SOME REMARKS ON PRAMARTS AND MILS

by ZHEN-PENG WANG† and XING-HONG XUE

(Received 10 January, 1992)

1. Notations and summary. Let F be a Banach space, (Ω, \mathcal{F}, P) a fixed probability space, D a directed set filtering to the right with the order \leq , and (\mathcal{F}_t, D) a stochastic basis of \mathcal{F} , i.e. (\mathcal{F}_t, D) is an increasing family of sub- σ -algebras of $\mathcal{F}: \mathcal{F}_s \subset \mathcal{F}_t$ for any $s, t \in D$ and $s \leq t$. Throughout this paper, (X_t) is an F-valued, (\mathcal{F}_t) -adapted sequence, i.e. X_t is \mathcal{F}_t -measurable, $t \in D$. We also assume that $X_t \in L^1$, i.e. $\int ||X_t|| < \infty$. We use I(H) to denote the indicator function of an event H. Let ∞ be a such element: $t < \infty$, $t \in D$, $\bar{D} = D \cup \infty$, and $\mathcal{F}_\infty = \sigma(\bigcup_{t \in D} \mathcal{F}_t)$. A stopping time is a map $\tau: \Omega \to \bar{D}$ such that $(\tau \leq t) \in \mathcal{F}_t$,

 $t \in D$. A stopping time τ is called simple (countable) if it takes finitely (countably) many values in $D(\bar{D})$. Let T and T_c be the sets of simple and countable stopping times respectively and $T_f = \{\tau \in T_c : \tau < \infty \text{ a.s.}\}$. Clearly, (T, \leq) and (T_f, \leq) are directed sets filtering to the right. For $\tau \in T_c$, let

$$\mathcal{F}_{\tau} = \{ H \in \mathcal{F} : H(\tau = t) \in \mathcal{F}_{t} \text{ for all } t \in D \}, \qquad X_{\tau} = \sum_{t \in D} X_{t} I(\tau = t),$$

and

$$\mathscr{B} = \left\{ (X_t) : \sup_{\tau \in T} \int \|X_{\tau}\| < \infty \right\},\,$$

$$\mathscr{C} = \left\{ (X_t) : \int_{(\tau < \infty)} ||X_\tau|| < \infty, \ \tau \in T_c \right\},\,$$

$$\bar{\mathscr{C}} = \left\{ (X_t) : \text{there is } \sigma \in T_f \text{ such that } \int_{(\tau < \infty)} \|X_\tau\| < \infty, \ \sigma \le \tau \in T_c \right\},$$

 $\mathcal{S} = \{(X_t) : (X_\tau, \tau \in T) \text{ converges stochastically (i.e. in probability) in the norm topology}\},$ $\mathcal{E} = \{(X_t) : (X_\tau, \tau \in T) \text{ converges essentially in the norm topology}\}.$

Clearly, $\bar{\mathscr{C}}\supset\mathscr{C}\supset\mathscr{B}$ and $\mathscr{C}\subset\mathscr{S}$. If (\mathscr{F}_t) satisfies the Vitali condition V, particularly, if $D=\mathbf{N}\equiv\{1,2,\ldots\}$, then $(X_t)\in\mathscr{C}$ if and only if $(X_t)\in\mathscr{S}$ (cf. [18], [23], and [20]). Hence, in this case, $\mathscr{S}=\mathscr{E}$.

Mucci ([21], [22]) and Millet and Sucheston ([19], [20]) introduced the notations of martingales in the limit, pramarts, and subpramarts, generalizing those of martingales, amarts (Edgar and Sucheston [7]), uniform amarts (Bellow [2]), and submartingales, and provided some sufficient conditions to ensure that $(X_t) \in \mathcal{S}$ (cf. monographs [10] and [15]).

DEFINITION 1 ([21], [20]). A stochastic process (X_t, \mathcal{F}_t, D) is called a martingale in the limit if

ess
$$\lim_{t \in D} \operatorname{ess} \sup_{t \le s \in D} ||X_t - E(X_s \mid \mathcal{F}_t)|| = 0 \text{ a.s.}$$

† Research supported by the National Natural Science Foundation of China.

Glasgow Math. J. 35 (1993) 239-251.

Definition 2 ([19], [20]). (i) A stochastic process (X_t, \mathcal{F}_t, D) is called a *pramart* if

s.
$$\lim_{\sigma \leq \tau: \sigma, \tau \in T} ||X_{\sigma} - E(X_{\tau} \mid \mathscr{F}_{\sigma})|| = 0,$$

i.e., for each $\epsilon > 0$, there exists $\sigma_0 \in T$ such that, for all σ , $\tau \in T$ and $\sigma_0 \le \sigma \le \tau$,

$$P\{||X_{\sigma} - E(X_{\tau} | \mathscr{F}_{\sigma})|| > \epsilon\} < \epsilon.$$

(ii) A stochastic process (X_t, \mathcal{F}_t, D) is called a *subpramart*, if F is a Banach lattice, and if

s.
$$\lim_{\sigma \in \mathbb{T} \cap T_{\sigma}} \| (X_{\sigma} - E(X_{\tau} \mid \mathscr{F}_{\sigma}))^{+} \| = 0.$$

Millet and Sucheston [20] proved that if the Vitali condition V holds (it is also necessary), then every pramart (X_t) is a martingale in the limit. There is a more general class of adapted processes.

DEFINITION 3 [31]. (i) A stochastic process (X_t, \mathcal{F}_t, D) is called a *mil* if

s.
$$\lim_{\sigma \leq t; \sigma \in T; t \in D} ||X_{\sigma} - E(X_t | \mathscr{F}_{\sigma})|| = 0,$$

i.e., for each $\epsilon > 0$, there exists $\sigma_0 \in T$ such that, for all $\sigma_0 \le \sigma \in T$ and $\sigma \le t \in D$,

$$P\{||X_{\sigma} - E(X_{t} | \mathscr{F}_{\sigma})|| > \epsilon\} < \epsilon.$$

The mil defined here was called mil(3) in [31], and when $D = \mathbb{N}$, it is equivalent to Talagrand's mil [28] (see [31]). Clearly, pramart \Rightarrow mil, and martingale in the limit \Rightarrow mil [31]. The following theorem was proved by Millet and Sucheston [19].

THEOREM A [19]. Let $(X_n) \equiv (X_n, n \in \mathbb{N})$ be a pramart of class \mathcal{B} . If F has the Radon-Nikodym property, then $(X_n) \in \mathcal{E}$.

In a real-valued case Millet and Sucheston [20] proved this result.

