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Abstract

For every rotation p of the Euclidean space R" (n > 3), we find an upper bound for the number r such that
p is a product of r rotations by an angle a (0 < @ < 7). We also find an upper bound for the number r such
that p can be written as a product of r full rotations by an angle a.
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1. Introduction

Let O(n) denote the orthogonal group of R”", that is, the group of all linear
isomorphisms of R"” which preserve the Euclidean distance; equivalently,

O(n) ={A € GL,R) : ATA = I).

The subgroup consisting of all elements A € O(n) whose determinant is 1 is called the
special orthogonal group (or the rotation group) of R" and is denoted by SO(n),

SO(n) = O(n) N SL(n, R).

Elements of SO(n) are called rotations. A reflection o, along a nonzero vector u € R”
is the linear isomorphism o, : R” — R" given by

(x, u)
(u, u)

where (,) denotes the ordinary scalar product of R”. It can be easily checked that
o, €0(),deto, =—1and o, o o, =1id.

A half-turn (or a 180° rotation) is an element p € SO(n) for which there exists a
subspace W C R" of dimension 2 such that p|ly = —id and p|w: = id. Alternatively,
a half-turn can be defined as an element of SO(n) which can be expressed as 0,0,

o,x)=x-2 u,
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where u, v € R" are two nonzero orthogonal vectors. More generally, the composition
of two reflections o, and o, is a rotation by twice the angle between u and v (see [2,
Proposition 8.7.7.8]). Anticlockwise and clockwise rotations by an angle « are treated
equally. In particular, the angle « of a rotation is considered to be between 0 and 7.

A well-known theorem due to Artin [1, page 134] states that for n > 3 every element
of SO(n) is a product of at most n half-turns. A natural question to ask is how this
theorem can be adapted for rotations by an arbitrary angle a.

Intuitively, when « is very small, a rotation by a relatively large angle cannot be
expressed as a product of n rotations by the angle . Hence, in a possible statement
of this theorem for an arbitrary angle «, the number of rotations needed for the angle
«a (that is, a-rotations) should depend on @. Note that when x is an integer multiple
of a, that is, m = ka for some positive integer k, then Artin’s theorem directly implies
that every element of SO(n) is a product of at most kn rotations by the angle a. The
reason is that in this situation, every rotation by the angle r is a product of k identical
rotations by the angle a. But, in general, determining the smallest positive integer m
so that every element of SO(n) can be expressed as the product of at most m rotations
by a given angle @ cannot be obtained directly from Artin’s theorem.

By generalising Artin’s original argument and using a simple geometric idea, we
prove the following result, which gives an upper bound for the required number of
a-rotations.

THeorREM 1.1. Let a be an angle with 0 < o < and let n > 3. Let p € SO(n) be an
element which can be written as a product of 2k reflections. Then p is a product of
at most 2mk rotations by the angle «, where m = %ﬂ—ﬂ/ a]l. More precisely, p can be
expressed as a product of 2mk elements of the form ooy, so that the angle between x
andyis af2.

Here, for a real number x, the expression [[x]] denotes the smallest even integer n
such that x < n. When a = x, from the above result, we recover Artin’s theorem.

Note that by the Cartan—-Dieudonné theorem, every rotation can be expressed as a
product of at most ¢ < n reflections. The minimal number of reflections required to
express any element o of O(n) as a product of 7 reflections was determined by Scherk
in [6] and is equal to the rank of the linear map o — id. The minimal number of half-
turns needed to express any element of the rotation group of an arbitrary quadratic
space as a product of 7 half-turns was determined in various situations in [3, 5] and [4].

Next, we study products of full a-rotations in SO(n). By a full a-rotation, we mean
an element p € SO(n) such that for every nonzero x € R", the angle between x and p(x)
is . Alternatively, a full a-rotation p € SO(n) can be characterised by the identity
{x, p(x)) = cos(a@){x, x) for all x € R". There is no difference between an ordinary
a-rotation and a full -rotation in R?.

Trivial examples of full rotations on R” are id, the identity map, and —id (for even n),
which are full rotations by 0 and r, respectively. A nontrivial example is an almost-
complex structure J on R", a full rotation by /2. We recall that an almost-complex
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Figure 1. Division of 8 into m equal parts.

structure on R” is a map J € SO(n) such that (x, J(x)) = 0 for all x € R". Almost-
complex structures on R” only exist if z is even.

By a standard argument in linear algebra (see Section 3), we can easily see that for
0 < @ < m, a full a-rotation on R" only exists if n is even and we prove the following
theorem.

THeOREM 1.2. Let n > 4 be an even integer and let 0 < a <. Let p € SO(n) be an
element which can be written as a product of at most 2k reflections. Then p can
be written as a product of at most 2m’k full a-rotations, where m’ = %[Dr/Zafﬂ if
O<a< %nandm’ = %[[71/(2&—71)'” if%n<a<7r.

