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1. Notations and summary. Let F be a Banach space, (Q, &, P) a fixed probability
space, D a directed set filtering to the right with the order ^ , and (&*,, D) a stochastic
basis of %F, i.e. ($;, D) is an increasing family of sub-cr-algebras of ^ : ^ < = ^ for any
s,t e D and s s i . Throughout this paper, (A*,) is an F-valued, ($;)-adapted sequence, i.e.
X, is ^-measurable, teD. We also assume that X, e L\ i.e. J \\X,\\ < °°. We use I{H) to
denote the indicator function of an event H. Let °o be a such element: t<°°, teD,
D = D U°°, and $L, = a( U ^ ) - A stopping time is a map r:Q—»D such that ( r<f) e 3F,,

\teD I

t e D. A stopping time T is called simple (countable) if it takes finitely (countably) many
values in D(D). Let T and Tc be the sets of simple and countable stopping times
respectively and Tf = {re Tc: T < ° ° a.s.}. Clearly, (T, < ) and (7}, < ) are directed sets
filtering to the right. For r e Tc, let

^T = {H e &:H(T = t)e9, for all t e D), XT = ^ X,I(r = t),
teD

and

= {(*,): sup J"||*t||<oo},

<€ = {(A^):there is ae 7^such that | ||A"T|| <oo, CT< r e 7C},

£f= {(X,):(XT, reT) converges stochastically (i.e. in probability) in the norm topology},

% — {(A',): {XT, x e T) converges essentially in the norm topology}.

Clearly, <f z><<?z>38 and %^y. If (^,) satisfies the Vitali condition V, particularly, if
D = N = {1,2,. . .}, then (X,) e % if and only if (X,) e y (cf. [18], [23], and [20]). Hence,
in this case, if=%.

Mucci ([21], [22]) and Millet and Sucheston ([19], [20]) introduced the notations of
martingales in the limit, pramarts, and subpramarts, generalizing those of martingales,
amarts (Edgar and Sucheston [7]), uniform amarts (Bellow [2]), and submartingales, and
provided some sufficient conditions to ensure that (X,) e SP (cf. monographs [10] and
[15]).

DEFINITION 1 ([21], [20]). A stochastic process (X,, 9>,, D) is called a martingale in the
limit if

ess lim ess sup H^, - E(XS \ $j)|| = 0 a.s.
teD t^seD
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DEFINITION 2 ([19], [20]). (i) A stochastic process (X,, &,, D) is called a pramart if

s. lim \\Xa-E(Xx\9o)\\=Q,
a^sr.a.reT

i.e., for each e >0, there exists oQeTsuch that, for all a, r e T and o0< a^ T,

(ii) A stochastic process (A',, 5F,, D) is called a subpramart, if F is a Banach lattice,
and if

s. lim
OST;O,T<=

Millet and Sucheston [20] proved that if the Vitali condition V holds (it is also
necessary), then every pramart (Xt) is a martingale in the limit. There is a more general
class of adapted processes.

DEFINITION 3 [31]. (i) A stochastic process (X,, &,, D) is called a mil if

s. lim \\Xa-E(X,\9a)\\=Q,

osr,oeT;ieD

i . e . , for e a c h e > 0 , t h e r e ex is t s o 0 e T s u c h t h a t , for all o0< o e T a n d o < t e D ,

P{\\Xa-E(X,\&a)\\>e}<e.
The mil defined here was called mil(3) in [31], and when D = N, it is equivalent to

Talagrand's mil [28] (see [31]). Clearly, pramart => mil, and martingale in the l imits mil
[31]. The following theorem was proved by Millet and Sucheston [19].

THEOREM A [19]. Let (Xn) = (Xn,n eN) be a pramart of class <3&. If F has the
Radon-Nikodym property, then (Xn) e %.

In a real-valued case Millet and Sucheston [20] proved this result.

THEOREM B [18]. Let (X,) be a real-valued subpramart satisfying condition (d), i.e.

lim inf f XT + lim inf | XT < °°.
D J D J

Then (X,) e if.

Later, Egghe [9], [10], Staby [26], [27] and Frangos [11] worked on a problem raised
by Sucheston: if F has the Radon-Nikodym property, does every L'-bounded pramart
(A',) belong to 5̂ ? When F is a Banach lattice, Staby and Frangos proved the following
positive subpramart convergence theorem, extending Heinich's positive submartingale
convergence theorem [16].

