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1. Introduction

Let {2 be a domain in R™ and let WZ’f(Q) be a function space obtained by completing
C§°(£2) in the usual Sobolev norm. It is well known that Sobolev embeddings of the
function spaces W;(Q) into Ly(f2) can be compact if the domain {2 is bounded. It was
noted by Clark in 1965 that the Sobolev embeddings can also be compact if the domain is
unbounded but sufficiently narrow at infinity and satisfies a certain regularity condition;
see [3]. This is related to the discreteness of the spectrum of the Dirichlet Laplacian on
12 [4]. We refer the reader to [1] for further discussion and references.

Operator properties of the Sobolev embeddings were studied later by Konig; see [7,8].
He dealt with Sobolev spaces on the quasi-bounded domains satisfying an additional
regularity condition, the so-called C’ﬁ condition, where £ € Ry and k =1,...,n. Roughly
speaking, this means that the boundary consists of sufficiently smooth manifolds of
dimension at least (n — k). He found some asymptotic estimates of approximation, the
Gelfand and Kolmogorov numbers of embeddings W;(Q) — Lq(£2) and applied them to
estimates of eigenvalues of elliptic operators. In contrast to these works, we concentrate
on the entropy numbers of the embeddings. We also work with the domains with bound-
aries that satisfy a different regularity condition, which seems to be weaker and allows
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some fractality of the boundary. Moreover, for any quasi-bounded domain we introduce a
new constant, called the box-packing constant, that is very helpful both to formulate suf-
ficient and necessary conditions for compactness of the embeddings, as well as to describe
the asymptotic behaviour of entropy numbers. In particular, Konig’s results do not cover
Example 5.6.

More precisely, we consider the Besov and Triebel-Lizorkin spaces defined on a wide
range of unbounded domains, so-called uniformly E-porous domains. Recently, Triebel
proved the wavelet characterization of the spaces; see [14]. Based on the characteri-
zation, we obtain sufficient and necessary conditions for compactness of the Sobolev
embeddings. Moreover, we study the degree of the compactness of the embeddings in
terms of entropy numbers. The exact asymptotic behaviour of the entropy numbers is
calculated. In particular, for any quasi-bounded uniformly E-porous domain 2 C R™ we
define the box-packing constant b(£2), n < b(£2) < oo, and prove that the embedding

Tk Tk
WyH(£2) — W2 (82)

kl—kg—n<1—1>>b(0)(l—l>
P11 P2 b2 P11/

In particular, k1 > ko, since b(£2) > n. If £2 is a bounded domain, then b({2) = n.
Moreover, we prove that if the embedding is compact and b({2) < oo, then

is compact if

ex(WEH(02) = WF(2)) ~ k77, (1.1)

with

Cki—k b2 -n(1 1
@ ) <p1 p2)~

Here ej, denotes the kth entropy number of the embedding (see Definition 4.1) and
a4 = max(a, 0) for any real number a. Moreover, if

<1 1) k1 — ko
———] <7< )
Pt P2/ n

then one can find a quasi-bounded domain (2 such that (1.1) holds.
We write a ~ b if there exists a constant ¢ > 0 (independent of the context-dependent
relevant parameters) such that

cla <b<ca.

All unimportant constants will be denoted by ¢, sometimes with additional indices.

The paper has the following structure. In §2, we recall the definition of the domains,
the function spaces and their wavelet characterization. In § 3, we prove criteria for the
compactness of the embeddings. Section 4 is devoted to the behaviour of entropy numbers.
In §5, we give some applications to the spectral theory of elliptic operators.
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2. Preliminary

2.1. Function spaces on arbitrary domains

Let {2 be an open set in R™ such that {2 # R™. Such a set will be called an arbitrary
domain. We assume that the reader is familiar with definitions and basic facts concerning
Besov spaces B  (R") and Triebel-Lizorkin spaces F}; ,(R") defined on R™, as well as the
Besov and Triebel-Lizorkin spaces, B,  ({2) and F, ,(£2), defined on {2 by restrictions.
All we need can be found in [14, Chapter 1]. We will use the common notation. In
particular, we set

1 1
op=n<—1> and o'p,qzn(.—l), 0<p, g <00,
p ) min(p,q) /

and A5 (R"), A5 (£2) with A= Bor A= F.

Definition 2.1. Let {2 be an arbitrary domain in R™ with {2 # R"™ and let

0 <p< oo, 0<q< oo, s e R,

with p < oo for the F-spaces.

(i) Let

A 4(2) = {f € A ,(R"): supp f C 2},
A3 ,(2) = {f € D'(2): f = glq for some g € A3 ,(2)},
I1F 145 ()] = inf |lg | A3 ,R™)]|,

p,q

where the infimum is taken over all g € fl;’q((_l) with f = g|n.

(ii) We define

_ Fp,(02) if0<p<oo, 0<qg<00, s>0p,,
Fp () ={F) (2) ifl<p<oo, 1<g<o0, 5s=0,
Fj () if0<p<oo, 0<g< oo, s<0,
and
i B3, (2) if0<p<oo, 0<qg< o0, s> 0,
By (£2) = Bgﬁq(.Q) ifl<p<oo, 0<g<oo, s=0,
By, (£2) #0<p<oo, 0<g< oo, s<0.

Following Triebel, we introduce E-thick (exterior thick) and E-porous domains; see [14,

Chapter 3]. We start with the definition of porosity.
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Definition 2.2.

(i) A closed set I' C R™ is said to be porous if there exists a number 0 < n < 1
such that one finds for any ball B(z,r) C R™ centred at x and of radius r, with
0 <r <1, aball B(y,nr) with

B(y,nr) € B(x,r) and B(y,nr)nI =0.

