beaumont and Wisner (1959) now gives the structure of (A, \cdot); suppose $a_{1} \cdot a_{2}=\phi\left(a_{1}\right) a_{2}$ for all a_{1}, a_{2} in A, where $0 \neq \phi \in \operatorname{Hom}(A, D)$. It is clear that $D=\left\langle p^{-\infty} \mid p A=A\right\rangle$ and also that $\operatorname{Im} \phi$ is a rank one torsion-free group with the same type as D. Thus $\operatorname{Im} \phi \cong D$. Hence there is a non-zero $\theta \in \operatorname{Hom}(A, D)$ such that θ maps A onto D. We can now define a non-commutative ring (A, \times) on A by letting $a_{1} \times a_{2}=\theta\left(a_{1}\right) a_{2}$ for all a_{1}, a_{2} in A. Since $1 \in D$ there is an element $a \in A$ for which $\theta(a)=1$. But then the element, a, will be a left identity of (A, \times) and so for every $a^{\prime} \in A, t(a) \leqslant t\left(a^{\prime}\right)$. (Notice that if (A, \cdot) has the alternate description in Theorem 2 of Beaumont and Wisner (1959) then we can argue as above to again obtain $t(a) \leqslant t\left(a^{\prime}\right)$.)

Case (ii). (A, \cdot) is commutative. It is readily checked that (A, \cdot) non-trivial and commutative implies the existence of an element $a \in A$ such that $a^{2} \neq 0$. Thus Lemma 1 of Beaumont and Wisner (1959) shows that we can choose an element $a_{1} \in A$ such that a_{1} and a_{1}^{2} are independent. If a_{2} is a non-zero element of A then there are integers $m \neq 0, m_{1}$ and m_{2} such that $m a_{2}=m_{1} a_{1}+m_{2} a_{1}^{2}$. Consequently,

$$
t\left(a_{1}\right)=t\left(a_{1}\right) \cap t\left(a_{1}^{2}\right) \leqslant t\left(a_{2}\right) .
$$

In either case $\mathscr{T}(A)$ contains a smallest element. We now argue as in Freedman (1973). Since A has rank two, each chain in $\mathscr{T}(A)$ is of length at most two. Proposition 3 shows $\mathscr{T}(A)$ contains at most two maximal elements. Therefore $|\mathscr{T}(A)| \leqslant 3$.

A consequence of the proof of Case (i) above is the following observation.
Proposition 5. Suppose (A, \cdot) is a non-commutative ring on a torsion-free group A of rank two. Then A is completely decomposable.

Proof. It is clear that D can be made into a rank one module over itself, that is D is a projective D-module. As in the proof of Theorem 4 there is a non-zero $\theta \in \operatorname{Hom}(A, D)$ such that θ maps A onto D. It is readily checked that A is a D-module and $\theta \in \operatorname{Hom}_{D}(A, D)$. Consequently, A will contain a D-direct summand isomorphic to D. Thus A is completely decomposable.

References

R. A. Beaumont and R. J. Wisner (1959), 'Rings with additive group which is a torsion-free group of rank two', Acta Sci. Math. (Szeged) 20, 105-116.
S. Feigelstock (1976), 'On the type set of groups and nilpotence', Comment. Math. Univ. St. Paul 25, 159-165.
H. Freedman (1973), 'On the additive group of a torsion-free ring of rank two', Publ. Math. Debrecen 20, 85-87.
L. Fuchs (1973), Infinite abelian groups, Vol. II (Academic Press, New York).

University of Tasmania
Hobart
Australia

[^0]: This paper formed part of the author's Ph.D. thesis, University of Tasmania, 1977, which was written under the direction of Dr. B. J. Gardner.

