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1. Introduction

Let Ω be a domain in R
n and let W̃ k

p (Ω) be a function space obtained by completing
C∞

0 (Ω) in the usual Sobolev norm. It is well known that Sobolev embeddings of the
function spaces W̃ k

p (Ω) into Lq(Ω) can be compact if the domain Ω is bounded. It was
noted by Clark in 1965 that the Sobolev embeddings can also be compact if the domain is
unbounded but sufficiently narrow at infinity and satisfies a certain regularity condition;
see [3]. This is related to the discreteness of the spectrum of the Dirichlet Laplacian on
Ω [4]. We refer the reader to [1] for further discussion and references.

Operator properties of the Sobolev embeddings were studied later by König; see [7,8].
He dealt with Sobolev spaces on the quasi-bounded domains satisfying an additional
regularity condition, the so-called C�

k condition, where � ∈ R+ and k = 1, . . . , n. Roughly
speaking, this means that the boundary consists of sufficiently smooth manifolds of
dimension at least (n − k). He found some asymptotic estimates of approximation, the
Gelfand and Kolmogorov numbers of embeddings W̃ k

p (Ω) ↪→ Lq(Ω) and applied them to
estimates of eigenvalues of elliptic operators. In contrast to these works, we concentrate
on the entropy numbers of the embeddings. We also work with the domains with bound-
aries that satisfy a different regularity condition, which seems to be weaker and allows
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some fractality of the boundary. Moreover, for any quasi-bounded domain we introduce a
new constant, called the box-packing constant, that is very helpful both to formulate suf-
ficient and necessary conditions for compactness of the embeddings, as well as to describe
the asymptotic behaviour of entropy numbers. In particular, König’s results do not cover
Example 5.6.

More precisely, we consider the Besov and Triebel–Lizorkin spaces defined on a wide
range of unbounded domains, so-called uniformly E-porous domains. Recently, Triebel
proved the wavelet characterization of the spaces; see [14]. Based on the characteri-
zation, we obtain sufficient and necessary conditions for compactness of the Sobolev
embeddings. Moreover, we study the degree of the compactness of the embeddings in
terms of entropy numbers. The exact asymptotic behaviour of the entropy numbers is
calculated. In particular, for any quasi-bounded uniformly E-porous domain Ω ⊂ R

n we
define the box-packing constant b(Ω), n � b(Ω) � ∞, and prove that the embedding

W̃ k1
p1

(Ω) ↪→ W̃ k2
p2

(Ω)

is compact if

k1 − k2 − n

(
1
p1

− 1
p2

)
> b(Ω)

(
1
p2

− 1
p1

)
+
.

In particular, k1 > k2, since b(Ω) � n. If Ω is a bounded domain, then b(Ω) = n.
Moreover, we prove that if the embedding is compact and b(Ω) < ∞, then

ek(W̃ k1
p1

(Ω) ↪→ W̃ k2
p2

(Ω)) ∼ k−γ , (1.1)

with

γ =
k1 − k2

b(Ω)
+

b(Ω) − n

b(Ω)

(
1
p1

− 1
p2

)
.

Here ek denotes the kth entropy number of the embedding (see Definition 4.1) and
a+ := max(a, 0) for any real number a. Moreover, if

(
1
p1

− 1
p2

)
+

< γ � k1 − k2

n
,

then one can find a quasi-bounded domain Ω such that (1.1) holds.
We write a ∼ b if there exists a constant c > 0 (independent of the context-dependent

relevant parameters) such that
c−1a � b � ca.

All unimportant constants will be denoted by c, sometimes with additional indices.
The paper has the following structure. In § 2, we recall the definition of the domains,

the function spaces and their wavelet characterization. In § 3, we prove criteria for the
compactness of the embeddings. Section 4 is devoted to the behaviour of entropy numbers.
In § 5, we give some applications to the spectral theory of elliptic operators.
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2. Preliminary

2.1. Function spaces on arbitrary domains

Let Ω be an open set in R
n such that Ω �= R

n. Such a set will be called an arbitrary
domain. We assume that the reader is familiar with definitions and basic facts concerning
Besov spaces Bs

p,q(R
n) and Triebel–Lizorkin spaces F s

p,q(R
n) defined on R

n, as well as the
Besov and Triebel–Lizorkin spaces, Bs

p,q(Ω) and F s
p,q(Ω), defined on Ω by restrictions.

All we need can be found in [14, Chapter 1]. We will use the common notation. In
particular, we set

σp = n

(
1
p

− 1
)
+

and σp,q = n

(
1

min(p, q)
− 1

)
+
, 0 < p, q � ∞,

and As
p,q(R

n), As
p,q(Ω) with A = B or A = F .

Definition 2.1. Let Ω be an arbitrary domain in R
n with Ω �= R

n and let

0 < p � ∞, 0 < q � ∞, s ∈ R,

with p < ∞ for the F-spaces.

(i) Let

Ãs
p,q(Ω̄) = {f ∈ As

p,q(R
n) : supp f ⊂ Ω̄},

Ãs
p,q(Ω) = {f ∈ D′(Ω) : f = g|Ω for some g ∈ Ãs

p,q(Ω̄)},

‖f | Ãs
p,q(Ω)‖ = inf ‖g | As

p,q(R
n)‖,

where the infimum is taken over all g ∈ Ãs
p,q(Ω̄) with f = g|Ω .

(ii) We define

F̄ s
p,q(Ω) =

⎧⎪⎨
⎪⎩

F̃ s
p,q(Ω) if 0 < p < ∞, 0 < q � ∞, s > σp,q,

F 0
p,q(Ω) if 1 < p < ∞, 1 � q � ∞, s = 0,

F s
p,q(Ω) if 0 < p < ∞, 0 < q � ∞, s < 0,

and

B̄s
p,q(Ω) =

⎧⎪⎨
⎪⎩

B̃s
p,q(Ω) if 0 < p � ∞, 0 < q � ∞, s > σp,

B0
p,q(Ω) if 1 < p < ∞, 0 < q � ∞, s = 0,

Bs
p,q(Ω) if 0 < p < ∞, 0 < q � ∞, s < 0.

Following Triebel, we introduce E-thick (exterior thick) and E-porous domains; see [14,
Chapter 3]. We start with the definition of porosity.
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Definition 2.2.

(i) A closed set Γ ⊂ R
n is said to be porous if there exists a number 0 < η < 1

such that one finds for any ball B(x, r) ⊂ R
n centred at x and of radius r, with

0 < r < 1, a ball B(y, ηr) with

B(y, ηr) ⊂ B(x, r) and B(y, ηr) ∩ Γ = ∅.

(ii) A closed set Γ ⊂ R
n is said to be uniformly porous if it is porous and there is a

locally finite positive Radon measure µ on R
n such that Γ = suppµ and

µ(B(γ, r)) ∼ h(r), with γ ∈ Γ, 0 < r < 1,

where h : [0, 1] → R is a continuous strictly increasing function with h(0) = 0 and
h(1) = 1 (the equivalence constants are independent of γ and r).