(ii) A closed set I' C R™ is said to be uniformly porous if it is porous and there is a
locally finite positive Radon measure p on R™ such that I' = supp x4 and

w(B(y,7)) ~h(r), withyel, 0<r<1,

where h: [0,1] — R is a continuous strictly increasing function with h(0) = 0 and
h(1) =1 (the equivalence constants are independent of v and r).

Remark 2.3. The closed set I is called a d-set if there is a locally finite positive
Radon measure g on R™ such that I' = supp x4 and

w(B(y,7) ~rd, withyel, 0<r<1.
Naturally, 0 < d < n. Any d-set with d < n is uniformly porous.
Definition 2.4. Let {2 be an open set in R™ such that 2 # R™ and I" = 0f2.

(i) The domain §2 is said to be E-thick if one can find for any interior cube Q' C 2,
with
QY ~277 and dist(Q', ') ~277, j > jo €N,

a complementing exterior cube Q° C R™ \ {2, with
0(Q°) ~277 and dist(Q°,I") ~ dist(Q°, Q') ~ 277, j > jo € N.

Q' and Q° denote cubes in R” with sides parallel to the axes of coordinates and
side lengths £(Q') and £(Q°), respectively.

(ii) The domain {2 is said to be E-porous if there is a number 7, with 0 < 1 < 1, such
that one finds for any ball B(y,r) C R™ centred at v € I' and of radius r, with
0 <r <1, aball B(y,nr) with

B(y,nr) C B(y,r) and B(y,nr)N 02 = 0.

(iii) The domain {2 is called uniformly E-porous if it is E-porous and I" is uniformly
porous.

Remark 2.5. If 2 is E-porous, then {2 is E-thick and |I'| = 0. On the other hand, if
(2 is E-thick and I is a d-set, then (2 is uniformly E-porous and n — 1 < d < n.
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2.2. Whitney decomposition and related wavelet systems

Let {2 be an arbitrary domain in R", with 2 # R™. We recall the construction of a
wavelet basis on {2 that will be needed later on; see [14].

Let ¢p € C*(R) and ¢ps € C*(R), u € N, be real compactly supported Daubechies
wavelets. We also assume that 1y, satisfies the vanishing moment conditions for all
v € Np, v <u. For j e Ny ={0,1,2,3,...} and G € {F, M}", let

Wt () = 202 T T g, (27T 2 —ma), m= (ma,...,my) € 2", (2.1)

a=1
where L € Ny is fixed such that
L L
supp¢p C (—€,¢),  suppyy; C (—¢,¢)

for some sufficiently small ¢ > 0 (as specified later on). Here, 9% =¢p(2L:) and
YE = (2F). We also set {F, M} = {F,M}"\ {F}, where F' = (F,..., F).
For some positive numbers ¢y, ¢a, c3 we choose

Zo={2l€Q:jeNy; r=1,...,N;}, (2.2)
where N; € N=NU {co} exists such that
‘13]—13 |>612 j? jGNo,T#T',

and
dist ( U B 022 J F) = 632_j, j €Ny, I'= 012. (23)

Let K € N, D > 0 and ¢4 > 0. Then, the system of functions
{®]:jeNy; r=1,...,N;} with supp®) C B(zJ,c2277), j € N, (2.4)

is called a u-wavelet system (with respect to (2) if it consists of the following three types
of functions:

o P = !I/gfn for some G € {F, M}", m € Z" (basic wavelets);

o $J = lI/g;m, j € N, dist(x,I') > ¢4277 for some G € {F, M}™, m € Z" (interior
wavelets)

o PJ = e |<K dmm LT/J’m,, j €N, dist(zZ, I') < 4277 for some m = m(j,r) €
, dfmm, eR, with 37, <k \dm)m | <D, suppLT/J , C B(xl,c277) (bound-
ary wavelets).

The following theorem was proved by Triebel in [14, Theorem 2.33].

Theorem 2.6. Let {2 be an arbitrary domain in R™ with {2 # R". For any v € N
there are u-wavelet systems (with respect to §2) that are orthonormal bases in La((2).
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We sketch the construction. Let
Q). CQ} CQ3 CQ CQp, €Ny, r=1,2 ..., (2.5)

be concentric open cubes in R", with sides parallel to the axes of coordinates centred
at 27fm", £ € Ny, m" € Z", with the respective side lengths 27¢ 5.27¢72 6.27¢2
7.27¢72 271 According to the Whitney decomposition, there are disjoint cubes Q9.
of the above type such that

0=J@Y. dist(Q).002)~27" ifleN (2.6)
lr

and

dist(Q,.,892) > ¢ for some ¢ > 0.

Moreover, we assume that [ — ¢'| < 1 for any two admissible cubes such that Qj,. N

Qpr # 0.
Let Lpéjjn be given by (2.1), where L € Ny, and, consequently, € > 0 is fixed such that

supp WéLm C QZ’,, if 2777 tm € Q2 for £ € Ny and j > ¢,
and
279 bm € Q3. if supp WéLm NQy, # 0 for £ € Ny and j > ¢.
For j € N we set
SJ»Q’1 ={F,M}™ x {m € Z": 2797 2m € Q3, for some ¢ < j and some r}.
Moreover, we set ng 1 — ). In a similar way, for j € Ny we define
SJQ’2 ={FM}"x{mezZ":277"tme Q?T for some r} '\ Sjﬁ’l.

We consider the wavelet system related to the above index sets, setting

U = (WGl (.G om) € 7Y, 5P =) S
j=1

and

Lp.Q,Q — {Wgﬁn (],G,m) c 59,2}7 SQ,Q — U Sf72.
j=0

The system W1 is orthonormal in Ly(£2) and any element of ! is orthogonal to any
element of ¥*>2. Moreover,

Lo(2) = LV (2) & LY (92),
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with

Lgl)(!?) =span ¥l and LéQ)(Q) = span W2,

where the closure is taken in Lo(£2). The set w2 consists of two types of elements:
J/g fn and WJ 7~ for j > 0. The elements !PG’ . are pairwise orthogonal and orthogonal
to the rest of the elements of ¥ = w21 U w2 so they cause no problem. But, for
the rest we need an orthonormalization process that does not destroy the localization of
the elements. The orthogonalization process results in boundary wavelets. We refer the
reader to §§2.3 and 2.4, in particular to the proof of [14, Theorem 2.33] for details.

