PRODUCTS OF ROTATIONS BY A GIVEN ANGLE IN THE ORTHOGONAL GROUP

M. G. MAHMOUDI

(Received 24 July 2017; accepted 16 August 2017; first published online 2 November 2017)

Abstract

For every rotation ρ of the Euclidean space \mathbb{R}^n ($n \ge 3$), we find an upper bound for the number r such that ρ is a product of r rotations by an angle α ($0 < \alpha \le \pi$). We also find an upper bound for the number r such that ρ can be written as a product of r full rotations by an angle α .

2010 Mathematics subject classification: primary 51F25; secondary 15A23, 51N30.

Keywords and phrases: rotation group, reflection.

1. Introduction

Let O(n) denote the *orthogonal group* of \mathbb{R}^n , that is, the group of all linear isomorphisms of \mathbb{R}^n which preserve the Euclidean distance; equivalently,

$$O(n) = \{ A \in GL(n, \mathbb{R}) : A^T A = I \}.$$

The subgroup consisting of all elements $A \in O(n)$ whose determinant is 1 is called the *special orthogonal group* (or the *rotation group*) of \mathbb{R}^n and is denoted by SO(n),

$$SO(n) = O(n) \cap SL(n, \mathbb{R}).$$

Elements of SO(n) are called rotations. A reflection σ_u along a nonzero vector $u \in \mathbb{R}^n$ is the linear isomorphism $\sigma_u : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\sigma_u(x) = x - 2 \frac{\langle x, u \rangle}{\langle u, u \rangle} u,$$

where \langle , \rangle denotes the ordinary scalar product of \mathbb{R}^n . It can be easily checked that $\sigma_u \in O(n)$, det $\sigma_u = -1$ and $\sigma_u \circ \sigma_u = \mathrm{id}$.

A half-turn (or a 180° rotation) is an element $\rho \in SO(n)$ for which there exists a subspace $W \subseteq \mathbb{R}^n$ of dimension 2 such that $\rho|_W = -\mathrm{id}$ and $\rho|_{W^{\perp}} = \mathrm{id}$. Alternatively, a half-turn can be defined as an element of SO(n) which can be expressed as $\sigma_u \sigma_v$,

The support from Sharif University of Technology is gratefully acknowledged.

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

where $u, v \in \mathbb{R}^n$ are two nonzero orthogonal vectors. More generally, the composition of two reflections σ_u and σ_v is a rotation by twice the angle between u and v (see [2, Proposition 8.7.7.8]). Anticlockwise and clockwise rotations by an angle α are treated equally. In particular, the angle α of a rotation is considered to be between 0 and π .

A well-known theorem due to Artin [1, page 134] states that for $n \ge 3$ every element of SO(n) is a product of at most n half-turns. A natural question to ask is how this theorem can be adapted for rotations by an arbitrary angle α .

Intuitively, when α is very small, a rotation by a relatively large angle cannot be expressed as a product of n rotations by the angle α . Hence, in a possible statement of this theorem for an arbitrary angle α , the number of rotations needed for the angle α (that is, α -rotations) should depend on α . Note that when π is an integer multiple of α , that is, $\pi = k\alpha$ for some positive integer k, then Artin's theorem directly implies that every element of SO(n) is a product of at most kn rotations by the angle α . The reason is that in this situation, every rotation by the angle π is a product of k identical rotations by the angle α . But, in general, determining the smallest positive integer m so that every element of SO(n) can be expressed as the product of at most m rotations by a given angle α cannot be obtained directly from Artin's theorem.

By generalising Artin's original argument and using a simple geometric idea, we prove the following result, which gives an upper bound for the required number of α -rotations.

Theorem 1.1. Let α be an angle with $0 < \alpha \le \pi$ and let $n \ge 3$. Let $\rho \in SO(n)$ be an element which can be written as a product of 2k reflections. Then ρ is a product of at most 2mk rotations by the angle α , where $m = \frac{1}{2} \lceil \lceil \pi/\alpha \rceil \rceil$. More precisely, ρ can be expressed as a product of 2mk elements of the form $\sigma_x \sigma_y$, so that the angle between x and y is $\alpha/2$.

Here, for a real number x, the expression $\llbracket x \rrbracket$ denotes the smallest even integer n such that $x \le n$. When $\alpha = \pi$, from the above result, we recover Artin's theorem.

Note that by the Cartan-Dieudonné theorem, every rotation can be expressed as a product of at most $t \le n$ reflections. The minimal number of reflections required to express any element σ of O(n) as a product of t reflections was determined by Scherk in [6] and is equal to the rank of the linear map σ – id. The minimal number of half-turns needed to express any element of the rotation group of an arbitrary quadratic space as a product of t half-turns was determined in various situations in [3, 5] and [4].