THEOREM B [18]. Let (X_t) be a real-valued subpramart satisfying condition (d), i.e.

$$\lim \inf_{D} \int X_{t}^{-} + \lim \inf_{D} \int X_{t}^{+} < \infty.$$

Then $(X_t) \in \mathcal{S}$.

Later, Egghe [9], [10], Słaby [26], [27] and Frangos [11] worked on a problem raised by Sucheston: if F has the Radon-Nikodym property, does every L^1 -bounded pramart (X_t) belong to \mathcal{S} ? When F is a Banach lattice, Słaby and Frangos proved the following positive subpramart convergence theorem, extending Heinich's positive submartingale convergence theorem [16].

THEOREM C ([11] and [27]). Let F be a Banach lattice with the Radon-Nikodym property. If (X_t) is a positive subpramart satisfying $\liminf \int ||X_t|| < \infty$, and if (\mathcal{F}_t) satisfies the Vitali condition V and F is separable, then $(X_t) \in \mathcal{E}$.

They also solved Sucheston's problem when F is a separable dual (Frangos [11]), or a weakly sequentially complete space (Słaby [27]). The following theorem completely solved the problem.

THEOREM D. (i) ([28], also see [31].) Let (X_t) be a mil satisfying $\liminf_{t} \int ||X_t|| < \infty$. If F has the Radon-Nikodym property, then $(X_t) \in \mathcal{G}$.

(ii) ([31].) If $F = R_1$ and (X_t) is a mil satisfying

$$\lim\inf_{t}\left\{\min\int X_{t}^{+},\int X_{t}^{-}\right\}<\infty,$$

then $(X_t) \in \mathcal{S}$.

Part (ii) of Theorem D is an improvement of Mucci's L^1 -bounded, real-valued martingale in the limit convergence theorem [22].

Suggested by Chow's submartingale convergence theorem ([4], also see Remark 2), Yamasaki [34] proved the following theorem.

THEOREM E [34]. Suppose that (X_n) is a real-valued martingale in the limit and $(X_n) \in \mathcal{C}$. Then $(X_n) \in \mathcal{C}$.

Yamasaki [34] also provided an example, showing that there exists a real-valued martingale in the limit which belongs to \mathscr{C} , but for which $\int X_n^+ \uparrow \infty$.

In this paper we show that Theorem E can be extended to vector-valued mils, and for pramarts the condition $\lim \inf \int ||X_t|| < \infty$ in Theorem D can be weakened to

 $\lim \inf_{\tau \in T} \int ||X_{\tau}|| < \infty$. On the other hand, it is of interest to characterize a subclass of \mathcal{S} .

Using Bellow's uniform amart convergence theorem, we can get: if F has the Radon-Nikodym property and the net $(X_{\tau}, \tau \in T)$ is uniformly integrable, then (X_n) is a uniform amart if and only if $(X_n) \in \mathcal{E}$ (Gut [14]). Krengel and Sucheston [17] also provided an example showing that there exists a real-valued $(X_n) \in \mathcal{B} \cap \mathcal{E}$ such that (X_n) is uniformly integrable, but (X_n) is not an amart. However, Talagrand [28] and Wang and Xue [31] proved that if (X_i) is uniformly integrable, then $(X_i) \in \mathcal{F}$ if and only if (X_i) is a mil, and Xue [32] proved that the converse of Theorem A is true: if $(X_n) \in \mathcal{F} \cap \mathcal{B}$, then (X_n) is a pramart. In this paper we prove that the converse of Theorem E is also true. More specifically, we have Theorem 1.

THEOREM 1. Suppose that F has the Radon-Nikodym property.

- (a) If $(X_t) \in \bar{\mathcal{C}}$, then
- (i) $(X_t) \in \mathcal{S} \Leftrightarrow (X_t)$ is a pramart $\Leftrightarrow (X_t)$ is a mil, and if the Vitali condition V holds,

$$(X_t) \in \mathcal{S} \Leftrightarrow (X_t)$$
 is a martingale in the limit;

- (ii) if (X_t) is a pramart (mil), so is $(||X_t||)$, and under the Vitali condition V, if (X_t) is a martingale in the limit, so is $(||X_t||)$.
 - (b) If (X_t) is a pramart satisfying $\liminf_{\tau \in T} \int ||X_{\tau}|| < \infty$, then $(X_t) \in \mathcal{G}$.

Suppose that F is a Banach lattice. Then $(X_t) \in \mathcal{S} \Rightarrow (|X_t|) \in \mathcal{S}$, where

 $|X_t| = X_t^+ + X_t^-$. Since, for $x \in F$,

$$X_t \vee x = \frac{X_t + x + |X_t - x|}{2}, \qquad X_t \wedge x = \frac{X_t + x - |X_t - x|}{2}$$
 (1)

(cf. [25, Proposition 2.5]), we have the following corollary.

COROLLARY 1. Suppose that F is a Banach lattice with the Radon-Nikodym property. Then the set of pramarts (mils) of class $\bar{\mathcal{C}}$ is a vector lattice; and, under the Vitali condition V, the set of martingales in the limit of class $\bar{\mathcal{C}}$ is also a vector lattice.

When F is a Banach lattice, we have similar results for subpramarts. The part (i) of the following theorem is an improvement of Theorem C.

THEOREM 2. Let F be a Banach lattice with the Radon-Nikodym property and (X_t) a positive subpramart. If one of the following holds, then $(X_t) \in \mathcal{S}$:

- (i) $\lim \inf_{\tau \in T} \int ||X_{\tau}|| < \infty;$
- (ii) $(X_t) \in \bar{\mathcal{C}}$ and \mathcal{F}_{∞} is nonatomic or s. $\lim\inf_{\tau \in T} ||X_{\tau}|| < \infty$ a.s., where

s.
$$\lim \inf_{\tau \in T} ||X_{\tau}|| = \operatorname{ess sup} \Big\{ \xi : \lim_{\tau \in T} P(||X_{\tau}|| < \xi) = 0 \Big\},$$

the stochastic lower limit of $(\|X_{\tau}\|, \tau \in T)$.

For real-valued processes, we show that condition (d) in Theorem B can be weakened to a one-sided condition and the requirement of being positive in Theorem 2 can be dropped.

THEOREM 3. Let $F = R_1$.

- (a) If (i) or (ii) holds, then $(X_t) \in \mathcal{G}$:
- (i) (X_t) is a subpramart satisfying $\lim_{\tau \in T} \int X_{\tau}^+ < \infty$;
- (ii) (X_t) is a subpramart or a mil, $(X_t^+) \in \bar{\mathcal{C}}$, and \mathcal{F}_{∞} is nonatomic or $s \cdot \lim \inf_{\tau \in T} ||X_{\tau}|| < \infty \ a.s.$.
 - (b) If $(X_t) \in \mathcal{G}$ and $(X_t^-) \in \tilde{\mathcal{C}}$, then (X_t) is a subpramart.