Remark 2.7. It follows from the above construction that we should take
Ny = #S7! + #8772 (2.7)

in (2 2). Here, #X denotes the cardinality of the set X. The definitions of the sets S; o

Che i ? and the Whitney decomposition (2.6) link the values of N; with the geometry of the
set (2. In particular, if {2 is a bounded domain or a domain with finite Lebesgue measure,
then all N; are finite and N; ~ 29", On the other hand, if the domain {2 contains infinitely
many dyadic cubes of size 27¢, then the N; = oo for j > £. In this paper, we are mainly
interested in the domains with infinite Lebesgue measure, but such that all the numbers
N are finite.

2.3. Wavelet characterization of function spaces on E-porous and E-thick
domains

Let 3= {0;}52, be a sequence of positive numbers and let N; € N, j € Ny, and
N = NU {oo}. We will work with the sequence spaces

0a(Bi0)7) = {/\ = {Njktik: Ak €C,

q/p\1/q
1] €(8,6) —(Zﬁq(Zwkv’) ) <oo}
7=0

(with the usual modification if p = oo and/or ¢ = o0). If N; = oo, then 0 =0,
Moreover, if 3; = 1 for any j, then we will write Eq(ﬁfgvj).

Theorem 2.8. Let {2 be a uniformly E-porous domain in R™, {2 # R". Let
{#I:jeNy; 7= 1,...,N;}, with supp P! C B(xl,cp277), j € Ny,

be a u-wavelet system that is an orthonormal basis in Ly({2) and u > max(s,o, — s).
Then, f € D'(£2) is an element of B ,(£2) if and only if it can be represented as

oo Nj
F=Y D N2mRRL X e £y (0PI, (2.8)

j=0r=1
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unconditional convergence being in D'(S2). Furthermore, if f € B;)q(ﬂ), then the repre-
sentation (2.8) is unique with A = A(f):

M= M(f) =22 (f,9)),
where (-,-) is a dual pairing and
I:B5 (£2) 3 f = A(f) € Ly (27~ (n/pD gl
is an isomorphism. If, in addition, max (p,q) < oo, then {®!} is an unconditional basis
in BS (£2).

Remark 2.9. The above theorem was proved by Triebel; see [14, Theorem 3.23]. If
we assume that the domain (2 is E-thick, then the theorem holds for B;,q(ﬂ) with s # 0;
see [14, Theorem 3.13]. Similar results hold for F;J ({2) spaces. One can find the remarks
concerning convergences, duality and other technicalities in, for example, the paragraph
before Theorem 3.13 in [14].

3. Continuity and compactness of embeddings

3.1. Continuity and compactness of embeddings of sequence spaces

First, we formulate sufficient and necessary conditions for boundedness and compactness
of embeddings of sequence spaces. This will be complemented by two simple corollaries
concerning function spaces on arbitrary domains. A more detailed study of embeddings
of function spaces will be postponed till the next subsection.

We recall that ay = max(a,0) for any real number a. We also set

1 <1 1) 1 (1 1)
- =\|—-—= and ===
p P2 P/ q @ Q1)

In the next theorem, we give the sufficient and necessary conditions for boundedness
and compactness of embeddings of the sequence spaces.

Theorem 3.1. Let 0 < p1, p2 < 00 and 0 < q1, g2 < 00.

(i) If there exists j such that Nj = oo, then the embedding (y, (@zﬁf) — Ly, ()9) holds
if and only if
p1 < pa and {ﬂj_l}j € lgs. (3.1)
Moreover, in that case, the embedding ¢, (@-Eé\ff) — Ly, (Ell,ij) is not compact.

(ii) If for any j the index Nj is finite, then the embedding (g, (ﬂjﬂgj) Ly, (639) holds
if and only if

— 1/p*
{87 IN}"Y; € L. (3.2)
The embedding (g, (ﬂjéé\ij) — Ly, (z{)’;‘) is compact if and only if (3.2) holds and, in
addition, i
lim 7'N}7 =0 ifg* = . (3.3)

j—o0
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(iii) In both cases, it holds that
. . ; “1arl/P"
i | €0, (856p7) = Cas ()] = 1N N7} e,
where le/p* =1Iif Nj =p* = o0.

Proof. Proving the sufficiency of (3.1) and (3.2) is a simple exercise, using Holder’s
inequality, the monotonicity of the ¢, spaces and the norm of the embedding KIJX — EII)\; .

The necessity of the conditions can be proved in a similar way as in the proof of [9,
Theorem 3.1]; see also [10,11]. First, we assume that there exists a jy such that N;, = oo.
We consider the following commutative diagram:

Here,

i lf.] :j07
Ol nE Ly,

T ig -
(T, otherwise,
(SN)i == Njo,i» A E Lo, (€0).

It follows from the above diagram that the embedding ¢,, (ﬁjﬁgj ) = Ly, (E,I)\gj ) implies that
p1 < pa. Moreover, compactness of id implies compactness of id;, so the embedding is
not compact.

As for the conditions involving 3;, we employ the fact that the best constant ¢; in

I [ 0711 < cillme 1 €051, {7u}k € Lpy s

is ¢; = N}/7" with ¢; = 1 if p* = 00 and N; € NU {oo}. Hence, for all ¢ > 0 and all
j € Np there exists a sequence {7 1 }r € EIIXJ such that ||{7;x}x | KIIXJ =1 and

. 4 1 * .
st | 511 = (1= 279N [{r 0 | €35,
We set p; = ,BleJ»l/p*, j € Ng. Then,
H{rjwte | 67 = (1—2772)u;8;.