THEOREM C ([11] and [27]). Let F be a Banach lattice with the Radon-Nikodym
property. If (Xt) is a positive subpramart satisfying lim inf J ||^,|| < °°, and if (SF,) satisfies
the Vitali condition V and F is separable, then (X,) e %.
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They also solved Sucheston's problem when Fis a separable dual (Frangos [11]), or a
weakly sequentially complete space (Sfaby [27]). The following theorem completely
solved the problem.

THEOREM D. (i) ([28], also see [31].) Let (X,) be a mil satisfying lim inf J HA",|| <<».//
F has the Radon-Nikodym property, then (X,) e Sf.

(ii) ([31].) lfF = Rxand (X,) is a mil satisfying

liminf jmin f X?, I A T } < ° ° ,

then (X,) e Sf.

Part (ii) of Theorem D is an improvement of Mucci's L'-bounded, real-valued
martingale in the limit convergence theorem [22].

Suggested by Chow's submartingale convergence theorem ([4], also see Remark 2),
Yamasaki [34] proved the following theorem.

THEOREM E [34]. Suppose that (Xn) is a real-valued martingale in the limit and
(Xn)e<€. Then(Xn)e%.

Yamasaki [34] also provided an example, showing that there exists a real-valued
martingale in the limit which belongs to <#, but for which J X* f oo.

In this paper we show that Theorem E can be extended to vector-valued mils, and for
pramarts the condition lim inf J \\X,\\ <°° in Theorem D can be weakened to

i

lim inf J \\Xr\\ <°o. On the other hand, it is of interest to characterize a subclass of Sf.
reT

Using Bellow's uniform amart convergence theorem, we can get: if F has the
Radon-Nikodym property and the net {XT, r e T) is uniformly integrable, then (Xn) is a
uniform amart if and only if (Xn) e % (Gut [14]). Krengel and Sucheston [17] also
provided an example showing that there exists a real-valued (Xn) e 53 n % such that (Xn)
is uniformly integrable, but (Xn) is not an amart. However, Talagrand [28] and Wang and
Xue [31] proved that if (X,) is uniformly integrable, then (X,) e 91 if and only if (X,) is a
mil, and Xue [32] proved that the converse of Theorem A is true: if (Xn) e &T\ 39, then
(Xn) is a pramart. In this paper we prove that the converse of Theorem E is also true.
More specifically, we have Theorem 1.

THEOREM 1. Suppose that F has the Radon-Nikodym property.
(a) If(X,)e<$,then
(i) (X,) e 5^O(Ar,) is a pramart <?>{X,) is a mil, and if the Vitali condition V holds,

(X,) e y&(X,) is a martingale in the limit;

(ii) // (X,) is a pramart (mil), so is (HA^H), and under the Vitali condition V, if (X,) is
a martingale in the limit, so is (||A",||).

(b) / / (X,) is a pramart satisfying lim inf J \\XX\\ < oo, then (X,) e &1.
reT

Suppose that f is a Banach lattice. Then (X,) e Sf^> (\X,\) e if, where
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\X,\ = Xf + XJ. Since, for xeF,

X, + x + \Xt-x\ X,+x-\X,-x\
X,vx= , X,AX = (1)

(cf. [25, Proposition 2.5]), we have the following corollary.

COROLLARY 1. Suppose that F is a Banach lattice with the Radon-Nikodym property.
Then the set of pramarts (mils) of class ^ is a vector lattice; and, under the Vitali condition
V, the set of martingales in the limit of class % is also a vector lattice.

When F is a Banach lattice, we have similar results for subpramarts. The part (i) of
the following theorem is an improvement of Theorem C.

THEOREM 2. Let F be a Banach lattice with the Radon-Nikodym property and (Xt) a
positive subpramart. If one of the following holds, then (X,) e Sf:

(i) liminf jprr | |<«;

(ii) (X,) e *% and $L is nonatomic or s . lim inf \\XZ\\ < °° a.s., where
reT

s . lim inf \\Xt\\ = ess supf §: lim P(\\XT\\ < §) = ol,
reT I reT J

the stochastic lower limit of (||^T||, t € T).