Part of Theorem 3 was proved by Wang [29]. The proof here is new.

COROLLARY 2. Suppose that $F = R_1$.

- (a) If $(X_t^-) \in \overline{\mathscr{C}}$ and $\liminf_{\tau \in T} \int X_{\tau}^+ < \infty$, then $(X_t) \in \mathscr{S}$ if and only if (X_t) is a subpramart.
 - (b) If $(X_t) \in \bar{\mathcal{C}}$ and if s. $\lim_{\tau \in T} ||X_{\tau}|| < \infty$ a.s. or \mathcal{F}_{∞} is nonatomic, then

$$(X_t) \in \mathcal{S} \Leftrightarrow (X_t)$$
 is a subpramart $\Leftrightarrow (X_t)$ is a pramart.

Austin, Edgar, and Ionescu Tulcea [1] (also see [7]) proved that L^1 -bounded, real-valued amarts form a vector lattice. This result was extended by Ghoussoub [12] to L^1 -bounded, Banach lattice-valued order amarts when the Radon-Nikodym property holds, and by Schmidt [24] to L^1 -bounded, l^1 -valued uniform amarts. It is natural to ask: can we change "class \mathcal{E} " to " L^1 -bounded class" in Corollary 1? For martingales in the

limit and mils, it is impossible. Indeed, Bellow and Dvoretzky [3] presented an example showing that there exists a uniformly integrable, real-valued martingale in the limit (X_n) such that $(|X_n|)$ is not a martingale in the limit, and Talagrand [28] constructed an L^1 -bounded, real-valued martingale in the limit (X_n) with $X_n \to 0$ a.s. such that $(|X_n|)$ is not a mil. Hence, the set of L^1 -bounded, real-valued martingales in the limit (mils) is not a vector lattice. Talagrand also presented an L^1 -bounded, l^2 -valued pramart (X_n) such that $(|X_n|)$ is not a pramart. However, Talagrand [28] and Wang [29] proved that the set of L^1 -bounded, real-valued pramarts is a vector lattice. In fact, Talagrand and Wang proved that if (X_n) is a real-valued pramart satisfying $\lim_{n \to \infty} \int |X_n| < \infty$, then so is $(|X_n|)$. The following theorem is an improvement of their result.

THEOREM 4. If (X_t) is a real-valued pramart satisfying $\lim_{\tau \in T} \min\{\int X_{\tau}^-, \int X_{\tau}^+\} < \infty$, then $(|X_t|)$ is a pramart, hence, for each $\lambda \in R_1$, both $(X_t \vee \lambda)$ and $(X_t \wedge \lambda)$ are pramarts.

In Section 2 we characterize real-valued pramarts and subpramarts via Snell's envelopes. We prove Theorems 1-4 in Section 3. In Section 4 we make some comments pointing out that: (i), for pramarts, the condition $\lim\inf_{\tau\in T}\int\|X_{\tau}\|<\infty$ is weaker than the condition $\liminf\limits_{t}\int\|X_{t}\|<\infty$; (ii), in general, the condition $(X_{t}^{-})\in\bar{\mathscr{C}}$ in Theorem 3 cannot be dropped; (iii) the condition $\liminf\limits_{\tau\in T}\inf\{\int X_{\tau}^{+},\int X_{\tau}^{-}\}<\infty$ in Theorem 4 is necessary; (iv), in general, the set $\bar{\mathscr{C}}$ is larger than \mathscr{C} .

2. Snell's envelopes and characterizations of pramarts and subpramarts. In this section we assume that $F = R_1$. We use the following Snell's envelopes to characterize real-valued pramarts and subpramarts. For a real-valued process (X_t) we denote

$$Y_{t} = \operatorname{ess} \sup_{t \leq \tau \in T} E(X_{\tau} \mid \mathscr{F}_{t}), \qquad P_{t} = \operatorname{ess} \sup_{t \leq \tau \in T} E(X_{\tau}^{+} \mid \mathscr{F}_{t}), \qquad R_{t} = \operatorname{ess} \inf_{t \leq \tau \in T} E(X_{\tau} \mid \mathscr{F}_{t}).$$

The following lemma is well known in the martingale theory and the theory of optimal stopping (cf. [5], [13], and [23]).

Lemma 1. $(Y_{\tau}, \mathcal{F}_{\tau}, T)$ is a generalized supermartingale (i.e. Y_{τ} takes values in $(-\infty, \infty]$, $EY_{\tau}^- < \infty$ and $E(Y_{\tau} \mid \mathcal{F}_{\sigma}) \le Y_{\sigma}$ a.s. for all τ , $\sigma \in T$ and $\tau \ge \sigma$), and for any $\tau \in T$ there exist $(\tau_n) \subset T$ such that $\tau \le \tau_n$ and

$$E(X_{\tau_n} | \mathscr{F}_{\tau}) \uparrow Y_{\tau} = \text{ess sup}\{E(X_{\sigma} | \mathscr{F}_{\tau}) : \tau \leq \sigma \in T\}.$$

Therefore, if $\int |Y_t| < \infty$, $t \in D$, then $(-Y_t)$ is a subpramart. Moreover, if $\sup_t \int |Y_t| < \infty$, then (Y_t) is an amart, hence a pramart.

PROPOSITION 1. (i) (X_t) is a subpramart if and only if $(X_\tau - R_\tau, \tau \in T)$ converges to zero in probability. In this case, $\lim_{\tau \in T} P(R_\tau = -\infty) = 0$.

(ii) (X_t) is a pramart if and only if $(Y_\tau - R_\tau, \tau \in T)$ converges to zero in probability. In this case, $\lim_{\tau \in T} P(R_\tau = -\infty) = \lim_{\tau \in T} P(Y_\tau = \infty) = 0$.