By the same reasoning as before, we obtain that for all ¢ > 0 there exists a sequence
{;}; such that [|{v;}, | 45| =1 and

{7} el = (L= o)l [ -

H{e5 ks Haal.
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Defining 0; := v;/(1;3;), j € No, we arrive at

M 1/Q2
<Z(5j||{7j,k}k | ez]:;j)qz) > (1= e)[{din;B5}5 | ol
=0
> (1—e)*I{us}5 | La=11{6;85}5 | €ay
> (1= )’ {3 }s | Lo {6575k ik | €ay (B0l

if M is chosen sufficiently large. This proves that (3.1) and (3.2) are necessary for the
embedding of the first sequence space into the second.

The sufficiency and necessity of the conditions for compactness in case (ii) was proved
in [10]. O

We recall that an unbounded domain {2 in R” is called quasi-bounded if

lim  dist(xz,982) = 0.
z€Q, || =00
An unbounded domain is not quasi-bounded if and only if it contains infinitely many
pairwise disjoint congruent balls; see [1, p. 173].
As a simple consequence of the above theorem and the wavelet characterization of the
function spaces, we have the following two corollaries.

Corollary 3.2. Let {2 be an unbounded, uniformly E-porous domain in R™.
If §2 is not quasi-bounded, then there exists an embedding

B (2) = B2, (2)

P1,91 Dp2,92

if and only if p; < ps and

n n
S1—— —83+—>=0 ifqg" =00,
P1 b2

n n
s1—— —83+—>0 ifqg" <oo.
p1 P2

If {2 is not quasi-bounded, then the embedding
ASL (02) — A2 (0)

P1,91 P2,92

is not compact.

Proof. The domain (2 is not quasi-bounded. Therefore it contains infinitely many
pairwise disjoint congruent cubes. Thus, the assumption implies that for sufficiently large
J the indices IV; are infinite: V; = oo if j > jg. So, the spaces £, (ﬁjﬁzj,\z‘j), i =1, 2, satisfy
the assumptions of (i) of Theorem 3.1, with 3; = 2/% and § = 51 — (n/p1) — s2 + (n/p2),
if the above conditions on ¢ are satisfied. Thus, for Besov spaces the corollary follows
from Theorems 2.8 and 3.1. The second statement for the F-scale follows from the case
of the B-scale by elementary embeddings

B;,min(p,q)(g) — F;,Q(Q) and F;,Q(Q) — B;,max(p,q)(g)'
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Corollary 3.3. Let {2 be a uniformly E-porous domain in R™ with finite Lebesgue
measure.
Then, there exists an embedding
B (0) = B2, ()

P1,91 p2,92

if and only if

81—82—(n—n> >0 if ¢" = oo,
+

D1 b2

n n
31—32—<—> >0 ifqg* < oo.

bt P2/

The embedding
ASL () — A%2(02)

P1,491 P2,92

is compact if and only if

n n
81—82—(—> > 0.
bt P2/

Proof. The domain {2 is an open set. Therefore it contains a dyadic cube of @, for
some sufficiently large jo € N. On the other hand, it is a set of finite measure. Therefore
we have that

279" L 27NN < (02| if > jos

see Remark 2.7. Consequently, there exist ¢1, ¢y > 0 depending on (2 such that
c12'™ < Nj < 2™, j € Ny.
Now, the corollary follows from (ii) of Theorem 3.1. O

Remark 3.4. For a set of finite Lebesgue measure we get the same conditions for
continuity and compactness as for bounded smooth domains. On the other hand, if the
domain has infinite measure and satisfies the assumptions of Corollary 3.2, then the
Sobolev embeddings behave in the same way as on the whole space R".

So, the most interesting cases are the quasi-bounded domains with infinite measure. If
{2 is such a domain, then all numbers IN; are finite, since by the construction all cubes
related to our wavelets are contained in {2 and the domain does not contain infinitely
many congruent dyadic cubes. But, in contrast to the domain with finite measure, the
numbers N; are not asymptotically equivalent to 27,

3.2. Box packing of open sets

Corollaries 3.2 and 3.3 suggest that the ball or cube coverings of an open set influence
the behaviour of Sobolev embeddings. To describe this influence, we introduce the box-
packing number b({2) of an open set (2.

https://doi.org/10.1017/50013091513000333 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091513000333

840 H.-G. Leopold and L. Skrzypczak

Let 2 C R™ be a non-empty open set {2 # R". Let

k

b;(£2) = sup {k: U Qjm, C 12, Qjm, being pairwise disjoint
=1

dyadic cubes of side length 277, my € Z”}, j=0,1,....

The following properties of the sequence (b;({2));=0.1,2,... are obvious.

—~

e 0<b;(£2) <ooforany j € Ny and 0 < b;(42) for sufficiently large j.

If b, (£2) = oo, then b;(§2) = oo for any j > jo.

If bj, (£2) > 0, then b;(£2) > 0 for any j > jo.
o If 2y C £2, then b;(£2y) < b;(£2) for any j € Ny.

There exists a constant jo = jo(§2) € Ny such that for any j > jo we have that

2790 L b ()27, (3.4)

If | 2] < oo, then ‘
bi(2)297 < |02 (3.5)

It follows from (3.4) that if 0 < s < n, then lim;_ b;(£2)277° = oco. Moreover, if
s1 < s and the sequence b;(£2)277°1 is bounded, then lim; . b;(§2)277%2 = (0. Thus,
there exists at most one number b € R such that limsup;_, . b;(£2)277° = co if s < b
and lim;j_, b;(£2)277° = 0 if s > b. We set

b(§2) = sup {t € R, : limsupb;(2)277F = oo}. (3.6)
j—00
Remark 3.5. For any non-empty open set 2 C R™ we have that n < b(£2) < oco. If
2 is unbounded and not quasi-bounded, then b({2) = oo. But, there are quasi-bounded
domains such that b(£2) = oo; see Example 3.12. Moreover, it follows from (3.4) and (3.5)
that if the measure |(2| is finite, then b(£2) = n.