Next, we study products of *full* α -rotations in SO(n). By a full α -rotation, we mean an element $\rho \in SO(n)$ such that for every nonzero $x \in \mathbb{R}^n$, the angle between x and $\rho(x)$ is α . Alternatively, a full α -rotation $\rho \in SO(n)$ can be characterised by the identity $\langle x, \rho(x) \rangle = \cos(\alpha) \langle x, x \rangle$ for all $x \in \mathbb{R}^n$. There is no difference between an ordinary α -rotation and a full α -rotation in \mathbb{R}^2 .

Trivial examples of full rotations on \mathbb{R}^n are id, the identity map, and $-\mathrm{id}$ (for even n), which are full rotations by 0 and π , respectively. A nontrivial example is an *almost-complex structure J* on \mathbb{R}^n , a full rotation by $\pi/2$. We recall that an almost-complex

Figure 1. Division of β into m equal parts.

structure on \mathbb{R}^n is a map $J \in SO(n)$ such that $\langle x, J(x) \rangle = 0$ for all $x \in \mathbb{R}^n$. Almost-complex structures on \mathbb{R}^n only exist if n is even.

By a standard argument in linear algebra (see Section 3), we can easily see that for $0 < \alpha < \pi$, a full α -rotation on \mathbb{R}^n only exists if n is even and we prove the following theorem.

Theorem 1.2. Let $n \ge 4$ be an even integer and let $0 < \alpha < \pi$. Let $\rho \in SO(n)$ be an element which can be written as a product of at most 2k reflections. Then ρ can be written as a product of at most 2m'k full α -rotations, where $m' = \frac{1}{2} \llbracket \pi/2\alpha \rrbracket$ if $0 < \alpha \le \frac{1}{2} \pi$ and $m' = \frac{1}{2} \llbracket \pi/(2\alpha - \pi) \rrbracket$ if $\frac{1}{2} \pi < \alpha < \pi$.

2. Products of α -rotations in SO(n)

Proof of Theorem 1.1. By assumption, we can write

$$\rho = \sigma_{u_1} \sigma_{v_1} \cdots \sigma_{u_k} \sigma_{v_k},$$

where $u_i, v_i \in \mathbb{R}^n$ (i = 1, ..., k) are nonzero and $k \ge 1$ is minimal. Moreover, we may assume that u_i and v_i are linearly independent for i = 1, ..., k. Hence, it is enough to show that every expression $\sigma_u \sigma_v$ $(u, v \in \mathbb{R}^n \setminus \{0\})$ is a product of at most 2m rotations by the angle α . As we have mentioned in Section 1, $\sigma_x \sigma_y$ is a rotation by the angle α if and only if the angle between x and y is $\alpha/2$. Let $w_0 = u, w_1, ..., w_m = v$ be nonzero vectors so that the angle between w_i and w_{i+1} is β/m (see Figure 1).

By changing u to $\pm u$ and v to $\pm v$ if necessary, we may assume that $\beta \le \pi/2$ (note that multiplying the axis u of a reflection σ_u by a scalar does not change σ_u). Since $2m = \lceil \pi/\alpha \rceil$, we have $\pi/\alpha \le 2m$ and hence $\beta/m \le \pi/(2m) \le \alpha$. We can write

$$\sigma_u \sigma_v = \sigma_{w_0} \sigma_{w_m} = (\sigma_{w_0} \sigma_{w_1})(\sigma_{w_1} \sigma_{w_2}) \cdots (\sigma_{w_{m-1}} \sigma_{w_m}).$$

Hence, it is enough to prove that for $i=1,\ldots,m-1$, the expression $\sigma_{w_i}\sigma_{w_{i+1}}$ can be written as a product of at most two rotations by the angle α . Since the angle between w_i and w_{i+1} is $\beta/m \le \alpha$, the problem is reduced to proving that if the angle β between α and α is at most α , then $\alpha_{\alpha}\sigma_{\alpha}$ is a product of at most two rotations by the angle α .

FIGURE 2. The ray w in the plane perpendicular to u and v.

We claim that we can find a nonzero vector w such that the angle between w and both u and v is $\alpha/2$. In this way, we may write $\sigma_u \sigma_v = (\sigma_u \sigma_w)(\sigma_w \sigma_v)$ and the conclusion follows.

To find w, consider the bisector w' of u and v. Consider a plane perpendicular to the subspace generated by u and v and passing through w' (since $n \ge 3$, this is always possible). In this plane, every ray w passing through the origin makes equal angles with u and v (see Figure 2). This angle attains its minimum when w lies on w'. Hence, the minimum value of this angle is $\beta/2$ and it can take an arbitrary value $\ge \beta/2$. In particular, the value $\alpha/2$ is attained since $\beta \le \alpha$.

3. Products of full α -rotations in SO(n)

Lemma 3.1. Let $\rho \in SO(n)$. The following conditions are equivalent:

- (a) $\langle x, \rho(x) \rangle = \cos(\alpha) \langle x, x \rangle$ for every $x \in \mathbb{R}^n$;
- (b) $\langle x, \rho(y) \rangle + \langle \rho(x), y \rangle = 2\cos(\alpha)\langle x, y \rangle$ for every $x, y \in \mathbb{R}^n$;
- (c) $\rho^2 2\cos(\alpha)\rho + id = 0$.