Proof. For any $\tau \in T$, by Lemma 1, we can choose $\tau \le \tau_n \in T$ such that $E(X_{\tau_n} | \mathcal{F}_{\tau}) \downarrow R_{\tau}$. Since $X_t \ge R_t$ a.s.,

$$\sup_{\tau \leq \sigma \in T} P(X_{\tau} - E(X_{\sigma} \mid \mathcal{F}_{\tau}) > \epsilon) \leq P\left(\text{ess } \sup_{\tau \leq \sigma \in T} (X_{\tau} - E(X_{\sigma} \mid \mathcal{F}_{\tau})) > \epsilon\right)$$

$$= P(X_{\tau} - R_{\tau} > \epsilon) = P(|X_{\tau} - R_{\tau}| > \epsilon) = \int \lim_{n} I(X_{\tau} - E(X_{\tau_{n}} \mid \mathcal{F}_{\tau}) > \epsilon)$$

$$= \lim_{n} \int I(X_{\tau} - E(X_{\tau_{n}} \mid \mathcal{F}_{\tau}) > \epsilon) \leq \sup_{\tau \leq \sigma \in T} P(X_{\tau} - E(X_{\sigma} \mid \mathcal{F}_{\tau}) > \epsilon).$$

Hence, (X_t) is a subpramart if and only if $(X_\tau - R_\tau, \tau \in T)$ converges to zero in probability. In this case, $\lim_{\tau \in T} P(R_\tau = -\infty) \le \lim_{\tau \in T} P(X_\tau - R_\tau > 1) = 0$. Finally (ii) follows from (i) and the symmetric property.

COROLLARY 3. Suppose that $(X_{\tau}, \tau \in T)$ converges to zero in probability. Then

- (i) (X_t) is a subpramart if and only if $(R_\tau, \tau \in T)$ converges to zero in probability;
- (ii) if, in addition, (X_t) is nonnegative, then (X_t) is a pramart if and only if $(Y_{\tau}, \tau \in T)$ converges to zero in probability.

REMARK 1. When (X_t) is nonpositive, (i) in Proposition 1 was proved by Millet and Sucheston [20]. The proof here is adopted from their paper. When $D = \mathbb{N}$, (ii) in Corollary 3 is an analogue of Theorem 11 in [28].

3. Proofs of Theorems 1-4. To prove Theorems 1-4, we need the following lemmas. Let

$$W_t = \operatorname{ess} \sup_{t \leq \tau \in T} E(\|X_{\tau}\| \mid \mathscr{F}_t), \qquad A_t = (W_t = \infty).$$

DEFINITION 4 (cf. [10]). Let F be a Banach lattice. A stochastic process (X_t, \mathcal{F}_t, D) is called a GBT (a game which becomes better with time), if

s.
$$\lim_{t \le t/t} ||(X_t - E(X_s \mid \mathcal{F}_t))^+|| = 0.$$

LEMMA 2. (i) ([33]) $A_t \subset A_s$ a.s. for all $s \le t$. Hence $A^* \equiv \text{ess lim } A_t$ exists. (ii) If $(X_t) \in \mathcal{C}$, then $P(A^*) = 0$ or A^* is a union of atoms of \mathcal{F}_{∞} .

Proof. When $(X_t) \in \mathcal{C}$, (ii) was proved in [33]. Now assume that $(X_t) \in \overline{\mathcal{C}}$ and for some $\sigma \in T_f$ and each $\sigma \leq \tau \in T_c$, $\int_{(\tau < \infty)} ||X_\tau|| < \infty$. Choose $(t_n) \subset D$ such that $P(\sigma < t_n) \uparrow 1$. Since $(X_t I(\sigma \leq t_n), \mathcal{F}_t, t_n \leq t \in D) \in \mathcal{C}$, $A^* \cap (\sigma \leq t_n)$ is a union of atoms of \mathcal{F}_∞ or ϕ , $n \geq 1$, and so is A^* .

LEMMA 3. Suppose that (X_t) is a real-valued GBT (subpramart or mil) and $(X_t^+) \in \mathscr{C}$. Then $(X_t)((X_\tau, \tau \in T))$ converges stochastically to a r.v. ξ such that $-\infty < \xi \le +\infty$, $(\xi = +\infty) = A^{+*}$ a.s., and A^{+*} is a union of atoms of \mathscr{F}_{∞} or ϕ , where $A^{+*} = \text{ess lim } A_t^+$, $A_t^+ = (P_t = \infty)$. *Proof.* As the proof of Lemma 2 we may assume that $(X_t^+) \in \mathscr{C}$. Then the conclusions for GBTs and subpramarts follow from Theorems 9 and 10 in [33]. Now assume that (X_t) is a mil. Choose $(t_n) \subset D$ such that $A_{t_n}^+ \downarrow A^{+*}$. For any fixed $n \ge 1$ and $K \ge 1$, by Lemma 1, it is easy to see that $(X_t I(P_{t_n} \le K), t \ge t_n)$ is a mil and

$$\lim\inf EX_{t}^{+}I(P_{t_{n}}\leq K)\leq EP_{t_{n}}I(P_{t_{n}}\leq K)<\infty.$$

Hence $(X_t I(P_{t_n} \le K)) \in \mathscr{S}$ (Theorem D). Since $\bigcup_{n \ge 1} \bigcup_{K \ge 1} (P_{t_n} \le K) = \Omega \setminus A^{+*}$, $(X_t I(\Omega \setminus A^{+*})) \in \mathscr{S}$. Since every mil is a GBT, s. $\lim_{T} X_{\tau} I(A^{+*}) = \infty I(A^{+*})$.

REMARK 2. Suppose that (X_n) is a real-valued process and $(X_n^+) \in \mathscr{C}$. Chow [4] proved that if (X_n) is a submartingale, then (X_n) converges a.s. to a r.v. ξ which takes values in $(-\infty, +\infty]$. Yamasaki [34] obtained the same result for martingales in the limit. In Lemma 3, we extend their results to subpramarts and mils and show that $(\xi = +\infty)$ is a union of atoms of \mathscr{F}_{∞} or ϕ .

Let F^* be the dual space of F and F^{*+} the positive cone of F^* if F is a Banach lattice.

LEMMA 4.(i) Suppose that F is a Banach lattice. If (X_t) is a positive GBT, then so are $(\|X_t\|)$ and $(f(X_t))$, $f \in F^{*+}$.

- (ii) If F is a Banach lattice and (X_t) is a positive subpramart, then so are $(||X_t||)$ and $(f(X_t)), f \in F^{*+}$.
 - (iii) If (X_t) is a mil, then $(||X_t||)$ is a GBT and $(f(X_t))$ is a mil, $f \in F^*$.