Theorem 3.6. Let {2 be a uniformly E-porous quasi-bounded domain in R™ and let
S1 > Sa2.

(i) Let p* = o0, i.e. p1 < po. Then, there exists an embedding

B;i#h (Q) — B;z,%(‘g) (37)
if and only if
s1———82+—2=0 ifg" = o0, (3.8)
1 2
51—2—82+£>0 if ¢* < oo. (3.9)
P D2
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(ii) Let p* < oo, i.e. p1 > pa.
If b(§2) = oo, then no embedding (3.7) holds.

Ifb(2) < oo and _
0 < limsup b;(£2)277°) < oo, (3.10)

j—o0

then there exists an embedding (3.7) if and only if

b(2
8§81 — — — 89 22 (*) if ¢* = oo,
1 2] p
b(£2
§1 — — — 2+£>(—*) if ¢* < o0.
1 b2 p
(iii) Let p* = co. The embedding
fl;i’ql(()) — Azquz(ﬁ) (3.11)
is compact if and only if
1 — - — sy — > 0. (3.12)
b1 P2

(iv) Let p* < oo and b({2) < oo. Then, the embedding (3.11) is compact if

b(2
PRNLENTLUEN (*). (3.13)
b1 D2

Conversely, if the embedding (3.11) is compact, then s; — (n/p1) — s2 + (n/p2) >
b(2)/p.

Proof. Due to the wavelet characterization of the function spaces one can reduce the
problem to the embeddings of sequence spaces and use Theorem 3.1, with 3; = 279,
d = s1 —s2 —n(l/p1 — 1/pa). Moreover, it follows from the construction of the wavelet
basis that N; < b;(£2); see (2.3) and (2.4). On the other hand, if there exists a dyadic cube
Qj—2,m C {2, then there are elements of the wavelet basis u'/éj;nr such that supp !l'/éLmT -
Qj—1,m, C Qj—2,m C 2; see (2.5), (2.6) and the construction described on pagé 834.
Hence,

bj—2(2) < N; < bj(92). (3.14)

In particular, N; = oo for large j if and only if b;({2) = oo for large j. Since the domain
is quasi-bounded, we have that b;({2) < oo and, consequently, N; < oo for any j € N.
We consider first the case b({2) = co. Now, (3.6) and (3.14) imply that for any s > 0
there exist an increasing sequence jj, and a positive constant ¢ > 0 such that ¢27*% < N in-
This implies that if ¢* < oo, then (3.2) is fulfilled if and only if § > 0 and 1/p* = 0.
In a similar way, if ¢* = oo, then (3.2) is fulfilled if and only if 6 > 0 and 1/p* = 0.
Concerning compactness, (3.3) is fulfilled if and only if 6 > 0 and 1/p* = 0. Together
with the elementary embeddings for B- and F-spaces, this proves the theorem in the case

b(£2) = oc.
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Let b(f2) < oo. First, we consider the compactness. We choose t > b({2) such that
§ > t/px. Then, it follows from (3.6) that limsup; ., b;(£2)277" < co. This and (3.14)
imply that there exists a constant M such that N; < M27t. Thus, (3.2) holds if § > ¢/p*.
The last condition also implies (3.3) if ¢* = 0.

Conversely, let the embedding (3.11) be compact. If 1/p* = 0, then the inequality
d > 0 follows directly from (3.2) and (3.3). If 1/p* > 0, then for any ¢ < b({2) we have
that limsup;_, . b;(£2)277" = co. But (3.3) implies that

Q—jéNj 0 e 2—j(5—(t/p*))(g—jtbj(g))l/p* = 0.

Moreover, limsup;_, . b;(£2)279% = oo, so 2790=(/P")) — 0. Thus, § > b(£2)/p*.

Now, we consider the continuity of the embeddings for b(£2) < co. If p* = oo, we have
exactly the same situation as in the case b({2) = co. We assume that p* < co. If ¢* < oo,
then to prove the sufficiency of the conditions we can follow exactly the argument for
the compactness and do not need (3.10). But, in the case ¢* = co we have to use the
inequality limsup,_, o, b;(£2)279%(2) < 00; see (3.10). Then, a similar argument to the one
above proves the continuity of the embeddings.

Let (3.7) hold. As a consequence, 2_j‘SNj1/p* € l4+; see (3.2). But (3.14) implies that

02_(j_2)6bj,2(9) < 2_j6Nj g 2_36bj(9)
So, i
2N ety = 270D (97ity ()P € e (3.15)

If ¢* = 0o, we choose t such that dp* < t < b(£2). Then, 277%;(12) & {5 and (3.15) imply
that 6 > ¢/p*. As a consequence, 6 > b(2)/p*.

If ¢* < oo, one can find a sequence (ji)r such that limy_, . bjk(Q)2_jkb(Q) > 0;
see (3.10). Thus, (3.15) implies that 6 > b(£2)/p*. O

Remark 3.7. Using the same method, one can prove that (3.13) is a sufficient and
necessary condition for compactness if limsup,_, ., b (£2)277(2) > 0.

} Remark 3.8. Let {2 be a uniformly E-porous quasi-bounded domain in R™. Let
WE(2),1<p<oo, k=1,2,..., be the completion of the space C§°(£2) in the norm

IF W @)l =D 10 | Lp(2)].

|l <k

Then, Wf(ﬂ) = F£2(9)~: F},(£2) and the corresponding norms are equivalent; see [14,
Theorem 4.30]. We set W2(£2) = L, (£2) as well.