Remark 2.3. The closed set Γ is called a d-set if there is a locally finite positive
Radon measure µ on R

n such that Γ = suppµ and

µ(B(γ, r)) ∼ rd, with γ ∈ Γ, 0 < r < 1.

Naturally, 0 � d � n. Any d-set with d < n is uniformly porous.

Definition 2.4. Let Ω be an open set in R
n such that Ω �= R

n and Γ = ∂Ω.

(i) The domain Ω is said to be E-thick if one can find for any interior cube Qi ⊂ Ω,
with

�(Qi) ∼ 2−j and dist(Qi, Γ ) ∼ 2−j , j � j0 ∈ N,

a complementing exterior cube Qe ⊂ R
n \ Ω, with

�(Qe) ∼ 2−j and dist(Qe, Γ ) ∼ dist(Qe, Qi) ∼ 2−j , j � j0 ∈ N.

Qi and Qe denote cubes in R
n with sides parallel to the axes of coordinates and

side lengths �(Qi) and �(Qe), respectively.

(ii) The domain Ω is said to be E-porous if there is a number η, with 0 < η < 1, such
that one finds for any ball B(γ, r) ⊂ R

n centred at γ ∈ Γ and of radius r, with
0 < r < 1, a ball B(y, ηr) with

B(y, ηr) ⊂ B(γ, r) and B(y, ηr) ∩ Ω̄ = ∅.

(iii) The domain Ω is called uniformly E-porous if it is E-porous and Γ is uniformly
porous.

Remark 2.5. If Ω is E-porous, then Ω is E-thick and |Γ | = 0. On the other hand, if
Ω is E-thick and Γ is a d-set, then Ω is uniformly E-porous and n − 1 � d < n.
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2.2. Whitney decomposition and related wavelet systems

Let Ω be an arbitrary domain in R
n, with Ω �= R

n. We recall the construction of a
wavelet basis on Ω that will be needed later on; see [14].

Let ψF ∈ Cu(R) and ψM ∈ Cu(R), u ∈ N, be real compactly supported Daubechies
wavelets. We also assume that ψM satisfies the vanishing moment conditions for all
v ∈ N0, v < u. For j ∈ N0 = {0, 1, 2, 3, . . . } and G ∈ {F, M}n, let

Ψ j,L
G,m(x) = 2(j+L)n/2

n∏
a=1

ψGa(2j+Lxa − ma), m = (m1, . . . , mn) ∈ Z
n, (2.1)

where L ∈ N0 is fixed such that

suppψL
F ⊂ (−ε, ε), suppψL

M ⊂ (−ε, ε)

for some sufficiently small ε > 0 (as specified later on). Here, ψL
F = ψF (2L·) and

ψL
M = ψM (2L·). We also set {F, M}n∗ = {F, M}n \ {F̄}, where F̄ = (F, . . . , F ).
For some positive numbers c1, c2, c3 we choose

ZΩ = {xj
r ∈ Ω : j ∈ N0; r = 1, . . . , Nj}, (2.2)

where Nj ∈ N̄ = N ∪ {∞} exists such that

|xj
r − xj

r′ | � c12−j , j ∈ N0, r �= r′,

and

dist
( Nj⋃

r=1

B(xj
r, c22−j), Γ

)
� c32−j , j ∈ N0, Γ = ∂Ω. (2.3)

Let K ∈ N, D > 0 and c4 > 0. Then, the system of functions

{Φj
r : j ∈ N0; r = 1, . . . , Nj} with suppΦj

r ⊂ B(xj
r, c22−j), j ∈ N0, (2.4)

is called a u-wavelet system (with respect to Ω) if it consists of the following three types
of functions:

• Φ0
r = Ψ0,L

G,m for some G ∈ {F, M}n, m ∈ Z
n (basic wavelets);

• Φj
r = Ψ j,L

G,m, j ∈ N, dist(xj
r, Γ ) � c42−j for some G ∈ {F, M}n∗, m ∈ Z

n (interior
wavelets);

• Φj
r =

∑
|m−m′|�K dj

m,m′Ψ
j,L

F̄ ,m′ , j ∈ N, dist(xj
r, Γ ) < c42−j for some m = m(j, r) ∈

Z
n, dj

m,m′ ∈ R, with
∑

|m−m′|�K |dj
m,m′ | � D, suppΨ j,L

F̄ ,m′ ⊂ B(xj
r, c22−j) (bound-

ary wavelets).

The following theorem was proved by Triebel in [14, Theorem 2.33].

Theorem 2.6. Let Ω be an arbitrary domain in R
n with Ω �= R

n. For any u ∈ N

there are u-wavelet systems (with respect to Ω) that are orthonormal bases in L2(Ω).
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We sketch the construction. Let

Q0
�r ⊂ Q1

�r ⊂ Q2
�r ⊂ Q3

�r ⊂ Q�r, � ∈ N0, r = 1, 2, . . . , (2.5)

be concentric open cubes in R
n, with sides parallel to the axes of coordinates centred

at 2−�mr, � ∈ N0, mr ∈ Z
n, with the respective side lengths 2−�, 5 · 2−�−2, 6 · 2−�−2,

7 · 2−�−2, 2−�+1. According to the Whitney decomposition, there are disjoint cubes Q0
�r

of the above type such that

Ω =
⋃
�,r

Q̄0
�r, dist(Q0

�r, ∂Ω) ∼ 2−� if � ∈ N (2.6)

and

dist(Q0
0r, ∂Ω) � c for some c > 0.

Moreover, we assume that |� − �′| � 1 for any two admissible cubes such that Q1
�r ∩

Q1
�′r′ �= ∅.
Let Ψ j,L

G,m be given by (2.1), where L ∈ N0, and, consequently, ε > 0 is fixed such that

suppΨ j,L
G,m ⊂ Q3

�r if 2−j−Lm ∈ Q2
�r for � ∈ N0 and j � �,

and

2−j−Lm ∈ Q2
�r if suppΨ j,L

G,m ∩ Q1
�r �= ∅ for � ∈ N0 and j � �.

For j ∈ N we set

SΩ,1
j = {F, M}n∗ × {m ∈ Z

n : 2−j−Lm ∈ Q2
�r for some � < j and some r}.

Moreover, we set SΩ,1
0 = ∅. In a similar way, for j ∈ N0 we define

SΩ,2
j = {F, M}n × {m ∈ Z

n : 2−j−Lm ∈ Q2
jr for some r} \ SΩ,1

j .

We consider the wavelet system related to the above index sets, setting

ΨΩ,1 = {Ψ j,L
G,m : (j, G, m) ∈ SΩ,1}, SΩ,1 =

∞⋃
j=1

SΩ,1
j ,

and

ΨΩ,2 = {Ψ j,L
G,m : (j, G, m) ∈ SΩ,2}, SΩ,2 =

∞⋃
j=0

SΩ,2
j .