Proof. If F is a Banach lattice and (X_t) is positive, then for $t,s \in D$ and $\sigma \in T$,

$$||(X_t - E(X_s \mid \mathcal{F}_t))^+|| \ge (||X_t|| - ||E(X_s \mid \mathcal{F}_t)||)^+ \ge (||X_t|| - E(||X_s|| \mid \mathcal{F}_t))^+,$$

and

$$\|(X_t - E(X_s \mid \mathcal{F}_t))^+\| \ge \frac{f(X_t - E(X_s \mid \mathcal{F}_t))^+}{\|f\|} \ge \frac{(f(X_t) - E(f(X_s) \mid \mathcal{F}_t))^+}{\|f\|}, f \in F^{*+} \setminus 0,$$

(i) holds. Similarly, we get (ii). Since

$$||X_t - E(X_s | \mathcal{F}_t)|| \ge ||X_t|| - E(||X_s||| \mathcal{F}_t),$$

and

$$||X_{\sigma} - E(X_{s} \mid \mathscr{F}_{\sigma})|| \ge \frac{|f(X_{\sigma} - E(X_{s} \mid \mathscr{F}_{\sigma}))|}{||f||} = \frac{|f(X_{\sigma}) - E(f(X_{s}) \mid \mathscr{F}_{\sigma})|}{||f||}, f \in F^{*} \setminus 0,$$

(iii) holds.

LEMMA 5. Suppose that (X_t) is a mil and $(X_t) \in \overline{\mathscr{C}}$. Then $P(A^*) = 0$.

Proof. Assume that $P(A^*) > 0$. By Lemma 2, we may assume that A^* is an atom of \mathscr{F}_{∞} and $X_t = x_t$ on A^* . Since (X_t) is a mil, by Lemmas 3 and 4,

 $\lim_{t} f(x_{t}) \text{ exists and is finite for each } f \in F^{*},$

and

$$||x_t|| \to \infty$$

which contradicts the Banach-Steinhaus theorem.

When D = N, the following lemma was proved in [32]. The proof here is new.

LEMMA 6. Assume that $(X_t) \in \mathcal{B} \cap \mathcal{G}$. Then (X_t) is a pramart.

Proof. Assume that $(X_{\tau}, \tau \in T)$ converges stochastically to X. By Fatou's lemma, $X \in L^1$. Let

$$Z_t = X_t - E(X \mid \mathscr{F}_t).$$

Then $(Z_t) \in \mathcal{B}$. Clearly, we need only to show that (Z_t) is a pramart. Since $(E(X \mid \mathcal{F}_{\tau}), \tau \in T)$ converges stochastically to X, $(\|Z_{\tau}\|, \tau \in T)$ converges stochastically to zero. Hence, we need only to show that $(S_{\tau}, \tau \in T)$ converges stochastically to zero, where

$$S_t = \operatorname{ess} \sup_{t \le \sigma \in T} E(||Z_{\sigma}|| ||\mathscr{F}_t).$$

First we show that $(S_t) \in \mathcal{G}$. By Lemma 1, (S_t) is a pramart satisfying

$$\sup_{t\in D}\int |S_t|=\sup_{\tau\in T}\int \|Z_\tau\|\leq \sup_{\tau\in T}\int \|X_\tau\|+\int \|X\|<\infty.$$

Hence, by Theorem B, $(S_t) \in \mathcal{S}$. Assume that $(S_\tau, \tau \in T)$ does not converge stochastically to zero, then $(\|Z_\tau\| - S_\tau, \tau \in T)$ converges stochastically to a nonpositive r.v. ξ such that $P(\xi < 0) > 0$, since $S_t \ge \|Z_t\|$ and (S_t) , $(\|Z_t\|) \in \mathcal{S}$. Then, by Fatou's lemma,

$$\lim_{\tau \in T} \inf \int (S_{\tau} - ||Z_{\tau}||) \ge \int \lim_{\tau \in T} (S_{\tau} - ||Z_{\tau}||) > 0.$$
 (2)

On the other hand, by Lemma 1,

$$\lim_{\tau \in T} \int S_{\tau} = \lim_{\tau \in T} \left(\sup_{\tau \leq \tau' \in T} \int ||Z_{\tau'}|| \right) = \lim \sup_{\tau \in T} \int ||Z_{\tau}|| < \infty,$$

which contradicts (2).

LEMMA 7. If $(X_t) \in \mathcal{G} \cap \bar{\mathcal{C}}$, then $P(A^*) = 0$.

Proof. Assume that $(X_t) \in \mathcal{F} \cap \tilde{\mathcal{C}}$ and $P(A^*) > 0$. Then, by Lemma 2, we may assume that A^* is an atom of \mathcal{F}_{∞} , and A_t is an atom of \mathcal{F}_t such that $A_t \supset A^*$, $||X_t|| = a_t$ on A_t , and $\lim a_t = a \in R_1$. We may also assume that $a_t < a + 1$, $t \in D$. For any $\sigma \in T_f$, there is $t_0 \in D$, $P(A^* \cap (\sigma = t_0)) > 0$. Since $(\sigma = t_0) \in \mathcal{F}_{t_0}$, $A_{t_0} \subset (\sigma = t_0)$. Since $W_{t_0} = \infty$ on A_{t_0} , there is $t_0 \leq \tau_1 \in T$ such that $E(||X_{\tau_1}||| \mathcal{F}_{t_0}) > (a + 2)/P(A_{t_0})$ on A_{t_0} , and there is $t_1 \in D$ such that $P(A^* \cap (\tau_1 = t_1)) > 0$ (then $A_{t_1} \subset (\tau_1 = t_1)$). Assume that we have chosen $t_{n-1} \leq \tau_n \in T$ such that $E(||X_{\tau_n}||| \mathcal{F}_{t_{n-1}}) \geq (a + 2)/P(A_{t_{n-1}})$ on $A_{t_{n-1}}$. Then there is $t_n \in D$ such that $P(A^* \cap (\tau_n = t_n)) > 0$, (hence $A_{t_n} \subset (\tau_n = t_n)$). And we can choose $t_n \leq \tau_{n+1} \in T$ such that $E(||X_{\tau_{n+1}}|| ||\mathcal{F}_{t_n}) \geq (a + 2)/P(A_{t_n})$ on A_{t_n} . Let $\tau = \sum_{n \geq 1} \tau_n I(A_{t_{n-1}} \setminus A_{t_n}) + \sigma I(\Omega \setminus A_{t_0}) + \infty I(A^*)$.

Then $\sigma \leq \tau \in T_c$ and

$$E \|X_{\tau}\| I(\tau < \infty) \ge \sum_{n} (E \|X_{\tau_{n}}\| I(A_{t_{n-1}}) - E \|X_{t_{n}}\| I(A_{t_{n}}))$$

$$\ge \sum_{n} (E \|X_{\tau_{n}}\| I(A_{t_{n-1}}) - (a+1)) \ge \sum_{n} (E(E(\|X_{\tau_{n}}\|\| \mathscr{F}_{t_{n-1}})I(A_{t_{n-1}}) - (a+1)) = \infty.$$

Hence, for any $\sigma \in T_f$ there is $\sigma \le \tau \in T_c$ such that $E ||X_\tau|| I(\tau < \infty) = \infty$, i.e. $(X_t) \notin \bar{\mathcal{C}}$, a contradiction.