For real-valued processes, we show that condition (d) in Theorem B can be
weakened to a one-sided condition and the requirement of being positive in Theorem 2
can be dropped.

THEOREM 3. Let F = Rt.

(a) / / (i) or (ii) holds, then (X,) e if:
(i) (X,) is a subpramart satisfying lim inf J X* < <»;

reT

(ii) (X,) is a subpramart or a mil, (X+) e <t, and $L is nonatomic or

s. lim inf \\Xt|| < °°a.s..

reT

(b) / / (X,) e V and (X7) e <t, then (X,) is a subpramart.

Part of Theorem 3 was proved by Wang [29]. The proof here is new.
COROLLARY 2. Suppose that F = RX.
(a) / / (A7)e<£ and lim inf J X+ <», then (X,)eff if and only if (X,) is a

subpramart. reT

(b) / / (X,) e % and if s . lim inf \\Xr || < °° a.s. or $L is nonatomic, then
reT(X,) e yo(X,) is a subpramart <$ (X,) is a pramart.

Austin, Edgar, and Ionescu Tulcea [1] (also see [7]) proved that L'-bounded,
real-valued amarts form a vector lattice. This result was extended by Ghoussoub [12] to
L'-bounded, Banach lattice-valued order amarts when the Radon-Nikodym property
holds, and by Schmidt [24] to L'-bounded, /'-valued uniform amarts. It is natural to ask:
can we change "class ( t" to "L'-bounded class" in Corollary 1? For martingales in the
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limit and mils, it is impossible. Indeed, Bellow and Dvoretzky [3] presented an example
showing that there exists a uniformly integrable, real-valued martingale in the limit (Xn)
such that (\Xn\) is not a martingale in the limit, and Talagrand [28] constructed an
L'-bounded, real-valued martingale in the limit (Xn) with Xn^>0 a.s. such that (\Xn\) is
not a mil. Hence, the set of L'-bounded, real-valued martingales in the limit (mils) is not
a vector lattice. Talagrand also presented an L'-bounded, /2-valued pramart (Xn) such
that (\Xn\) is not a pramart. However, Talagrand [28] and Wang [29] proved that the set
of L'-bounded, real-valued pramarts is a vector lattice. In fact, Talagrand and Wang
proved that if (Xn) is a real-valued pramart satisfying lim inf J \Xn\ < °°, then so is (\Xn\).
The following theorem is an improvement of their result. "

THEOREM 4. / / (X,) is a real-valued pramart satisfying lim inf min{j" X~, J X*} < °°,
zeT

then (\X,\) is a pramart, hence, for each A e Ru both (X, v A) and (X, A A) are pramarts.

In Section 2 we characterize real-valued pramarts and subpramarts via Snell's
envelopes. We prove Theorems 1-4 in Section 3. In Section 4 we make some comments
pointing out that: (i), for pramarts, the condition lim inf J \\Xr\\ <°° is weaker than the

167"

condition lim inf J \\X,\\ <°°; (ii), in general, the condition (X^) e <? in Theorem 3 cannot
t

be dropped; (iii) the condition lim inf min{jX*, J X~) <°° in Theorem 4 is necessary;
zeT

(iv), in general, the set <€ is larger than <€.

2. Snell's envelopes and characterizations of pramarts and subpramarts. In this
section we assume that F = Rl. We use the following Snell's envelopes to characterize
real-valued pramarts and subpramarts. For a real-valued process (A',) we denote

Yt = ess sup E(Xt | &•), P, = ess sup E(X+ \ &,), R, = ess inf E{XX \ &,).
i^xeT iSteT i^zeT

The following lemma is well known in the martingale theory and the theory of optimal
stopping (cf. [5], [13], and [23]).

LEMMA 1. (Yr, &'z, T) is a generalized supermartingale (i.e. Yr takes values in
(-oo, oo], EY~ < oo and E(Yr \ &a) < Ya a.s. for all r, a e T and r > o), and for any reT
there exist (rn)czT such that x < xn and

E(XZn | 9X) t Yz = ess sup{E(Xa | 9T): r < a e T}.

Therefore, if J \Y,\ <<*, t e D, then (-Y,) is a subpramart. Moreover, if sup J |F,| < °°, then
(7,) is an amart, hence a pramart.