The system ΨΩ,1 is orthonormal in L2(Ω) and any element of ΨΩ,1 is orthogonal to any
element of ΨΩ,2. Moreover,

L2(Ω) = L
(1)
2 (Ω) ⊕ L

(2)
2 (Ω),
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with

L
(1)
2 (Ω) = spanΨΩ,1 and L

(2)
2 (Ω) = spanΨΩ,2,

where the closure is taken in L2(Ω). The set ΨΩ,2 consists of two types of elements:
Ψ0,L

G,m and Ψ j,L
G,m for j > 0. The elements Ψ0,L

G,m are pairwise orthogonal and orthogonal
to the rest of the elements of ΨΩ = ΨΩ,1 ∪ ΨΩ,2, so they cause no problem. But, for
the rest we need an orthonormalization process that does not destroy the localization of
the elements. The orthogonalization process results in boundary wavelets. We refer the
reader to §§ 2.3 and 2.4, in particular to the proof of [14, Theorem 2.33] for details.

Remark 2.7. It follows from the above construction that we should take

Nj = #SΩ,1
j + #SΩ,2

j (2.7)

in (2.2). Here, #X denotes the cardinality of the set X. The definitions of the sets SΩ,1
j ,

SΩ,2
j and the Whitney decomposition (2.6) link the values of Nj with the geometry of the

set Ω. In particular, if Ω is a bounded domain or a domain with finite Lebesgue measure,
then all Nj are finite and Nj ∼ 2jn. On the other hand, if the domain Ω contains infinitely
many dyadic cubes of size 2−�, then the Nj = ∞ for j > �. In this paper, we are mainly
interested in the domains with infinite Lebesgue measure, but such that all the numbers
Nj are finite.

2.3. Wavelet characterization of function spaces on E-porous and E-thick
domains

Let β = {βj}∞
j=0 be a sequence of positive numbers and let Nj ∈ N̄, j ∈ N0, and

N̄ = N ∪ {∞}. We will work with the sequence spaces

�q(βj�
Nj
p ) :=

{
λ = {λj,k}j,k : λj,k ∈ C,

‖λ | �q(βj�
Nj
p )‖ =

( ∞∑
j=0

βq
j

( Nj∑
k=1

|λj,k|p
)q/p)1/q

< ∞
}

(with the usual modification if p = ∞ and/or q = ∞). If Nj = ∞, then �
Nj
p = �p.

Moreover, if βj = 1 for any j, then we will write �q(�
Nj
p ).

Theorem 2.8. Let Ω be a uniformly E-porous domain in R
n, Ω �= R

n. Let

{Φj
r : j ∈ N0; r = 1, . . . , Nj}, with suppΦj

r ⊂ B(xj
r, c22−j), j ∈ N0,

be a u-wavelet system that is an orthonormal basis in L2(Ω) and u > max(s, σp − s).
Then, f ∈ D′(Ω) is an element of B̄s

p,q(Ω) if and only if it can be represented as

f =
∞∑

j=0

Nj∑
r=1

λj
r2

−jn/2Φj
r, λ ∈ �q(2j(s−(n/p))�Nj

p ), (2.8)
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unconditional convergence being in D′(Ω). Furthermore, if f ∈ B̄s
p,q(Ω), then the repre-

sentation (2.8) is unique with λ = λ(f):

λj
r = λj

r(f) = 2jn/2(f, Φj
r),

where (·, ·) is a dual pairing and

I : B̄s
p,q(Ω) � f 
→ λ(f) ∈ �q(2j(s−(n/p))�Nj

p )

is an isomorphism. If, in addition, max (p, q) < ∞, then {Φj
r} is an unconditional basis

in B̄s
p,q(Ω).

Remark 2.9. The above theorem was proved by Triebel; see [14, Theorem 3.23]. If
we assume that the domain Ω is E-thick, then the theorem holds for B̄s

p,q(Ω) with s �= 0;
see [14, Theorem 3.13]. Similar results hold for F̄ s

p,q(Ω) spaces. One can find the remarks
concerning convergences, duality and other technicalities in, for example, the paragraph
before Theorem 3.13 in [14].

3. Continuity and compactness of embeddings

3.1. Continuity and compactness of embeddings of sequence spaces

First, we formulate sufficient and necessary conditions for boundedness and compactness
of embeddings of sequence spaces. This will be complemented by two simple corollaries
concerning function spaces on arbitrary domains. A more detailed study of embeddings
of function spaces will be postponed till the next subsection.

We recall that a+ = max(a, 0) for any real number a. We also set

1
p∗ :=

(
1
p2

− 1
p1

)
+

and
1
q∗ :=

(
1
q2

− 1
q1

)
+
.

In the next theorem, we give the sufficient and necessary conditions for boundedness
and compactness of embeddings of the sequence spaces.

Theorem 3.1. Let 0 < p1, p2 � ∞ and 0 < q1, q2 � ∞.

(i) If there exists j such that Nj = ∞, then the embedding �q1(βj�
Nj
p1 ) ↪→ �q2(�

Nj
p2 ) holds

if and only if
p1 � p2 and {β−1

j }j ∈ �q∗. (3.1)

Moreover, in that case, the embedding �q1(βj�
Nj
p1 ) ↪→ �q2(�

Nj
p2 ) is not compact.

(ii) If for any j the index Nj is finite, then the embedding �q1(βj�
Nj
p1 ) ↪→ �q2(�

Nj
p2 ) holds

if and only if
{β−1

j N
1/p∗

j }j ∈ �q∗. (3.2)

The embedding �q1(βj�
Nj
p1 ) ↪→ �q2(�

Nj
p2 ) is compact if and only if (3.2) holds and, in

addition,
lim

j→∞
β−1

j N
1/p∗

j = 0 if q∗ = ∞. (3.3)
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(iii) In both cases, it holds that

‖id | �q1(βj�
Nj
p1

) → �q2(�
Nj
p2

)‖ = ‖{β−1
j N

1/p∗

j }j | �q∗‖,

where N
1/p∗

j = 1 if Nj = p∗ = ∞.

Proof. Proving the sufficiency of (3.1) and (3.2) is a simple exercise, using Hölder’s
inequality, the monotonicity of the �p spaces and the norm of the embedding �N

p1
→ �N

p2
.

The necessity of the conditions can be proved in a similar way as in the proof of [9,
Theorem 3.1]; see also [10,11]. First, we assume that there exists a j0 such that Nj0 = ∞.
We consider the following commutative diagram:

�p1

T

��

id1 �� �p2

�q1(βj�
Nj
p1 )

id �� �q2(�
Nj
p2 )

S

��

Here,

(Tη)j,i :=

{
ηi if j = j0,

0 otherwise,
η ∈ �p1 ,

(Sλ)i := λj0,i, λ ∈ �q2(�
Nj
p2

).

It follows from the above diagram that the embedding �q1(βj�
Nj
p1 ) ↪→ �q2(�

Nj
p2 ) implies that

p1 � p2. Moreover, compactness of id implies compactness of id1, so the embedding is
not compact.