PROOF. To prove the implication (a) \Rightarrow (b), it suffices to replace x by x + y in (a). For the implication (b) \Rightarrow (a), put x = y in (b). For the equivalence (b) \Leftrightarrow (c), note that (b) is equivalent to the identity $\langle \rho^{-1}(x) + \rho(x) - 2\cos(\alpha)x, y \rangle = 0$ and this is also equivalent to (c) since \langle , \rangle is nondegenerate.

Lemma 3.2. The following statements hold.

- (a) If ρ (respectively ρ') is a full α -rotation on \mathbb{R}^n (respectively \mathbb{R}^m), then $\rho \oplus \rho'$ is a full α -rotation on \mathbb{R}^{n+m} .
- (b) If ρ is a full α -rotation on \mathbb{R}^n , then ρ^{-1} is a full α -rotation on \mathbb{R}^n .
- (c) Let $0 < \alpha < \pi$. Then SO(n) contains an α -rotation if and only if n is even.

Proof. To verify (a), note that

$$\langle x \oplus y, (\rho \oplus \rho')(x \oplus y) \rangle = \langle x, \rho(x) \rangle + \langle y, \rho(y) \rangle = \cos(\alpha)(\langle x, x \rangle + \langle y, y \rangle)$$
$$= \cos(\alpha)\langle x \oplus y, x \oplus y \rangle.$$

For (b), note that $\langle x, \rho^{-1}(x) \rangle = \langle \rho(x), x \rangle = \cos(\alpha) \langle x, x \rangle$ since ρ is an isometry.

To prove (c), consider a unit vector $x \in \mathbb{R}^n$. Since ρ is an α -rotation, we have $\langle x, \rho(x) \rangle = \cos \alpha$. As $\cos(\alpha) \neq \pm 1$, the vectors x and $\rho(x)$ are linearly independent. By Lemma 3.1(c), the subspace W generated by x and $\rho(x)$ is stable under ρ . Since the restriction of ρ to W^{\perp} (whose dimension is n-2) is also a full α -rotation, we can use induction to conclude that n is even. Conversely, let ρ be an ordinary α -rotation on \mathbb{R}^2 . By (a), the map $\bigoplus_{i=1}^{n/2} \rho$ is a full rotation on \mathbb{R}^n .

Proof of Theorem 1.2. By assumption, we can write

$$\rho = \sigma_{u_1} \sigma_{v_1} \cdots \sigma_{u_k} \sigma_{v_k},$$

where $u_i, v_i \in \mathbb{R}^n$ are nonzero and $k \ge 1$. By Theorem 1.1, every expression $\sigma_u \sigma_v$ can be written as a product of 2m' expressions of the form $\sigma_x \sigma_y$, where the angle between x and y is α . We may assume that x and y are linearly independent. Let W be the two-dimensional subspace generated by x and y.

It is enough to express $\sigma_x \sigma_y$ as a product of at most two full α -rotations on \mathbb{R}^n . Let w be a nonzero vector in W so that the angles between w and x and between w and y are both equal to $\alpha/2$ (in other words, w is a bisector for x and y). By Lemma 3.2, there exists a full α -rotation J on W^{\perp} . Hence, we can write $\sigma_x \sigma_y = (\sigma_x \sigma_w)(\sigma_w \sigma_y) = (\sigma_x \sigma_w)(\sigma_w \sigma_y)(\sigma_w \sigma_y) = (\sigma_x \sigma_w)(\sigma_w \sigma_y)(\sigma_w \sigma_y)(\sigma_w \sigma_y)$ and the claim is proved.

COROLLARY 3.3. If $n \ge 4$ is even, then every element of SO(n) is a product of at most 2n almost-complex structures.

Acknowledgements

I thank my colleague Mostafa Esfahanizadeh for inspiring discussions during the course of this work. I also thank the referee for a timely review of the manuscript.

References

- [1] E. Artin, Geometric Algebra (Interscience, New York, London, 1957).
- [2] M. Berger, *Geometry I*, Universitext (Springer, Berlin, 2009). (Translated from the 1977 French original by M. Cole and S. Levy; fourth printing of the 1987 English translation.)
- [3] E. W. Ellers, 'Products of half-turns', J. Algebra 99(2) (1986), 275–294.
- [4] E. W. Ellers and O. Villa, 'Half turns in characteristic 2', *Linear Algebra Appl.* 483 (2015), 221–226.
- [5] H. Ishibashi, 'On some systems of generators of the orthogonal groups', Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11 (1972), 96–105.
- [6] P. Scherk, 'On the decomposition of orthogonalities into symmetries', Proc. Amer. Math. Soc. 1 (1950), 481–491.

M. G. MAHMOUDI, Department of Mathematical Sciences, Sharif University of Technology, PO Box 11155-9415, Tehran, Iran e-mail: mmahmoudi@sharif.ir