Corollary 3.9. Let {2 be a uniformly E-porous quasi-bounded domain in R™. If k; —
ko —n(1/p1 — 1/p2) > b(£2)/p*, then the embedding

Wy (92) <= W2 (02)

is compact. Here, b(£2)/p* = 0 if b(£2) = p* = oc.
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Corollary 3.10. Let {2 be a uniformly E-porous quasi-bounded domain in R™. If
b(£2) < oo and s1 — s2 > 2b(£2), then the embedding

F3%(02) = F55(92) (3.16)

is a Hilbert—Schmidt operator.
If the embedding (3.16) is a Hilbert—Schmidt operator, then b({2) < oo and the inequal-
ity s1 — s2 = 1b(£2) holds.

Proof. Let {®#7};,,j=0,1,2,...,r=1,...,N;, be an orthonormal u-wavelet basis
in Ly(£2). If u > |s|, then the system {2775®J}; . is an orthogonal basis in B3 ,(£2) =
F5 5(£2) such that

1277°@7 | B3 »(£2)[| ~ 1;
see Theorem 2.8.
Ifu > s1, then {®J}; , is an orthogonal basis in F3%(£2) as well as in F;%(£2). Moreover,

27701 | Byzy(@)] ~ 271

for any » = 1,..., N;. Thus, the embedding is a Hilbert-Schmidt operator if and only if
Y9N, < oo
j=0
Now, arguments similar to those used in the proof of Theorem 3.6, in particular the
inequality (3.14), prove the corollary. O

Remark 3.11. Once more, if limsup;_, bj(.Q)27jb(m > 0, then we can prove that
the assumption that the inclusion (3.16) is a Hilbert—Schmidt operator implies that
51— s2 > 3b(£2). If 2 is a domain with finite measure, then the condition means that
s1 — sa > in. For bounded domains and the Sobolev spaces W}(£2), the sufficiency of
the condition was proved by Maurin; see [12] or [1, p. 202].

Example 3.12. Let {r;};, j =0,1,2,..., be an increasing sequence of positive num-
bers. We assume that rg > 1 and set R; = R;_1 + 2j("*1)rj, with R_; = 0. The sequence
{R; — Rj_1}, is also increasing. For any j € Ny we define

Aj={m:m=({,0,...,0), 3j+ Rj_1 <2790 < 3j+ Rj, { €N},
2= ) Qim and Q:(U @).
meA; j€No

The set {2 is an open proper subset of R". The cubes @;,, and Qy are disjoint if
meAj, ne Ay and j # k. Moreover, (2 is E-thick, since dist({2;,2;41) > 2 and
dist(z,092;) < 27771, x € (2;. Using the fact that the cardinality of the set A; sat-
isfies card Aj~ 2/(R; — Rj_1), one can easily calculate that

J
bi(£2) ~ 2 "y
k=0
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o Ifr, = 2% o >0, then 0 < lim;_, o, bj(Q)Z_j(""’a) < 0. As a consequence, b(£2) =
n+ a.
o If r;, = 2** max(1,k), a > 0, then

lim b;(02)277% =

J]—00

o~ ifs<n+a,
0 ifs>n+a.
Thus, b(2) = n + a, but lim;_, b;(£2)279%?) = cc.
o If rp = 2% max(1,k)~!, a > 0, then
lim b;(02)277% =

j—oo

o ifs<n+a,
0 ifs>n+a.
Thus, b(2) = n + a, but lim;_, b;(2)277%(?) = 0.
o If rp = 25" a > 1, then b;(£2) is finite, but b(£2) = oco.
Example 3.13. Let a > 0. We consider the open sets wq, 2, C R? defined as
wo ={(z,y) €R*: [y <27 & >1} and 24 ={(z,y) € R?: [y| < |z[7*}.
One can easily calculate that
2@+ jfo<a <1,
bj(wa) ~ ¢ j2% if o =1,
22 if a > 1.
As a consequence,

141 ifoc <1,
b(wa){a + 1 @

2 if a > 1.
The limit lim;_, b; (wa)277%@a) is a positive finite number if o # 1. If @ = 1, then the
limit equals infinity. As a consequence,
217+ if 0 < o < 1,
b;j(24) ~ { j2% ifa=1, and b(£2,) = {
2ietl) if o > 1,

at+1 if0<a<l,
a+1 if > 1.

4. Entropy numbers of embeddings

We recall the definition of entropy numbers.

Definition 4.1. Let T: X — Y be a bounded linear operator between complex quasi-
Banach spaces, and let & € N. Then, the kth entropy number of T is defined as

ex(T: X = Y) :=inf{e > 0: T(Bx) can be covered by 2*~! balls in Y of radius ¢},

where Bx := {x € X: ||z||x < 1} denotes the closed unit ball of X.
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In particular, T: X — Y is compact if and only if limy_, o ex(7) = 0. For details and
basic properties like multiplicativity, additivity, behaviour under interpolation and the
relation to eigenvalues of the compact operator we refer the reader to the monographs [2,
5,6].

We recall that the definition of the relation ‘~’ is given in §1.

Theorem 4.2. Let {2 be a uniformly E-porous domain in R™, with 2 # R", and let
b(£2) < co. Let A3+ (£2) and A32  (£2) be the function spaces defined in Definition 2.1.