As for the conditions involving βj , we employ the fact that the best constant cj in

‖τk | �Nj
p2

‖ � cj‖τk | �Nj
p1

‖, {τk}k ∈ �p1 ,

is cj = N
1/p∗

j , with cj = 1 if p∗ = ∞ and Nj ∈ N ∪ {∞}. Hence, for all ε > 0 and all
j ∈ N0 there exists a sequence {τj,k}k ∈ �

Nj
p1 such that ‖{τj,k}k | �

Nj
p1 ‖ = 1 and

‖{τj,k}k | �Nj
p2

‖ � (1 − 2−jε)N1/p∗

j ‖{τj,k}k | �Nj
p1

‖.

We set µj := β−1
j N

1/p∗

j , j ∈ N0. Then,

‖{τj,k}k | �Nj
p2

‖ � (1 − 2−jε)µjβj .

By the same reasoning as before, we obtain that for all ε > 0 there exists a sequence
{γj}j such that ‖{γj}j | �q2‖ = 1 and

‖{γj}j | �q2‖ � (1 − ε)‖{µj}j | �q∗‖‖{µ−1
j γj}j | �q1‖.
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Defining δj := γj/(µjβj), j ∈ N0, we arrive at( M∑
j=0

(δj‖{τj,k}k | �Nj
p2

‖)q2

)1/q2

� (1 − ε)‖{δjµjβj}j | �q2‖

� (1 − ε)2‖{µj}j | �q∗‖‖{δjβj}j | �q1‖
� (1 − ε)2‖{µj}j | �q∗‖‖{δjτj,k}j,k | �q1(βj�

Nj
p1

)‖

if M is chosen sufficiently large. This proves that (3.1) and (3.2) are necessary for the
embedding of the first sequence space into the second.

The sufficiency and necessity of the conditions for compactness in case (ii) was proved
in [10]. �

We recall that an unbounded domain Ω in R
n is called quasi-bounded if

lim
x∈Ω, |x|→∞

dist(x, ∂Ω) = 0.

An unbounded domain is not quasi-bounded if and only if it contains infinitely many
pairwise disjoint congruent balls; see [1, p. 173].

As a simple consequence of the above theorem and the wavelet characterization of the
function spaces, we have the following two corollaries.

Corollary 3.2. Let Ω be an unbounded, uniformly E-porous domain in R
n.

If Ω is not quasi-bounded, then there exists an embedding

B̄s1
p1,q1

(Ω) ↪→ B̄s2
p2,q2

(Ω)

if and only if p1 � p2 and

s1 − n

p1
− s2 +

n

p2
� 0 if q∗ = ∞,

s1 − n

p1
− s2 +

n

p2
> 0 if q∗ < ∞.

If Ω is not quasi-bounded, then the embedding

Ās1
p1,q1

(Ω) ↪→ Ās2
p2,q2

(Ω)

is not compact.

Proof. The domain Ω is not quasi-bounded. Therefore it contains infinitely many
pairwise disjoint congruent cubes. Thus, the assumption implies that for sufficiently large
j the indices Nj are infinite: Nj = ∞ if j > j0. So, the spaces �qi(βj�

Nj
pi ), i = 1, 2, satisfy

the assumptions of (i) of Theorem 3.1, with βj = 2jδ and δ = s1 − (n/p1) − s2 + (n/p2),
if the above conditions on δ are satisfied. Thus, for Besov spaces the corollary follows
from Theorems 2.8 and 3.1. The second statement for the F-scale follows from the case
of the B-scale by elementary embeddings

B̄s
p,min(p,q)(Ω) ↪→ F̄ s

p,q(Ω) and F̄ s
p,q(Ω) ↪→ B̄s

p,max(p,q)(Ω).

�
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Corollary 3.3. Let Ω be a uniformly E-porous domain in R
n with finite Lebesgue

measure.
Then, there exists an embedding

B̄s1
p1,q1

(Ω) ↪→ B̄s2
p2,q2

(Ω)

if and only if

s1 − s2 −
(

n

p1
− n

p2

)
+

� 0 if q∗ = ∞,

s1 − s2 −
(

n

p1
− n

p2

)
+

> 0 if q∗ < ∞.

The embedding
Ās1

p1,q1
(Ω) ↪→ Ās2

p2,q2
(Ω)

is compact if and only if

s1 − s2 −
(

n

p1
− n

p2

)
+

> 0.

Proof. The domain Ω is an open set. Therefore it contains a dyadic cube of Qj0m for
some sufficiently large j0 ∈ N. On the other hand, it is a set of finite measure. Therefore
we have that

2−j0n � 2−jnNj � |Ω| if j > j0;

see Remark 2.7. Consequently, there exist c1, c2 > 0 depending on Ω such that

c12jn � Nj � c22jn, j ∈ N0.

Now, the corollary follows from (ii) of Theorem 3.1. �

Remark 3.4. For a set of finite Lebesgue measure we get the same conditions for
continuity and compactness as for bounded smooth domains. On the other hand, if the
domain has infinite measure and satisfies the assumptions of Corollary 3.2, then the
Sobolev embeddings behave in the same way as on the whole space R

n.
So, the most interesting cases are the quasi-bounded domains with infinite measure. If

Ω is such a domain, then all numbers Nj are finite, since by the construction all cubes
related to our wavelets are contained in Ω and the domain does not contain infinitely
many congruent dyadic cubes. But, in contrast to the domain with finite measure, the
numbers Nj are not asymptotically equivalent to 2jn.

3.2. Box packing of open sets

Corollaries 3.2 and 3.3 suggest that the ball or cube coverings of an open set influence
the behaviour of Sobolev embeddings. To describe this influence, we introduce the box-
packing number b(Ω) of an open set Ω.
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Let Ω ⊂ R
n be a non-empty open set Ω �= R

n. Let

bj(Ω) = sup
{

k :
k⋃

�=1

Qj,m�
⊂ Ω, Qj,m�

being pairwise disjoint

dyadic cubes of side length 2−j , m� ∈ Z
n

}
, j = 0, 1, . . . .

The following properties of the sequence (bj(Ω))j=0,1,2,... are obvious.

• 0 � bj(Ω) � ∞ for any j ∈ N0 and 0 < bj(Ω) for sufficiently large j.

• If bj0(Ω) = ∞, then bj(Ω) = ∞ for any j � j0.

• If bj0(Ω) > 0, then bj(Ω) > 0 for any j � j0.

• If Ω0 ⊂ Ω, then bj(Ω0) � bj(Ω) for any j ∈ N0.