PROPOSITION 1. (i) (X,) is a subpramart if and only if (XT - Rt,x eT) converges to
zero in probability. In this case, lim P(RT = —°°) = 0.

zeT

(ii) (A',) is a pramart if and only if (YT- RT,x e T) converges to zero in probability.
In this case, lim P(RT = - °°) = lim P(YX = « ) = 0.

zeT zeT
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Proof. For any reT, by Lemma 1, we can choose i < i n e r such that
E{XTn | 9X) | RT. Since X, > R, a.s.,

sup P(XT-E(Xo\®x)>e)<pLss sup (XT - E(XO \ 9t)) > e)

= P(Xr -Rt>e) = P(\XT -RT\>€)=\ lim I(Xt - E(XXn \ 9X) > e)
J n

= lim f I(XT - E{XXn | y t) > e) < sup P{Xr - E{XO \ 9Z) > e).

Hence, (X,) is a subpramart if and only if (XT — RT, r e T) converges to zero in
probability. In this case, lim P(Rr = -°°) < lim P(XV -Rx>l) = 0. Finally (ii) follows

from (i) and the symmetric property.

COROLLARY 3. Suppose that (XT, r e T) converges to zero in probability. Then
(i) (X,) is a subpramart if and only if (RT, r e T) converges to zero in probability;

(ii) if, in addition, (X,) is nonnegative, then (X,) is a pramart if and only if
(Yr, x e T) converges to zero in probability.

REMARK 1. When (X,) is nonpositive, (i) in Proposition 1 was proved by Millet and
Sucheston [20]. The proof here is adopted from their paper. When D = N, (ii) in
Corollary 3 is an analogue of Theorem 11 in [28].

3. Proofs of Theorems 1-4. To prove Theorems 1-4, we need the following
lemmas. Let

W, = ess sup E(\\XT\\ | 9,), A, = (W, = «>).
t<ie7

DEFINITION 4 (cf. [10]). Let F be a Banach lattice. A stochastic process (X,, &„ D) is
called a GBT (a game which becomes better with time), if

s. lim

LEMMA 2. (i) ([33]) A, c As a.s. for all s <t. Hence A* = ess lim A, exists.
(ii) / / (X,) e <g, then P(A*) = 0orA* is a union of atoms of $L.

Proof. When (X,) e <€, (ii) was proved in [33]. Now assume that (X,) e <f and for
some oeTf and each CT< r e Tc, J(r<=o) \\XT\\ < ». Choose (tn) a D such that P(o< tn) j 1.
Since (X,I(a < tn), &„ tn < t e D) e %, A* n (a < tn) is a union of atoms of ^ or 0, n s 1,
and so is A*.

LEMMA 3. Suppose that (X,) is a real-valued GBT (subpramart or mil) and (Xf) e *t.
Then (X,)((XX, r e T)) converges stochastically to a r.v. % such that - » < £ < + « > ,
(§ = +oo) = A+* a.s., and A+* is a union of atoms of &L, or </>, where A+* = ess lim At,
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Proof. As the proof of Lemma 2 we may assume that (Xf) e <€. Then the
conclusions for GBTs and subpramarts follow from Theorems 9 and 10 in [33]. Now
assume that (A',) is a mil. Choose (tn) c D such that A^ IA+*. For any fixed n £: 1 and
K s 1, by Lemma 1, it is easy to see that (X,I(P,r < K),t>tn) is a mil and

lim inf EXtI{P,n ^K)£ EPtJ(P,n < K)

Hence (X,I(P,n < K)) e Sf (Theorem D). Since LJn a i U ^ i (P,. ̂  K) = £1\A+*,

(X,I(Q\A+*)) e ST. Since every mil is a GBT, s . lim XTI(A+*) = °°I(A+*).
T

REMARK 2. Suppose that (Xn) is a real-valued process and (X*) e (€. Chow [4]
proved that if (Xn) is a submartingale, then (A',,) converges a.s. to a r.v. § which takes
values in (-<», +<»]. Yamasaki [34] obtained the same result for martingales in the limit.
In Lemma 3, we extend their results to subpramarts and mils and show that (§ = +00) is a
union of atoms of 9m or (f>.

Let F* be the dual space of F and F*+ the positive cone of F* if F is a Banach
lattice.