Proof of Theorem 1. (a) Since $(X_t) \in \overline{\mathcal{C}}$, by Lemmas 5 and 7, either $(X_t) \in \mathcal{S}$ or being a mil implies $P(A^*) = 0$, and we can choose $(t_k) \subset D$ such that $t_1 < t_2 < \ldots$ and $P(A_{t_k}) \downarrow 0$. For $m, k \in \mathbb{N}$ define

$$X_t^k = X_t I(W_{t_k} < m), \qquad t_k \le t \in D.$$

Since $E(||X_{\tau}|||\mathcal{F}_t) \leq W_t$, a.s., $t \leq \tau \in T$, by Lemma 1,

$$\sup_{t_k \leq \tau \in T} \int ||X_{\tau}^k|| \leq \int W_{t_k}(W_{t_k} < m) < \infty.$$

Hence, $(X_t^k, t_k \le t \in D)$ is of class \mathcal{B} . If (X_t) is a mil, then $(X_t^k, t_k \le t \in D)$ is a mil of class \mathcal{B} , and by Theorem D, $(X_t^k, t_k \le t \in D) \in \mathcal{S}$; if $(X_t) \in \mathcal{S}$, then, $(X_t^k, t_k \le t \in D) \in \mathcal{B} \cap \mathcal{S}$, and, by Lemma 6, $(X_t^k, t_k \le t \in D)$ is a pramart. Since $\bigcup_{k,m \in \mathbb{N}} (W_{t_k} < m) = \Omega \setminus A^* = \Omega$ a.s. and every pramart is a mil (a martingale in the limit, if the Vitali condition holds), we get (a).

Now we prove (b). Assume that (X_t) is a pramart satisfying $\lim_{\tau \in T} \int ||X_{\tau}|| < \infty$. It is easy to show that $(X_{\tau}, \mathcal{F}_{\tau}, \tau \in T)$ is a mil, and applying Theorem D, $(X_t) \in \mathcal{S}$.

Proof of Theorem 2. Proof of (i). Suppose that F has the Radon-Nikodym property and (X_t) is a positive subpramart satisfying $\lim \inf_{\tau \in T} \int ||X_{\tau}|| = M < \infty$. Choose $(t_n) \subset D$ such that $t_1 \leq t_2 \leq \ldots$ and

$$\sup_{t_n \le \tau \le \sigma; \tau, \sigma \in T} P(\|(X_{\tau} - E(X_{\sigma} \mid \mathscr{F}_{\tau}))^+\| > 1/n) < 2^{-n}.$$
(3)

We claim that the following fact holds:

for all
$$(\tau_n, \sigma_n) \subset T$$
 such that $t_n \leq \tau_n \leq \sigma_n \leq \tau_{n+1}$, and $\int ||X_{\sigma_n}|| < M+1$, $(X_{\tau_1}, X_{\sigma_1}, \dots, X_{\tau_n}, X_{\sigma_n}, \dots)$ converges almost surely to a finite r.v.

Proof of the claim. For $n \ge 1$, let

$$egin{aligned} ar{X}_{2n-1} &= X_{ au_n}, & & ar{\mathscr{F}}_{2n-1} &= \mathscr{F}_{ au_n}; \ ar{X}_{2n} &= X_{\sigma_n}, & & ar{\mathscr{F}}_{2n} &= \mathscr{F}_{\sigma_n}. \end{aligned}$$

Then, $(\tilde{X}_n, \tilde{\mathcal{F}}_n, n \in \mathbb{N})$ is a positive subpramart satisfying

$$\lim \inf_{n} \int \|\bar{X}_{n}\| \leq \lim \inf_{n} \int \|X_{\sigma_{n}}\| < \infty.$$

Since \bar{X}_n being Bochner integrable is separably valued, so is $(\bar{X}_n, n \in \mathbb{N})$. By Theorem C, $(\bar{X}_n, n \in \mathbb{N}) \in \mathcal{E}$, and the claim has been proved.

The above claim implies that $(X_t) \in \mathcal{G}$. In fact, if $(X_t) \notin \mathcal{G}$, then there is a c > 0 such that for any $t \in D$ there exist $t \le \tau$, $\rho \in T$,

$$P(||X_{\tau} - X_{o}|| > c) > c. \tag{4}$$

Choose $t_1 \le \tau_1$, $\rho_1 \in T$ such that (4) holds. Pick $\sigma_1 \in T$ such that $\sigma_1 \ge \tau_1$, $\sigma_1 \ge \rho_1$, $\sigma_1 \ge t_2$, and $\int ||X_{\sigma_1}|| < M + 1$. Assume that τ_n, ρ_n and σ_n have been chosen, choose τ_{n+1}, ρ_{n+1} and $\sigma_{n+1} \in T$ such that $\tau_{n+1} \ge \sigma_n$, $\rho_{n+1} \ge \sigma_n$, and $\sigma_{n+1} \ge \tau_{n+1}$, $\sigma_{n+1} \ge \rho_{n+1}$, $\sigma_{n+1} \ge t_{n+2}$, $\int ||X_{\sigma_{n+1}}|| < M + 1$, and

$$P(||X_{\tau_{n+1}} - X_{\rho_{n+1}}|| > c) > c.$$
(5)

Then, by the claim,

$$(X_{\tau_1}, X_{\sigma_1}, \ldots, X_{\tau_n}, X_{\sigma_n}, \ldots)$$

and

$$(X_{\rho_1}, X_{\sigma_1}, \ldots, X_{\rho_n}, X_{\sigma_n}, \ldots)$$

converge almost surely to finite r.v.s. Hence,

$$(X_{\tau_1}, X_{\rho_1}, \ldots, X_{\tau_n}, X_{\rho_n}, \ldots)$$

converges almost surely to a finite r.v., which contradicts (5).

Proof of (ii). Under the assumptions of (ii), by Lemmas 2 and 3, $P(A^*) = 0$. Define X_t^k as that in the proof of Theorem 1. Then $(X_t^k, t_k \le t \in D)$ is a positive, L^1 -bounded subpramart, therefore, by part (i) of Theorem 2, $(X_t^k, t_k \le t \in D) \in \mathcal{S}$, which implies $(X_t) \in \mathcal{S}$.