• There exists a constant j0 = j0(Ω) ∈ N0 such that for any j � j0 we have that

2−j0n � bj(Ω)2−jn. (3.4)

• If |Ω| < ∞, then
bj(Ω)2−jn � |Ω|. (3.5)

It follows from (3.4) that if 0 < s < n, then limj→∞ bj(Ω)2−js = ∞. Moreover, if
s1 < s2 and the sequence bj(Ω)2−js1 is bounded, then limj→∞ bj(Ω)2−js2 = 0. Thus,
there exists at most one number b ∈ R such that lim supj→∞ bj(Ω)2−js = ∞ if s < b

and limj→∞ bj(Ω)2−js = 0 if s > b. We set

b(Ω) = sup
{

t ∈ R+ : lim sup
j→∞

bj(Ω)2−jt = ∞
}

. (3.6)

Remark 3.5. For any non-empty open set Ω ⊂ R
n we have that n � b(Ω) � ∞. If

Ω is unbounded and not quasi-bounded, then b(Ω) = ∞. But, there are quasi-bounded
domains such that b(Ω) = ∞; see Example 3.12. Moreover, it follows from (3.4) and (3.5)
that if the measure |Ω| is finite, then b(Ω) = n.

Theorem 3.6. Let Ω be a uniformly E-porous quasi-bounded domain in R
n and let

s1 > s2.

(i) Let p∗ = ∞, i.e. p1 � p2. Then, there exists an embedding

B̄s1
p1,q1

(Ω) ↪→ B̄s2
p2,q2

(Ω) (3.7)

if and only if

s1 − n

p1
− s2 +

n

p2
� 0 if q∗ = ∞, (3.8)

s1 − n

p1
− s2 +

n

p2
> 0 if q∗ < ∞. (3.9)
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(ii) Let p∗ < ∞, i.e. p1 > p2.

If b(Ω) = ∞, then no embedding (3.7) holds.

If b(Ω) < ∞ and
0 < lim sup

j→∞
bj(Ω)2−jb(Ω) < ∞, (3.10)

then there exists an embedding (3.7) if and only if

s1 − n

p1
− s2 +

n

p2
� b(Ω)

p∗ if q∗ = ∞,

s1 − n

p1
− s2 +

n

p2
>

b(Ω)
p∗ if q∗ < ∞.

(iii) Let p∗ = ∞. The embedding

Ās1
p1,q1

(Ω) ↪→ Ās2
p2,q2

(Ω) (3.11)

is compact if and only if
s1 − n

p1
− s2 +

n

p2
> 0. (3.12)

(iv) Let p∗ < ∞ and b(Ω) < ∞. Then, the embedding (3.11) is compact if

s1 − n

p1
− s2 +

n

p2
>

b(Ω)
p∗ . (3.13)

Conversely, if the embedding (3.11) is compact, then s1 − (n/p1) − s2 + (n/p2) �
b(Ω)/p∗.

Proof. Due to the wavelet characterization of the function spaces one can reduce the
problem to the embeddings of sequence spaces and use Theorem 3.1, with βj = 2jδ,
δ = s1 − s2 − n(1/p1 − 1/p2). Moreover, it follows from the construction of the wavelet
basis that Nj � bj(Ω); see (2.3) and (2.4). On the other hand, if there exists a dyadic cube
Qj−2,m ⊂ Ω, then there are elements of the wavelet basis Ψ j,L

G,mr
such that suppΨ j,L

G,mr
⊂

Qj−1,mr ⊂ Qj−2,m ⊂ Ω; see (2.5), (2.6) and the construction described on page 834.
Hence,

bj−2(Ω) � Nj � bj(Ω). (3.14)

In particular, Nj = ∞ for large j if and only if bj(Ω) = ∞ for large j. Since the domain
is quasi-bounded, we have that bj(Ω) < ∞ and, consequently, Nj < ∞ for any j ∈ N.

We consider first the case b(Ω) = ∞. Now, (3.6) and (3.14) imply that for any s > 0
there exist an increasing sequence jk and a positive constant c > 0 such that c2jks � Njk

.
This implies that if q∗ < ∞, then (3.2) is fulfilled if and only if δ > 0 and 1/p∗ = 0.
In a similar way, if q∗ = ∞, then (3.2) is fulfilled if and only if δ � 0 and 1/p∗ = 0.
Concerning compactness, (3.3) is fulfilled if and only if δ > 0 and 1/p∗ = 0. Together
with the elementary embeddings for B- and F-spaces, this proves the theorem in the case
b(Ω) = ∞.
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Let b(Ω) < ∞. First, we consider the compactness. We choose t > b(Ω) such that
δ > t/p∗. Then, it follows from (3.6) that lim supj→∞ bj(Ω)2−jt < ∞. This and (3.14)
imply that there exists a constant M such that Nj � M2jt. Thus, (3.2) holds if δ > t/p∗.
The last condition also implies (3.3) if q∗ = ∞.

Conversely, let the embedding (3.11) be compact. If 1/p∗ = 0, then the inequality
δ > 0 follows directly from (3.2) and (3.3). If 1/p∗ > 0, then for any t < b(Ω) we have
that lim supj→∞ bj(Ω)2−jt = ∞. But (3.3) implies that

2−jδNj → 0 ⇐⇒ 2−j(δ−(t/p∗))(2−jtbj(Ω))1/p∗ → 0.

Moreover, lim supj→∞ bj(Ω)2−jt = ∞, so 2−j(δ−(t/p∗)) → 0. Thus, δ � b(Ω)/p∗.
Now, we consider the continuity of the embeddings for b(Ω) < ∞. If p∗ = ∞, we have

exactly the same situation as in the case b(Ω) = ∞. We assume that p∗ < ∞. If q∗ < ∞,
then to prove the sufficiency of the conditions we can follow exactly the argument for
the compactness and do not need (3.10). But, in the case q∗ = ∞ we have to use the
inequality lim supj→∞ bj(Ω)2−jb(Ω) < ∞; see (3.10). Then, a similar argument to the one
above proves the continuity of the embeddings.

Let (3.7) hold. As a consequence, 2−jδN
1/p∗

j ∈ �q∗ ; see (3.2). But (3.14) implies that

c2−(j−2)δbj−2(Ω) � 2−jδNj � 2−jδbj(Ω).

So,
2−jδN

1/p∗

j ∈ �q∗ ⇐⇒ 2−j(δ−(t/p∗))(2−jtbj(Ω))1/p∗ ∈ �q∗ . (3.15)

If q∗ = ∞, we choose t such that δp∗ < t < b(Ω). Then, 2−jtbj(Ω) �∈ �∞ and (3.15) imply
that δ > t/p∗. As a consequence, δ � b(Ω)/p∗.

If q∗ < ∞, one can find a sequence (jk)k such that limk→∞ bjk
(Ω)2−jkb(Ω) > 0;

see (3.10). Thus, (3.15) implies that δ > b(Ω)/p∗. �

Remark 3.7. Using the same method, one can prove that (3.13) is a sufficient and
necessary condition for compactness if lim supj→∞ bj(Ω)2−jb(Ω) > 0.

Remark 3.8. Let Ω be a uniformly E-porous quasi-bounded domain in R
n. Let

W̃ k
p (Ω), 1 < p < ∞, k = 1, 2, . . . , be the completion of the space C∞

0 (Ω) in the norm

‖f | W̃ k
p (Ω)‖ =

∑
|α|�k

‖∂αf | Lp(Ω)‖.

Then, W̃ k
p (Ω) = F̃ k

p,2(Ω) = F̄ k
p,2(Ω) and the corresponding norms are equivalent; see [14,

Theorem 4.30]. We set W̃ 0
p (Ω) = Lp(Ω) as well.