LEMMA 4.(i) Suppose that F is a Banach lattice. If (X,) is a positive GBT, then so are
(\\X,\\)and(f(Xt)),f€F*+.

(ii) If F is a Banach lattice and {X,) is a positive subpramart, then so are (HA',!!) and
{f{X,)),feF*\

(iii) / / (X,) is a mil, then (]\X,\\) is a GBT and (f(X,)) is a mil, f e F*.

Proof. If F is a Banach lattice and (X,) is positive, then for t,s e D and o eT,

\\(X, - E{XS | ^,))+| | > (HA-,11 - \\E(XS

and

(i) holds. Similarly, we get (ii). Since

and

(iii) holds.

LEMMA 5. Suppose that (X,) is a mil and (X,) e <&. 77ien P(/4*) = 0.

Proof. Assume that P(A*) >0. By Lemma 2, we may assume that A* is an atom of
^o and X, = x, on A*. Since (A',) is a mil, by Lemmas 3 and 4,

lim/(jt,) exists and is finite for each / e F*,
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and

which contradicts the Banach-Steinhaus theorem.

When D = N, the following lemma was proved in [32]. The proof here is new.

LEMMA 6. Assume that (X,) e 58 D if. Then (X,) is a pramart.

Proof. Assume that (Xr,reT) converges .stochastically to X. By Fatou's lemma,
X e L1. Let

Zt = X,-E{X\9,).

Then (Z,) e 38. Clearly, we need only to show that (Z,) is a pramart. Since (E(X \ &t),
xeT) converges stochastically to X, (||ZT||, xe T) converges stochastically to zero.
Hence, we need only to show that (ST, r e T) converges stochastically to zero, where

5, = ess sup E(\\Za\\\ 9,).
isaeT

First we show that (5,) e if. By Lemma 1, (5,) is a pramart satisfying

sup j \S,\ = sup j \\Zr\\ =s sup | ||*r|| + 1 ||A-|| < °o.

Hence, by Theorem B, (5,) e Sf. Assume that (ST, x e T) does not converge stochastically
to zero, then (||Zr|| — Sx, x e T) converges stochastically to a nonpositive r.v. § such that
P (£<0)>0 , since S,> ||Z,|| and (5,), (||Z,||) e Sf. Then, by Fatou's lemma,

liminff(5t-||ZT||)>[lim(5t-||ZT||)>0. (2)
teT J J ter

On the other hand, by Lemma 1,

lim[sT = lim( sup f||ZI.||) = limsup[||ZT||«»,

which contradicts (2).

LEMMA 7. //(X,) eSfn<%, then P(A*) = 0.

Proof. Assume that (A r , ) e^n < l and P(A*)>0. Then, by Lemma 2, we may
assume that A* is an atom of SFX, and A, is an atom of &, such that A, =>A*, \\X,\\ = a, on
A,, and lim a, = aeRx. We may also assume that a, < a + 1, t e D. For any oeTf, there is
t0 e D, P(A* n (a = t0)) > 0. Since (a = t0) e $•„, i4,0 c (o = t0). Since W,o = °° on Ata, there
is to< Tj e 7 such that £(| |*T l ||| Ŝ n) > (fl + 2)/P(Ato) on At(l, and there is f, e D such that
P(/4* D (xx = tx)) > 0 (then Ah c (TJ = /])). Assume that we have chosen /„_, < xn e T such
that £( | |Ar

TJ| |^n.1)>(a + 2)/P(>l,n.l) on A,n_r Then there is tneD such that P(/ l*n
(rn = /n))>0, (hence A,ncz(xn=tn)). And we can choose tn^xn+leT such that

on A,.. Let T = E ^ / ( ^ . . . X ^ J + oI(Q\A,a) +

https://doi.org/10.1017/S0017089500009800 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009800


PRAMARTS AND MILS 247

Then a < r e Tc and

E \\Xr\\ /(T < cc) > X (£ IIA-.JI /GV,) - £ ||XJ| /(>l J)
n

^2(E ||A\J| /(i4,._.) - (a + 1)) > 2 (E(E(\\XTn\\\ $._,)/(>!,,,_,) - (a + 1)) = «.