Proof of Theorem 3. (a) Assume that (X_t) is a real-valued subpramart and $\lim \inf_{\tau \in T} \int X_{\tau}^+ < \infty$. By Proposition 1, we can choose $(t_n) \subset D$ such that $t_1 \le t_2 \le \ldots$ and $P(R_{t_n} = -\infty) \to 0$. For M > 0, and $t_n \le t \in D$, by Lemma 1,

$$\int |R_{t}| I(R_{t_{n}} > -M) = \int -R_{t} I(R_{t_{n}} > -M) + 2 \int R_{t}^{+} I(R_{t_{n}} > -M)$$

$$\leq \int -R_{t_{n}} I(R_{t_{n}} > -M) + 2 \sup_{s \in D} \int R_{s}^{+}$$

$$\leq M + 2 \sup_{s \in D} \left(\inf_{s \leq \tau \in T} \int X_{\tau}^{+} \right) = M + 2 \lim \inf_{\tau \in T} \int X_{\tau}^{+} < \infty.$$

Hence, $(R_t I(R_{t_n} > -M), t_n \le t \in D)$ is an L^1 -bounded pramart, and $(R_t I(R_{t_n} > -M)) \in \mathcal{S}$ (Theorem B). By Proposition 1, $(X_t I(R_{t_n} > -M)) \in \mathcal{S}$. Since $\bigcup_n (R_{t_n} > -\infty) = \Omega$ a.s., $(X_t) \in \mathcal{S}$. The proof of (ii) is similar to the proof in Theorem 2 and, therefore, is omitted.

(b) Now we assume that $(X_t^-) \in \bar{\mathscr{C}} \cap \mathcal{S}$. For any $\epsilon > 0$, by Theorem 1, we can choose M > 0 and $\rho \in T$ such that

$$\sup_{\rho \le \tau \in T} P(X_{\tau} > M) < \epsilon$$

and

$$\sup_{\rho \leq \tau \leq \sigma; \tau, \sigma \in T} P(X_{\tau} \wedge M - E(X_{\sigma} \wedge M \mid \mathscr{F}_{\tau}) > \epsilon) < \epsilon,$$

since $(X_t \wedge M) \in \overline{\mathscr{C}} \cap \mathscr{S}$ and it is a pramart (Theorem 1). Hence, for any $\tau, \sigma \in T$ and $\rho \leq \tau \leq \sigma$,

$$P(X_{\tau} - E(X_{\sigma} \mid \mathscr{F}_{\tau}) > \epsilon) \leq P\{(X_{\tau} - E(X_{\sigma} \land M \mid \mathscr{F}_{\tau})) | I(X_{\tau} \leq M) > \epsilon\} + P(X_{\tau} > M)$$

$$\leq P(X_{\tau} \land M - E(X_{\sigma} \land M \mid \mathscr{F}_{\tau}) > \epsilon) + \epsilon < 2\epsilon,$$

i.e. (X_t) is a subpramart.

Proof of Theorem 4. Without loss of generality we may and do assume that $\liminf_{\tau \in T} \int X_{\tau}^{-} < \infty$. By Theorem 3, $(X_{t}) \in \mathcal{G}$. The condition $\liminf_{\tau \in T} \int X_{\tau}^{-} < \infty$ implies $(P_{t} = \infty) = (Y_{t} = \infty)$ a.s. (see [33, Lemma 3]), hence, by Proposition 1, we can choose $(t_{k}) \subset D$ such that

$$P(P_{\iota_{\iota}} = \infty) = P(Y_{\iota_{\iota}} = \infty) \to 0. \tag{6}$$

Then, it is easy to show that for each $k \ge 1$ and M > 0, $(X_t^+ I(P_{t_k} < M), t \ge t_k) \in \tilde{\mathcal{C}} \cap \mathcal{S}$. Applying Theorem 1, $(X_t^+ I(P_{t_k} < M), t \ge t_k)$ is a pramart, and, by (6), (X_t^+) is also a pramart. Therefore, $(|X_t|) = (2X_t^+ - X_t)$ is a pramart. For each $\lambda \in R_1$, by (1), both $(X_t \wedge \lambda)$ and $(X_t \vee \lambda)$ are pramarts.

4. Some comments. 1. For a martingale (X_n) , clearly,

$$\lim \inf_{\tau \in T} \int ||X_{\tau}^{+}|| < \infty \Leftrightarrow \lim \inf_{n} \int ||X_{n}^{+}|| < \infty.$$

However, for subpramarts, condition $\lim\inf_{\tau\in T}\int\|X_{\tau}^+\|<\infty$ is weaker than condition $\lim\inf_n\int\|X_n^+\|<\infty$: let $\Omega=(0,1]$, $\mathscr{F}=\mathscr{F}_n$ be the class of Borel sets of (0,1], and P the Lebesgue measure. Define $X_n=n^2I(0,1/n]$. Then (X_n) is a positive pramart, $\int X_n\uparrow\infty$, and $\lim\inf_{\tau\in T}\int X_{\tau}=0$.

2. The following example shows that, in general, the condition $(X_t^-) \in \bar{\mathscr{C}}$ in Theorem 3 can not be dropped.

Let (X_n) be independent r.v.s such that $X_n \leq 0$, $\int X_n \downarrow -\infty$ and $X_n \to 0$ a.s. and X_n is non-degenerate. Let $\mathscr{F}_n = \sigma(X_1, \ldots, X_n)$. Clearly, (X_n) is not a subpramart, and we can show that $(X_n^-) \notin \mathscr{C}$. In fact, for each $\sigma \in T_f$, choose $n \in \mathbb{N}$ so large that $P(\sigma \leq n) > 0$. Then we can find $(A_k, k \geq n)$ such that $A_k \subset (\sigma \leq n)$, $A_k \in \mathscr{F}_k$, $P(A_k) > 0$, $P(A_k, A_j) = 0$, $j \neq k$. Choose $n_k \geq k$, $E|X_{n_k}|P(A_k) > 1$. Let $\tau = \sum_{k \geq n} n_k I(A_k) + \infty I(\Omega \setminus \bigcup_k A_k)$. Then $\sigma \leq \tau \in T_c$ and $\int_{(\tau < \infty)} |X_{\tau}| = \infty$, $(X_n^-) \notin \mathscr{C}$.