Corollary 3.9. Let Ω be a uniformly E-porous quasi-bounded domain in R
n. If k1 −

k2 − n(1/p1 − 1/p2) > b(Ω)/p∗, then the embedding

W̃ k1
p1

(Ω) ↪→ W̃ k2
p2

(Ω)

is compact. Here, b(Ω)/p∗ = 0 if b(Ω) = p∗ = ∞.
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Corollary 3.10. Let Ω be a uniformly E-porous quasi-bounded domain in R
n. If

b(Ω) < ∞ and s1 − s2 > 1
2b(Ω), then the embedding

F̄ s1
2,2(Ω) ↪→ F̄ s2

2,2(Ω) (3.16)

is a Hilbert–Schmidt operator.
If the embedding (3.16) is a Hilbert–Schmidt operator, then b(Ω) < ∞ and the inequal-

ity s1 − s2 � 1
2b(Ω) holds.

Proof. Let {Φj
r}j,r, j = 0, 1, 2, . . . , r = 1, . . . , Nj , be an orthonormal u-wavelet basis

in L2(Ω). If u > |s|, then the system {2−jsΦj
r}j,r is an orthogonal basis in B̄s

2,2(Ω) =
F̄ s

2,2(Ω) such that
‖2−jsΦj

r | B̄s
2,2(Ω)‖ ∼ 1;

see Theorem 2.8.
If u > s1, then {Φj

r}j,r is an orthogonal basis in F̄ s1
2,2(Ω) as well as in F̄ s2

2,2(Ω). Moreover,

‖2−js1Φj
r | B̄s2

2,2(Ω)‖ ∼ 2−j(s1−s2)

for any r = 1, . . . , Nj . Thus, the embedding is a Hilbert–Schmidt operator if and only if
∞∑

j=0

2−j2(s1−s2)Nj < ∞.

Now, arguments similar to those used in the proof of Theorem 3.6, in particular the
inequality (3.14), prove the corollary. �

Remark 3.11. Once more, if lim supj→∞ bj(Ω)2−jb(Ω) > 0, then we can prove that
the assumption that the inclusion (3.16) is a Hilbert–Schmidt operator implies that
s1 − s2 > 1

2b(Ω). If Ω is a domain with finite measure, then the condition means that
s1 − s2 > 1

2n. For bounded domains and the Sobolev spaces W̃ k
2 (Ω), the sufficiency of

the condition was proved by Maurin; see [12] or [1, p. 202].

Example 3.12. Let {rj}j , j = 0, 1, 2, . . . , be an increasing sequence of positive num-
bers. We assume that r0 > 1 and set Rj = Rj−1 + 2j(n−1)rj , with R−1 = 0. The sequence
{Rj − Rj−1}j is also increasing. For any j ∈ N0 we define

Aj = {m : m = (�, 0, . . . , 0), 3j + Rj−1 � 2−j� < 3j + Rj , � ∈ N},

Ωj =
⋃

m∈Aj

Q̄j,m and Ω =
( ⋃

j∈N0

Ωj

)◦
.

The set Ω is an open proper subset of R
n. The cubes Qj,m and Qk,n are disjoint if

m ∈ Aj , n ∈ Ak and j �= k. Moreover, Ω is E-thick, since dist(Ωj , Ωj+1) > 2 and
dist(x, ∂Ωj) � 2−j−1, x ∈ Ωj . Using the fact that the cardinality of the set Aj sat-
isfies card Aj∼ 2j(Rj − Rj−1), one can easily calculate that

bj(Ω) ∼ 2jn

j∑
k=0

rk.
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• If rk = 2αk, α > 0, then 0 < limj→∞ bj(Ω)2−j(n+α) < ∞. As a consequence, b(Ω) =
n + α.

• If rk = 2αk max(1, k), α > 0, then

lim
j→∞

bj(Ω)2−js =

{
∞ if s � n + α,

0 if s > n + α.

Thus, b(Ω) = n + α, but limj→∞ bj(Ω)2−jb(Ω) = ∞.

• If rk = 2αk max(1, k)−1, α > 0, then

lim
j→∞

bj(Ω)2−js =

{
∞ if s < n + α,

0 if s > n + α.

Thus, b(Ω) = n + α, but limj→∞ bj(Ω)2−jb(Ω) = 0.

• If rk = 2kα

, α > 1, then bj(Ω) is finite, but b(Ω) = ∞.

Example 3.13. Let α > 0. We consider the open sets ωα, Ωα ⊂ R
2 defined as

ωα = {(x, y) ∈ R
2 : |y| < x−α, x > 1} and Ωα = {(x, y) ∈ R

2 : |y| < |x|−α}.

One can easily calculate that

bj(ωα) ∼

⎧⎪⎨
⎪⎩

2j(α−1+1) if 0 < α < 1,

j22j if α = 1,

22j if α > 1.

As a consequence,

b(ωα) =

{
α−1 + 1 if 0 < α < 1,

2 if α � 1.

The limit limj→∞ bj(ωα)2−jb(ωα) is a positive finite number if α �= 1. If α = 1, then the
limit equals infinity. As a consequence,

bj(Ωα) ∼

⎧⎪⎨
⎪⎩

2j(α−1+1) if 0 < α < 1,

j22j if α = 1,

2j(α+1) if α > 1,

and b(Ωα) =

{
α−1 + 1 if 0 < α < 1,

α + 1 if α � 1.

4. Entropy numbers of embeddings

We recall the definition of entropy numbers.

Definition 4.1. Let T : X → Y be a bounded linear operator between complex quasi-
Banach spaces, and let k ∈ N. Then, the kth entropy number of T is defined as

ek(T : X → Y ) := inf{ε > 0: T (BX) can be covered by 2k−1 balls in Y of radius ε},

where BX := {x ∈ X : ‖x‖X � 1} denotes the closed unit ball of X.
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In particular, T : X → Y is compact if and only if limk→∞ ek(T ) = 0. For details and
basic properties like multiplicativity, additivity, behaviour under interpolation and the
relation to eigenvalues of the compact operator we refer the reader to the monographs [2,
5,6].

We recall that the definition of the relation ‘∼’ is given in § 1.

Theorem 4.2. Let Ω be a uniformly E-porous domain in R
n, with Ω �= R

n, and let
b(Ω) < ∞. Let Ās1

p1,q1
(Ω) and Ās2

p2,q2
(Ω) be the function spaces defined in Definition 2.1.

Let s1 − s2 − n(1/p1 − 1/p2) > b(Ω)/p∗. If

0 < lim inf
j→∞

bj(Ω)2−jb(Ω) � lim sup
j→∞

bj(Ω)2−jb(Ω) < ∞, (4.1)

then, for k ∈ N,
ek(Ās1

p1,q1
(Ω) ↪→ Ās2

p2,q2
(Ω)) ∼ k−γ , (4.2)

with

γ =
s1 − s2

b(Ω)
+

b(Ω) − n

b(Ω)

(
1
p1

− 1
p2

)
.