Hence, for any a e 7} there is a < t e T c such that £ ||ATr||/(T < °°) = °°, i.e. (X,) <£ <g, a
contradiction.

Proof of Theorem 1. (a) Since (A',) e <§, by Lemmas 5 and 7, either (X,) e 5̂  or being
a mil implies P(A*) = 0, and we can choose (tk) a D such that f, < f2 < • • • and P(-<4,t) 1 0.
For /n, k e N define

Since ZsdlA ÎH ^ ) < W,, a.s., t^ re T, by Lemma 1,

sup \\\Xk
r\\<\w,k(Wlt<m)<co.

Hence, (Xk, tk < t e D) is of class 38. If (A',) is a mil, then (Xk, tk < t e D) is a mil of class
98, and by Theorem D, (Xk, f* < / e D) e ^ ; if (X,) e 5 ,̂ then, (A'f, tk < f e £)) e 38 n ^ ,
and, by Lemma 6, (A'f, tk < f e D) is a pramart. Since U*,meN(W/,t<m) = Q\A* = Q
a.s. and every pramart is a mil (a martingale in the limit, if the Vitali condition holds),we
get (a).

Now we prove (b). Assume that (X,) is a pramart satisfying lim inf J HÂH < <». It is
reT

easy to show that (XT, &'T, r e T) is a mil, and applying Theorem D, (A',) e 5̂ .

Proof of Theorem 2. Proof of (i). Suppose that F has the Radon-Nikodym property
and (A',) is a positive subpramart satisfying lim inf J \\Xr\\ = M < °°. Choose (tn) a D such
that /, < r 2 s . . . and

sup P( | | (A-T-£(A-a |^T))+ | |>lM)<2-". (3)
lnstso;r,ae7

We claim that the following fact holds:

for all {xn, on) c T such that tn < xn < on < rn+u and J HA'̂ H <M + 1,

(Ar
ri, A',,,,. . . , XXn, XOn,. ..) converges almost surely to a finite r.v.

Proof of the claim. For n s 1, let

Then, (Xn, &n, n e N) is a positive subpramart satisfying

lim inf [ \\Xn\\ < lim inf \\\Xa
n J n J
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Since Xn being Bochner integrable is separably valued, so is (Xn, n e N). By Theorem C,
(Xn, n e N) e %, and the claim has been proved.

The above claim implies that (X,) e if. In fact, if (X,) $ if, then there is a c > 0 such
that for any t e D there exist t<T,peT,

P(\\Xz-Xp\\>c)>c. (4)

Choose tx := r,, pi e T such that (4) holds. Pick CT, € T such that a, > r,, ox>px, a, > t2,
and J HA ĴI <M + 1. Assume that rn,pn and <jn have been chosen, choose rn+l, pn+l and
an+xsT such that Tn + 1>an, pn+,Sffn, and crn+1>rn+1, crn + 1>pn +i, an+1>fn+2,
J 11*̂ ,11 <M + 1, and

c. (5)

Then, by the claim,

and

V*pi> -^a , j • • • > **.pn, A a > , . . . )

converge almost surely to finite r.v.s. Hence,

i.XZl, XPl,. . . , XTn, XPit,. . .)

converges almost surely to a finite r.v., which contradicts (5).

Proof of (ii). Under the assumptions of (ii), by Lemmas 2 and 3, P(A*) = 0. Define
Xk, as that in the proof of Theorem 1. Then (X?,tk^teD) is a positive, L'-bounded
subpramart, therefore, by part (i) of Theorem 2, (A'f, tk < t e D ) e if, which implies
(X,) e if.

Proof of Theorem 3. (a) Assume that (X,) is a real-valued subpramart and
lim inf J X+ < °°. By Proposition 1, we can choose (tn)cD such that f,<f2 —• • • ar |d

teT

P(R,n = -oo)-»0. For M > 0, and fn < f e D, by Lemma 1,

I" \R,\ /(/?,„ > -M) = f -R,I(Rtn > -M) + 2 f «,+/(^,n > -M)

< f - « , /(/?, > -M) + 2 sup f i?;