3. The condition $\lim_{\tau \in T} \min\{\int X_{\tau}^+, \int X_{\tau}^-\} < \infty$ in Theorem 4 is necessary. Let (ξ_n) be i.i.d. r.v.s, $P(\xi_n = 1) = P(\xi_n = -1) = 1/2$, $X_n = \sum_{i=1}^n \xi_i$, $\mathscr{F}_n = \sigma(\xi_1, \dots, \xi_n)$. Then, (X_n) is a martingale, hence a pramart. It is well known that $\limsup_n X_n = \infty$ a.s. Hence, $(|X_n|) \notin \mathscr{E}$

and, by Theorem 3, $(|X_n|)$ is not a pramart. It is easy to see that, in this example,

$$\lim \inf_{\tau \in T} \min \left\{ \int X_{\tau}^+, \int X_{\tau}^- \right\} = \frac{1}{2} \lim_n \int |X_n| = \infty.$$

4. The set $\widetilde{\mathcal{C}}$ is larger than \mathscr{C} . Let (Y_n) be i.i.d r.v.s, $P(Y_n=2)=P(Y_n=-1)=P(Y_n=0)=1/3$. Let $X_n=3^n\prod_{1\leq i\leq n}Y_i,\ \mathscr{F}_n=\sigma(Y_1,\ldots,Y_n)$. Then (X_n) is a real-valued martingale. Let $\sigma=\inf\{n\geq 1,\ Y_n=0\}$. Clearly, $\sigma\in T_f$ and for any $\sigma\leq \tau\in T_c$, $\int_{(\tau<\infty)}|X_\tau|=0$. Hence, $(X_n)\in\widetilde{\mathscr{C}}$. Now let $\tau=\inf\{n\geq 1,\ Y_n=-1\}$. Then $\tau\in T_f$, $\int |X_\tau|=\sum_n 6^n(P(Y_1=2))^n/2=\infty$, and $(X_n)\notin\mathscr{C}$.

REFERENCES

- 1. D. G. Austin, G. A. Edgar, and A. Ionescu Tulcea, Pointwise convergence in terms of expectations, Z. Wahrsch. Verw. Gebiete 30 (1974), 17-26.
- 2. A. Bellow, Uniform amarts: a class of asymptotic martingales for which strong almost sure convergence obtains. Z. Wahrsch. Verw. Gebiete 41 (1978), 177-191.
- 3. A. Bellow and A. Dvoretzky, On martingales in the limit, Ann. Probab. 8 (1980), 602-606
- 4. Y. S. Chow, Convergence theorems of martingales, Z. Wahrsch. Verw. Gebiete 1 (1963), 340-346.
- 5. Y. S. Chow, H. Robbins, and D. Siegmund, Great expectations: The theory of optimal stopping (Houghton Mifflin, 1971).
- 6. Y. S. Chow and H. Teicher, Probability theory. Independence, interchangeability, martingales (Springer, 1978).
- 7. G. A. Edgar and L. Sucheston, Amarts: a class of asymptotic martingales. A. Discrete parameter, J. Multivariate Anal. 6 (1976), 193-221.
- 8. L. Egghe, Strong convergence of pramarts in Banach spaces, *Canad. J. Math.* 33 (1981), 357–361.
- 9. L. Egghe, On sub- and superpramarts with values in a Banach lattice, *Measure theory*, Oberwolfach 1981, Lecture Notes in Mathematics 945 (1981), 353-365.
- 10. L. Egghe, Stopping time techniques for analysts and probabilists, London Mathematical Society Lecture Note Series 100 (Cambridge University Press, 1984).
- 11. N. E. Frangos, On convergence of vector valued pramarts and subpramarts, *Canad. J. Math.* 37 (1985), 260-270.
- 12. N. Ghoussoub, Orderamarts: A class of asymptotic martingales, *J. Multivariate Anal.* 9 (1979), 165-172.
- 13. N. Ghoussoub and L. Sucheston, A refinement of the Riesz decomposition for amarts and semiamarts, J. Multivariate Analysis 8 (1978), 146-150.
- 14. A. Gut, A contribution to the theory of asymptotic martingales, Glasgow Math. J. 23 (1982), 177-186.
- 15. A. Gut and K. D. Schmidt, *Amarts and set function processes*, Lecture Notes in Mathematics 1042. (Springer, 1983).
- 16. H. Heinich, Convergence des sous-martingales positives dans un Banach réticulé, C.R. Acad. Sci. Paris Sér. A-B 286 (1978), A279-280.
- 17. U. Krengel and L. Sucheston, On semiamarts, amarts, and processes with finite value, Probability on Banach Spaces, Advances in Probability and Related Topics 4 (1978), 197-266.
- 18. K. Krickeberg, Convergence of martingales with a directed index set, *Trans. Amer. Math. Soc.* 83 (1956), 313-337.
- 19. A. Millet and L. Sucheston, Characterizations of Vitali conditions with overlap in terms of convergence of amarts, *Canad. J. Math.* 31 (1979), 1033–1046.
- 20. A. Millet and L. Sucheston, Convergence of classes of amarts indexed by directed sets, Canad. J. Math. 32 (1980), 86-125.

- 21. A. G. Mucci, Limits for martingale-like sequences, Pacific J. Math. 48 (1973), 197–202.
- 22. A. G. Mucci, Another Martingale convergence theorem, Pacific J. Math. 64 (1976), 539-541.
 - 23. J. Neveu, Discrete-parameter martingales (North-Holland, 1975).
 - 24. K. D. Schmidt, The lattice property of uniform amarts, Ann. Probab. 17 (1989), 372-378.
- 25. H.-U. Schwarz, Banach lattices and operators, Teubner-Texte zur Mathematik 71 (B. G. Teubner, 1984).
- 26. M. Slaby, Convergence of positive subpramarts and pramarts in Banach spaces with unconditional bases, *Bull. Polish Acad. Sci. Math.* 31 (1983), 75-80.
- 27. M. Słaby, Strong convergence of vector-valued pramarts and subpramarts, *Probab. Math. Statist.* 5 (1985), 187–190.
- 28. M. Talagrand, Some structure results for martingales in the limit and pramarts, Ann. Probab. 13 (1985), 1192-1203.
- 29. Z. P. Wang, The lattice properties of martingale-like sequences, *Acta Math. Sinica* 30 (1987), 355-360.
- 30. Z. P. Wang, Local convergence of martingale-like sequences, *Chinese Ann. Math. Ser. A* 9 (1988), 203-207.
- 31. Z. P. Wang and X. H. Xue, On convergence of vector-valued mils indexed by a directed set, Almost everywhere convergence (Columbus, Ohio, 1988) ed. G. Edgar, and L. Sucheston, (Academic Press, 1989), 401-416.
- 32. X. H. Xue, On convergence of pramarts in Banach spaces, Bulletin of Chinese Science 29 (1984), 1280.
- 33. X. H. Xue, On convergence of subpramarts and games which become better with time, J. Theoret. Probab. 4 (1991), 605-623.
- 34. Y. Yamasaki, Another convergence theorem of martingales in the limit, *Tôhoku Math. J.* 33 (1981), 555-559.

DEPARTMENT OF STATISTICS
EAST CHINA NORMAL UNIVERSITY
SHANGHAI 200062
CHINA

DEPARTMENT OF STATISTICS COLUMBIA UNIVERSITY NEW YORK NY 10027 U.S.A.