Proof. It is sufficient to consider Besov spaces. The rest follows by the elementary
embeddings of function spaces and the elementary properties of entropy numbers. By the
wavelet characterization of the spaces B̄s

p,q(Ω) we have that

ek(B̄s1
p1,q1

(Ω) ↪→ B̄s2
p2,q2

(Ω)) ∼ ek(�q1(2
jδ�Nj

p1
) ↪→ �q2(�

Nj
p2

)), δ = s1 − s2 − n

(
1
p1

− 1
p2

)
,

for a suitable sequence {Nj}j , Nj ∈ N. Assumption (4.1) implies that there exist positive
constants c1 and c2 such that

c1 � bj(Ω)2−jb(Ω) � c2 if j > j0.

As a consequence, there exists a positive constant c � 2b(Ω)c−1
1 c2 such that

2nbj(Ω) � bj+1(Ω) � cbj(Ω).

The left-hand inequality follows easily from the fact that any cube of size 2−j contains
2n cubes of size 2−(j+1). In view of (3.14), we have that

2nNj(Ω) � Nj+1(Ω) � CNj(Ω).

Thus, both sequences {Nj}j and {2jδ}j , δ > 0, are strongly increasing and admissible in
the sense of [10]. If p1 � p2, then [10, Theorem 3] implies that

e2Nj
(�q1(2

jδ�Nj
p1

) ↪→ �q2(�
Nj
p2

)) ∼ 2−jδN
−(1/p1−1/p2)
j . (4.3)

But, (4.1) and (3.14) imply that
Nj ∼ 2jb(Ω). (4.4)

Now, (4.3) and (4.4) imply (4.2).
If p2 < p1 and δ > b(Ω)/p∗, then the sequence {2jδN

1/p1−1/p2
j }j is also a strongly

increasing admissible sequence. Then, [10, Theorem 4] implies (4.3) and, as a conse-
quence, (4.2). �
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Remark 4.3. We always have that(
1
p1

− 1
p2

)
+

< γ � s1 − s2

n
.

The first inequality follows from γ � 1/p1 − 1/p2 + 1/p∗ and the second from

(s1 − s2)
n

� max
{

b(Ω) − n

np∗ ,
1
p1

− 1
p2

}

and b(Ω) � n.

Corollary 4.4. Let Ω be a uniformly E-porous domain in R
n, with Ω �= R

n. Let Ω

be of finite Lebesgue measure. If the embedding Ās1
p1,q1

(Ω) ↪→ Ās2
p2,q2

(Ω) is compact, then

ek(Ās1
p1,q1

(Ω) ↪→ Ās2
p2,q2

(Ω)) ∼ k−(s1−s2)/n, k ∈ N. (4.5)

Remark 4.5. It was mentioned by Triebel that one needs |Ω| < ∞, but not that Ω is
bounded, to prove the estimates (4.5); see [14, p. 125]. In the next theorem, we answer,
at least in part, a question posed in [14, p. 128].

Theorem 4.6. Let s1, s2 ∈ R, 0 < p1, p2 � ∞ and 0 < q1, q2 � ∞. We assume that
(s1 − s2)/n > (1/p1 − 1/p2)+.

For positive real γ, such that (s1 − s2)/n � γ > (1/p1 − 1/p2)+, there exists a uni-
formly E-porous quasi-bounded domain Ω in R

n such that

ek(B̄s1
p1,q1

(Ω) ↪→ B̄s2
p2,q2

(Ω)) ∼ k−γ , k ∈ N. (4.6)

If (4.6) holds for some uniformly E-porous quasi-bounded domain Ω in R
n and b(Ω) < ∞,

then (s1 − s2)/n � γ > (1/p1 − 1/p2)+.

Proof.

Step 1 (sufficiency). Since

s1 − s2

n
� γ >

(
1
p1

− 1
p2

)
+

� 1
p1

− 1
p2

we can choose θ, 0 < θ � 1, such that

γ = θ
s1 − s2

n
+ (1 − θ)

(
1
p1

− 1
p2

)
.

Let b = nθ−1. Then, b � n and

γ =
s1 − s2

b
+

b − n

b

(
1
p1

− 1
p2

)
.

If b = n, then one can take any uniformly E-porous domain with finite Lebesgue
measure. If b > n, one can find an open set Ω in R

n such that Ω is a uniformly E-porous
domain, b(Ω) = b and 0 < limj→∞ bj(Ω)2−jb < ∞; see Example 3.12. Now, Theorem 4.2
implies (4.6).
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Step 2 (necessity). Let Ω be a uniformly E-porous domain in R
n such that (4.6)

holds. Then, by the wavelet characterization the spaces Bs
p,q(Ω) are isomorphic to the

sequence spaces �q(2js�
Nj
p ) for a suitable sequence (Nj)j . As a consequence,

ek(�q1(2
jδ�Nj

p1
) ↪→ �q2(�

Nj
p2

)) ∼ k−γ . (4.7)

The open set Ω contains a dyadic cube Qjo,m. Thus, by the construction of the wavelet
basis, 2(−j0−2)n2jn � Nj if j > j0 + 2; see page 834. As a consequence, there exists a
constant c > 0 such that the inequality c2jn � Nj holds for any j ∈ N0. Let Mj = [c2jn],
where [x] denotes the integer part of x ∈ R. We have the following commutative diagram,
where Id is the natural embedding and P is a projection:

�q1(2
jδ�

Mj
p1 )

Id
��

id1 �� �q2(�
Mj
p2 )

�q1(2
jδ�

Nj
p1 )

id �� �q2(�
Nj
p2 )

P

��

Now, by [10, Theorem 3], the above diagram and the elementary properties of entropy
numbers we have that

c1k
−(s1−s2)/n � ek(id1 : �q1(2

jδ�Mj
p1

) ↪→ �q2(�
Mj
p2

))

� ek(id : �q1(2
jδ�Nj

p1
) ↪→ �q2(�

Nj
p2

))

� c2k
−γ .

Thus, (s1 − s2)/n � γ.
The necessity of the condition γ > 0 is clear, since otherwise the embedding is not

compact. So it remains to show that (4.6) and p1 < p2 imply that γ > 1/p1 − 1/p2.
Let Ω be a uniformly E-porous domain in R

n such that (4.6) holds for some γ > 0.
But, (4.6) implies (4.7) for suitable sequence spaces. We fix b > b(Ω). Then, by (3.14)
and the definition of b(Ω) there exists a positive constant c such that

Nj � bj(Ω) � c2jb if j � j0.