< M + 2 sup ( inf f JT+) = M + 2 lim inf f A'^ < ».
seD \s<te7' J / reT J

Hence, (R,I(R,n> -M), tn<teD) is an L'-bounded pramart, and (R,I{Rtn> -M))eif
(Theorem B). By Proposition 1, (X,I(R,n>-M))e if. Since Un(^,n> -°°) = £2 a.s.,
(A',) e 5̂ . The proof of (ii) is similar to the proof in Theorem 2 and, therefore, is omitted,

(b) Now we assume that (X^) e^CMf. For any e >0 , by Theorem 1, we can choose
M > 0 and p e l such that

sup P(XV>M)<€
T
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and

sup P(XTAM-E(XaAM\9:
t)>e)<e,

psr=sa;T,ae7"

since (A', A M) e *t f~l y and it is a pramart (Theorem 1). Hence, for any T,oeT and

P{Xt - E(Xa | y t) > e) < P{(*T - £(Jfa A M \ 9T))l{XT < M) > e} + P(*T > M)

< P(J^r A M - E(Xa AM\&T)>e) + €<2€,

i.e. (A',) is a subpramart.

Proof of Theorem 4. Without loss of generality we may and do assume that
lim inf J X~ < °°. By Theorem 3, (X,) e &1. The condition lim inf J X~ < oo implies

(P, = oo) = (Y, = o°) a.s. (see [33, Lemma 3]), hence, by Proposition 1, we can choose
(tk) a D such that

P(P,k = °°) = P(Ylt = oo)^ 0. (6)

Then, it is easy to show that for each k > 1 and M > 0, (X?I(P,k < M), ( > r t ) e ( t n y .
Applying Theorem 1, (XfI(P,k<M), t >tk) is a pramart, and, by (6), (Xf) is also a
pramart. Therefore, (\X,\) = (2Xf — X,) is a pramart. For each keRu by (1), both
(A", A A) and (X, v A) are pramarts.

4. Some comments. 1. For a martingale (A^), clearly,

lim inf ||A"*|| <oooliminf ||Ar*||<oo.
rerj n J

However, for subpramarts, condition lim inf J \\X*\\ <oo is weaker than condition

lim inf J \\X^\\ <°°: let Q = (0,1], & = &„ be the class of Borel sets of (0,1], and P the
n

Lebesgue measure. Define Xn = n2I(0, l/n]. Then (Xn) is a positive pramart, J Xn f oo,
and lim inf J Xx = 0.

r<=r

2. The following example shows that, in general, the condition (A7) e <t in Theorem
3 can not be dropped.

Let (Xn) be independent r.v.s such that Xn ^ 0 , { Xn | - oo and A*n—»0 a.s. and Xn is
non-degenerate. Let <Fn = o(Xu . . . ,Xn). Clearly, (Xn) is not a subpramart, and we can
show that (A"~) $ <%. In fact, for each oeTf, choose n e N so large that P(o^n)>0.
Then we can find (Ak,k>n) such that Ak c (o<n), Ak e 2Fk, P(Ak)>0, P(Ak,Aj) = 0,
j±k. Choose nk>k, E\Xnk\P{Ak)>\. Let r = S nkI(Ak) + *>l(Q\{\JkAk). Then
<7<Terc and J(t<o>) \XZ\ = oo, (A"~)$ *%.

3. The condition lim inf min{JA'*, J X~) < oo in Theorem 4 is necessary. Let (§„) be
167"

i.i.d. r.v.s, P(Mn = 1) = P(§B = - 1 ) = 1/2, A-n = £? I,, 9n = a ( | , , . . . , | B ) . Then, (Xn) is a
martingale, hence a pramart. It is well known that lim supn Xn = «> a.s. Hence,
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and, by Theorem 3, (|ATJ) is not a pramart. It is easy to see that, in this example,

lim inf

4. The set % is larger than <g. Let (Yn) be i.i.d r.v.s, P{Yn = 2) = P(Yn = -1) =
P(Yn = 0) = 1/3. Let *„ = 3" 11,*,*, ^ , $ , = a(Ylt..., Yn). Then (*„) is a real-valued
martingale. Let a = inf{n>l, Yn=0}. Clearly, oeTf and for any o^reTc,
J(r<«) | ^ | = 0. Hence, (*„) e <g. Now let T = inf{n > l j n = - 1 } . Then r e Tf, J |Z t | =
En 6"(P(Y, = 2))"/2 = 00, and (Xn) $ <€.
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