P1,q91 P2,92

Let 51 — sy —n(1/p1 — 1/p2) > b(02)/p*. If
0 < liminf b (2)2770) < 1iﬁsip b;(2)277) < o0, (4.1)
then, for k € N,
ek(“—lfﬁ,ql(g) — AZZ,qz(Q)) ~ k77, (4.2)

with

_s1—8 b(2)—n/ 1 1
TR T a9 (p1 m)'

Proof. It is sufficient to consider Besov spaces. The rest follows by the elementary
embeddings of function spaces and the elementary properties of entropy numbers. By the
wavelet characterization of the spaces B, ,(§2) we have that

_ — . ) ) 1 1
en(B3t . () = B3z (2)) ~ ex(ly, (2790N9) s 0, (0N9)), 6= 53— 55 n( - )

P1,91 p2,q92
’ ’ p1 P2

for a suitable sequence {N;};, N; € N. Assumption (4.1) implies that there exist positive
constants ¢; and ¢ such that

e < bi(2)279 Loy i 5> o
As a consequence, there exists a positive constant ¢ > 2b(mcflcg such that
2"0;(£2) < bj+1(£2) < cb;(£2).

The left-hand inequality follows easily from the fact that any cube of size 277 contains
2" cubes of size 2~ In view of (3.14), we have that

2"N;(2) < Nj1 () < ON;(92).

Thus, both sequences {N,}; and {27°};, § > 0, are strongly increasing and admissible in
the sense of [10]. If p; < po, then [10, Theorem 3| implies that

ean; (Lay (270055 ) s L, (€N3)) ~ 2790 N - (/P12 (4.3)
But, (4.1) and (3.14) imply that ‘
N ~ 2752, (4.4)

Now, (4.3) and (4.4) imply (4.2).

If po < p1 and & > b(£2)/p*, then the sequence {2j5Nj-1/p171/p2}j is also a strongly
increasing admissible sequence. Then, [10, Theorem 4] implies (4.3) and, as a conse-
quence, (4.2). O
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Remark 4.3. We always have that

(1 1) S1 — 8o
—— =) <y ===
P1 p2+ n

The first inequality follows from v > 1/p; — 1/p2 + 1/p* and the second from
(s1— s2) > max{b(ﬂ) —n 1 1}
n np* p1 P2
and b(2) = n.
Corollary 4.4. Let {2 be a uniformly E-porous domain in R™, with {2 # R"™. Let {2

be of finite Lebesgue measure. If the embedding A3 . (£2) < AS2 . (£2) is compact, then

en(AS  (2)— A2 () ~k~(1732)/n L eN, (4.5)

P1,91 D2,92

Remark 4.5. It was mentioned by Triebel that one needs |2| < oo, but not that 2 is
bounded, to prove the estimates (4.5); see [14, p. 125]. In the next theorem, we answer,
at least in part, a question posed in [14, p. 128].

Theorem 4.6. Let s1,s2 € R, 0 < p1, p2 < 00 and 0 < q1, g2 < oo. We assume that

(s1—s2)/n > (1/p1 = 1/p2)+.
For positive real v, such that (s1 — s2)/n >~ > (1/p1 — 1/p2)4+, there exists a uni-
formly E-porous quasi-bounded domain {2 in R™ such that

en(BS, (2) = B2 () ~k™, kel (4.6)

P1,q1 Pp2,92

If (4.6) holds for some uniformly E-porous quasi-bounded domain §2 in R™ and b({2) < oo,
then (sy — s2)/n =2~y > (1/p1 — 1/p2)+.

Proof.
Step 1 (sufficiency). Since

§1 — 82 1 1 1 1
zy>(———) > ———
n p1 P2/, P11 P2

we can choose 6, 0 < 6 < 1, such that
— 1 1
7:951n52 +(1—0)(—>.

Let b = nf~L. Then, b > n and

If b = n, then one can take any uniformly E-porous domain with finite Lebesgue
measure. If b > n, one can find an open set (2 in R™ such that {2 is a uniformly E-porous
domain, b(£2) = b and 0 < lim;_, b;(£2)277° < 00; see Example 3.12. Now, Theorem 4.2
implies (4.6).
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Step 2 (necessity). Let {2 be a uniformly E-porous domain in R™ such that (4.6)
holds. Then, by the wavelet characterization the spaces B,  ({2) are isomorphic to the
. N. . ’
sequence spaces £4(27°¢,”) for a suitable sequence (NN;);. As a consequence,

e (lay (270050) = Loy (037)) ~ K7 (4.7)

The open set {2 contains a dyadic cube @, . Thus, by the construction of the wavelet
basis, 2(790=2m2I" < N, if j > jo 4 2; see page 834. As a consequence, there exists a
constant ¢ > 0 such that the inequality ¢2/" < N; holds for any j € Ng. Let M; = [c277],
where [x] denotes the integer part of € R. We have the following commutative diagram,
where Id is the natural embedding and P is a projection:

o M. idq M
gy (2°0p7) = L4, (")

l E

0qr (273007) =S 1, (657

Now, by [10, Theorem 3], the above diagram and the elementary properties of entropy
numbers we have that

ek~ (17s2/m Loy (idy : lq, (23'65117\/11]-) = Ly, (gggj))
€L (ld €q1 (2‘7562\?) — €Q2 (6117\9))

Cgk_’y

NN N

Thus, (s1 — s2)/n = 7.

The necessity of the condition v > 0 is clear, since otherwise the embedding is not
compact. So it remains to show that (4.6) and p; < py imply that v > 1/p; — 1/pa.