We recall that b(Ω) < ∞.
So taking

Ñj =

{
Nj if j < j0,

[c2jb] + 1 if j � j0,

we get the following commutative diagram:

�q1(2
jδ�

Nj
p1 )

Id
��

id1 �� �q2(�
Nj
p2 )

�q1(2
jδ�

Ñj
p1 )

id �� �q2(�
Ñj
p2 )

P

��
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But the sequence {Ñj}j is a strongly increasing admissible sequence in the sense of [10].
So the last commutative diagram implies that

c1k
−γ � ek(id1 : �q1(2

jδ�Nj
p1

) ↪→ �q2(�
Nj
p2

)) � ek(id : �q1(2
jδ�Ñj

p1
) ↪→ �q2(�

Ñj
p2

)) � c2k
−γ̃ ,

where γ̃ > 1/p1 − 1/p2; see [10] or Theorem 4.2.
This implies the assertion. �

5. Applications to spectral theory on unbounded domains

Let Ω be a quasi-bounded uniformly E-porous domain satisfying the assumptions of
Theorem 4.2. Then, B̄2m

2,2 (Ω) = F̄ 2m
2,2 (Ω) = W̃ 2m

2 (Ω), m ∈ N; see Remark 3.8.
Let

A(x, D) =
∑

|α|�2m

aα(x)∂α

be a formally self-adjoint, uniformly strongly elliptic differential operator of order 2m,
m ∈ N, with real valued coefficients aα ∈ C∞(Ω), which are uniformly bounded and
uniformly continuous for |α| � 2m. Then, the operator A = A(x, D), with domain

D(A) = B̄2m
2,2 (Ω),

is a closed linear operator with discrete spectrum σ(A) of eigenvalues having no finite
accumulation point; see [3,7].

We assume that A is a positive self-adjoint operator in L2(Ω).

Theorem 5.1. Let Ω be a uniformly E-porous domain in R
n, Ω �= R

n, such that
b(Ω) < ∞ and

0 < lim inf
j→∞

bj(Ω)2−jb(Ω) � lim sup
j→∞

bj(Ω)2−jb(Ω) < ∞. (5.1)

Let λ1, λ2, . . . be eigenvalues of A ordered by their magnitude and counted according to
their multiplicities. Then,

λk ∼ k2m/b(Ω), k ∈ N.

Proof. The proof is standard. Since A is a positive self-adjoint operator with compact
resolvent, λk is an eigenvalue of A if and only if µk = λ−1

k is an eigenvalue of A−1. But A

is a bounded operator mapping B̄2m
2,2 (Ω) onto L2(Ω). So we can factorize A−1 through the

compact embedding B̄2m
2,2 (Ω) ↪→ L2(Ω). Using Carl’s inequality (see [6, Theorem 1.3.4])

and Theorem 4.2, we get that
µk � Ck−2m/b(Ω).

On the other hand, let ψ be a smooth function such that suppψ ⊂ (0, 1)n and ‖ψ |
L2(Ω)‖ = 1. Let ψj(x) = 2jn/2ψ(2jx), j = 1, 2, . . . , and let ψj,h(x) = ψj(x − h), h ∈ R

n.
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If suppψj,h ⊂ Ω, then

C � ‖ψj,h | L2(Ω)‖2

� ‖Aψj,h | L2(Ω)‖‖A−1ψj,h | L2‖
� C‖ψj,h | W̃ 2m

2 (Ω)‖‖A−1ψj,h | L2(Ω)‖
� C22mj‖A−1ψj,h | L2(Ω)‖.

Please note that ‖ψj,h | W̃ 2m
2 (Ω)‖ � C22mj , since the functions are defined by the trans-

lations and dilations by the factor 2j of one fixed test function.
By translation one can find bj(Ω) functions of the form ψj,h with pairwise disjoint

supports contained in Ω. These functions span the bj(Ω)-dimensional subspaces of
B̄2m

2,2 (Ω) ⊂ L2(Ω). So for any linear operator T of rank smaller than bj(Ω) we can find
ψj,h such that T (ψj,h) = 0. But this implies that

abj(Ω)(A−1) = inf{‖A−1 − T | L(L2(Ω))‖, rankT < bj(Ω)}
� ‖A−1ψj,h | L2(Ω)‖
� c2−2mj . (5.2)

Now, using the properties of the approximation numbers ak(A−1) in Hilbert spaces,
(5.1) and (5.2) we get that

µk = ak(A−1) � ck−2m/b(Ω).

This completes the proof. �

Example 5.2. Let α > 0 and α �= 1. Once more we consider the open set Ωα ⊂ R
2

defined as
Ωα = {(x, y) ∈ R

2 : |y| < |x|−α}.

Since

b(Ωα) =

{
α−1 + 1 if 0 < α < 1,

α + 1 if α > 1,

we have the following formula for the eigenvalues of the Dirichlet Laplacian on Ωα:

λk(−∆) ∼
{

k2α/(1+α) if 0 < α < 1,

k2/(1+α) if α > 1.
(5.3)

Remark 5.3. If |Ω| < ∞, then we have that

λk ∼ k2m/n.

This formula is well known for bounded regular domains and goes back to Weyl; see [15].
On the other hand, König considered a similar problem for so-called quasi-bounded full
C�

1-domains, � > 0. He proved that

λk ∼ k(�/(�+1))(2m/n);

see [7,8].
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We can also perturb A by a multiplication operator f 
→ V f , giving that

Hαf = Af − αV f, V (x) > 0 almost everywhere in Ω, α > 0,

and ask for the behaviour of the cardinality of the negative spectrum #{σ(Hα)∩(−∞, 0]}
as α → ∞. This is the usual question raised in the study of spectral properties of elliptic
operators; see [5, 6, 13]. Using the entropy version of the Birman–Schwinger principle
(see [6]), one can easily prove the following theorem.

Theorem 5.4. Let Ω be a uniformly E-porous domain in R
n, Ω �= R

n, such that
b(Ω) < ∞, and let (5.1) hold.

Suppose that 2 < r � ∞, mr > n and V 1/2 ∈ Lr(Ω). Let � = b(Ω)r/(2mr + b(Ω)−n)
if r < ∞ and let � = b(Ω)/2m if r = ∞. Then,

#{σ(Hα) ∩ (−∞, 0]} � c(α‖V 1/2 | Lr(Ω)‖)�

for some c > 0, which is independent of α.

Remark 5.5. If |Ω| < ∞, then this estimate coincides with the estimate proved in [6]
for bounded domains.

Example 5.6. Assumption (4.1) in Theorem 4.2 is sufficient but not necessary to
get the estimates of corresponding entropy numbers. We consider the domain Ωα from
Example 3.13, with α = 1. Then, bj(Ω1) ∼ j22j , b(Ω1) = 2, but lim sup bj(Ω)2−jb(Ω1) =
∞, so we cannot apply Theorem 4.2. But, (3.14) implies that (Nj)∞

j=1 is an admissible
strongly increasing sequence in the sense of [10] and

Nj ∼ j22j .

Now, using [10, Theorem 3] we get that

ek(Ās1
p1,q1

(Ω1) ↪→ Ās2
p2,q2

(Ω1)) ∼ k−(s1−s2)/2(log k)(s1−s2)/2−(1/p1−1/p2).

As a consequence, we get that

λk(−∆) ∼ k log k

as a counterpart of (5.3) for α = 1.

Acknowledgements. The authors are indebted to the referee for the very careful
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