2. Products of a-rotations in SO(n)

Proor orF THEOREM 1.1. By assumption, we can write
P =0y Oy Oy Oy,

where u;,v; e R" (i = 1,...,k) are nonzero and k > 1 is minimal. Moreover, we may
assume that u; and v; are linearly independent for i = 1,..., k. Hence, it is enough to
show that every expression 0,0, (4, v € R"\{0}) is a product of at most 2m rotations
by the angle a. As we have mentioned in Section 1, o, is a rotation by the angle o
if and only if the angle between x and y is @/2. Let wy = u, wy, ..., w,, = v be nonzero
vectors so that the angle between w; and w;,| is 8/m (see Figure 1).

By changing u to +u and v to +v if necessary, we may assume that 8 < /2 (note
that multiplying the axis u of a reflection o, by a scalar does not change o). Since
2m = [[n/a]], we have 7/a < 2m and hence 8/m < n/(2m) < a. We can write

Ou0y =0yw,Oy,, = (O-W()O-W] )(0-wl O-vvz) te (O-wm,l O—Wm)'

Hence, it is enough to prove that for i = 1,...,m — 1, the expression o,0,,, can be
written as a product of at most two rotations by the angle @. Since the angle between
w; and w;y is B/m < a, the problem is reduced to proving that if the angle 8 between
u and v is at most «, then 0,0, is a product of at most two rotations by the angle a.
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FiGure 2. The ray w in the plane perpendicular to u and v.

We claim that we can find a nonzero vector w such that the angle between w and both
u and v is @/2. In this way, we may write 0,0, = (0,0,,)(0,,0,) and the conclusion
follows.

To find w, consider the bisector w’ of u and v. Consider a plane perpendicular to
the subspace generated by u and v and passing through w’ (since n > 3, this is always
possible). In this plane, every ray w passing through the origin makes equal angles
with u and v (see Figure 2). This angle attains its minimum when w lies on w’. Hence,
the minimum value of this angle is §/2 and it can take an arbitrary value > 8/2. In
particular, the value «/2 is attained since 8 < a. O

3. Products of full a-rotations in SO(n)
LemMma 3.1. Let p € SO(n). The following conditions are equivalent:

(@) (x,p(x)) = cos(a){x, x) for every x € R";
() (x,p() + (p(x), y) = 2cos(a)x,y) for every x,y € R";
() p>—2cos(a)p +id = 0.

Proor. To prove the implication (a) = (b), it suffices to replace x by x + y in (a). For
the implication (b) = (a), put x = y in (b). For the equivalence (b) < (c), note that (b)
is equivalent to the identity (p~'(x) + p(x) — 2 cos(a)x, y) = 0 and this is also equivalent
to (c) since (, ) is nondegenerate. O

Lemma 3.2. The following statements hold.

(a) If p (respectively p’) is a full a-rotation on R" (respectively R™), then p ® p’ is a
Sull a-rotation on R™"™.

(b)  Ifpis a full a-rotation on R", then p~' is a full a-rotation on R”.

(¢) Let0O < a<n Then SO(n) contains an a-rotation if and only if n is even.

Proor. To verify (a), note that

(x®y,(e®p ) (x @) =(x,p(x)) + (¥, p(y)) = cos(a)({x, x) + (y,¥))
=cos(@){(x®y, xPYy).

For (b), note that (x, p~!(x)) = (p(x), x) = cos(a){x, x) since p is an isometry.
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To prove (c), consider a unit vector x € R". Since p is an a-rotation, we have
(x,p(x)) = cosa. As cos(a) # +1, the vectors x and p(x) are linearly independent.
By Lemma 3.1(c), the subspace W generated by x and p(x) is stable under p. Since the
restriction of p to W+ (whose dimension is n — 2) is also a full a-rotation, we can use
induction to conclude that 7 is even. Conversely, let p be an ordinary e-rotation on R?.

By (a), the map @7:/ f p is a full rotation on R". O

Proor oF THEOREM 1.2. By assumption, we can write
P=0u Oy Oy Oy,

where u;,v; € R" are nonzero and k > 1. By Theorem 1.1, every expression o0, can
be written as a product of 2m’ expressions of the form ooy, where the angle between
x and y is @. We may assume that x and y are linearly independent. Let W be the
two-dimensional subspace generated by x and y.

It is enough to express o .oy as a product of at most two full @-rotations on R". Let
w be a nonzero vector in W so that the angles between w and x and between w and
y are both equal to @/2 (in other words, w is a bisector for x and y). By Lemma 3.2,
there exists a full a-rotation J on W*. Hence, we can write 0,0y = (0,0,)(0,07y) =
(020 lw @ J)(o0ylw ® J71) and the claim is proved. o

CoroLLARY 3.3. If n > 4 is even, then every element of SO(n) is a product of at most 2n
almost-complex structures.
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