Let {2 be a uniformly E-porous domain in R™ such that (4.6) holds for some v > 0.
But, (4.6) implies (4.7) for suitable sequence spaces. We fix b > b(£2). Then, by (3.14)
and the definition of b(§2) there exists a positive constant ¢ such that

Ny <bi(2) <2 if j = jo.
We recall that b(£2) < oco.
So taking
N — Nj if § < jo,
T+ 1 i G = g,

we get the following commutative diagram:

. N idl N
qu (2J6€P1] ) eqz (ép; )

https://doi.org/10.1017/50013091513000333 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091513000333

848 H.-G. Leopold and L. Skrzypczak

But the sequence {N;}, is a strongly increasing admissible sequence in the sense of [10].
So the last commutative diagram implies that

k™7 < ep(id: Ly, (270007) s €4, (0N7)) < en(id: £, (270007) e £, (6N9)) < ok,

where 7 > 1/p; — 1/pa; see [10] or Theorem 4.2.
This implies the assertion. [

5. Applications to spectral theory on unbounded domains

Let {2 be a quasi-bounded uniformly E-porous domain satisfying the assumptions of
Theorem 4.2. Then, B33 (02) = F3%3(02) = W3 (£2), m € N; see Remark 3.8.
Let
A, D)= > aa(z)d"

jal<2m

be a formally self-adjoint, uniformly strongly elliptic differential operator of order 2m,
m € N, with real valued coefficients a, € C*°(§2), which are uniformly bounded and
uniformly continuous for |a| < 2m. Then, the operator A = A(z, D), with domain
D(A) = B3 (2),
is a closed linear operator with discrete spectrum o(A) of eigenvalues having no finite
accumulation point; see [3,7].
We assume that A is a positive self-adjoint operator in Lo(£2).

Theorem 5.1. Let {2 be a uniformly E-porous domain in R™, {2 # R"™, such that

b(f2) < oo and
0 < liminf b;(2)277%(?) < limsup b;(2)277%(?) < o0, (5.1)
j—o0 j—oo
Let A1, Ao, ... be eigenvalues of A ordered by their magnitude and counted according to

their multiplicities. Then,
Ao ~ K2/ g e N

Proof. The proof is standard. Since A is a positive self-adjoint operator with compact

!is an eigenvalue of A~'. But A

resolvent, \j is an eigenvalue of A if and only if pr = A,
is a bounded operator mapping B35 (£2) onto Ly (£2). So we can factorize A~! through the
compact embedding B3 (£2) < Ly(42). Using Carl’s inequality (see [6, Theorem 1.3.4])
and Theorem 4.2, we get that

s < Ck—Qm/b(Q).

On the other hand, let ¢ be a smooth function such that supp+ C (0,1)™ and |[¢ |
Lo(02)|| = 1. Let v (z) = 22/ 2%)(27z), j = 1,2,..., and let ¢, ,(z) = ¥j(x — h), h € R™.
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If supp v, C {2, then

C < Ny | L2(0)]1?
1A% | La(NIIA™ jn | Le|
< Clljn | W™ (DA™ s | La(£2)]

< C2M A s | La(2)])-

<
<

Please note that ||, | W3™(£2)| < €22 since the functions are defined by the trans-
lations and dilations by the factor 2/ of one fixed test function.

By translation one can find b;(f2) functions of the form ;; with pairwise disjoint
supports contained in 2. These functions span the b;({2)-dimensional subspaces of
B33 (£2) C Ly(£2). So for any linear operator T' of rank smaller than b;(£2) we can find
;.5 such that T'(¢; ) = 0. But this implies that

(2 (A7) = mf {[ A" = T | L(L(92))]|, rank T < b;(£2)}
> A 0 | L2(2)]]
> 272, (5.2)

Now, using the properties of the approximation numbers a;(A~!) in Hilbert spaces,
(5.1) and (5.2) we get that

e = ak(A—l) > Ck_Qm/b(Q).

This completes the proof. O
Example 5.2. Let o > 0 and o # 1. Once more we consider the open set 2, C R?
defined as
Q0 ={(z,y) € R*: |y| < [z|7°}.
Since

b(2) = al+1 fo<a<l,
Y la+1 ifa>1,

we have the following formula for the eigenvalues of the Dirichlet Laplacian on §2,:

E2/0+e)  if o> 1. (5:3)

k2e/(+a) if 0 < a < 1,
Ar(=A) ~ {
Remark 5.3. If |2] < oo, then we have that
A ~ k?m/n
This formula is well known for bounded regular domains and goes back to Weyl; see [15].

On the other hand, Konig considered a similar problem for so-called quasi-bounded full

C{-domains, ¢ > 0. He proved that
Mg ~ k& D) (2m/n)

)

see [7,8].
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We can also perturb A by a multiplication operator f — V f, giving that
H,f =Af —aVf, V(x)>0 almost everywhere in {2, a > 0,

and ask for the behaviour of the cardinality of the negative spectrum #{o(H,)N(—o0, 0]}
as o — 0o. This is the usual question raised in the study of spectral properties of elliptic
operators; see [5,6,13]. Using the entropy version of the Birman—-Schwinger principle
(see [6]), one can easily prove the following theorem.

Theorem 5.4. Let {2 be a uniformly E-porous domain in R™, (2 # R"™  such that
b(£2) < o0, and let (5.1) hold.

Suppose that 2 < r < oo, mr >n and V/? € L,(£2). Let o = b(2)r/(2mr +b(2) —n)
if r < oo and let o = b(£2)/2m if r = co. Then,

#{0(Ha) N (—00,0]} < c(a| V2| L(2)[))¢
for some ¢ > 0, which is independent of «.

Remark 5.5. If |£2| < oo, then this estimate coincides with the estimate proved in [6]
for bounded domains.

Example 5.6. Assumption (4.1) in Theorem 4.2 is sufficient but not necessary to
get the estimates of corresponding entropy numbers. We consider the domain (2, from
Example 3.13, with @ = 1. Then, b;(£21) ~ j2%, b(£2;) = 2, but limsup b;(£2)277°(?) =
o0, so we cannot apply Theorem 4.2. But, (3.14) implies that (NV;)32; is an admissible
strongly increasing sequence in the sense of [10] and

Nj ~ 2%,
Now, using [10, Theorem 3] we get that

ek(Am (1) — As2 (1)) ~ kf(51752)/2(10gk)(51*52)/2*(1/m*1/?2).

P1,91 p2,92

As a consequence, we get that
Ae(—A) ~ klogk

as a counterpart of (5.3) for a = 1.
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