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This work introduces a similarity solution to the problem of a viscous, incompressible
and rotational fluid in a right-cylindrical chamber with uniformly porous walls and
a non-circular cross-section. The attendant idealization may be used to model the
non-reactive internal flow field of a solid rocket motor with a star-shaped grain
configuration. By mapping the radial domain to a circular pipe flow, the Navier–Stokes
equations are converted to a fourth-order differential equation that is reminiscent of
Berman’s classic expression. Then assuming a small radial deviation from a fixed
chamber radius, asymptotic expansions of the three-component velocity and pressure
fields are systematically pursued to the second order in the radial deviation amplitude.
This enables us to derive a set of ordinary differential relations that can be readily
solved for the mean flow variables. In the process of characterizing the ensuing
flow motion, the axial, radial and tangential velocities are compared and shown
to agree favourably with the simulation results of a finite-volume Navier–Stokes
solver at different cross-flow Reynolds numbers, deviation amplitudes and circular
wavenumbers.
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1. Introduction
Motivated by the need to model flow filtration and isotope separation, the quest

for a similarity solution in the context of viscous, rotational and incompressible
motion through porous channels and tubes may be traced back to the pioneering
work of Berman (1953). Following Hiemenz (1911) in the use of a linear variation
of the streamfunction with respect to the axial distance from the headwall, Berman’s
similarity transformation of the Navier–Stokes equations led to a fourth-order ordinary
differential equation that could be solved either asymptotically or numerically over
different ranges of the cross-flow Reynolds number. In fact, the first explicit solution
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Self-similarity solution of NS equations for porous non-circular tube 397

presented by Berman (1953) related to the planar flow in a two-dimensional channel
with porous walls and a small suction Reynolds number. The latter was based on the
wall suction velocity, the kinematic viscosity and the channel’s half height. Owing to
its relevance to a variety of phenomenological problems, including biological flows,
Berman’s formulation gave rise to a plethora of complementary investigations. Two
major research directions followed, and these focused either on the development of
additional solutions for various flow configurations (Sellars 1955; Berman 1958;
Proudman 1960; Terrill & Shrestha 1965; Terrill & Thomas 1969) or on the
uniqueness or stability issues of such solutions under specific ranges of the cross-flow
Reynolds number (Zaturska, Drazin & Banks 1988; Watson et al. 1990; Cox 1991;
Lu 1994; Cox & King 1997; Lu 1997).

Independently of these studies, other relevant work in the context of membrane
separation and paper manufacture may be attributed to Taylor (1956), particularly in
his presentation of analytical expressions for the inviscid motion in porous channels,
wedges, cones and tubes. The latter was also reconstructed by Culick (1966) as a
practical, rotational model for the mean flow field in axisymmetric rocket motors,
thus leading to the so-called Taylor–Culick profile. The resulting injection-based
formulation compared favourably with Berman’s large-Reynolds-number solution
and was shown to adequately represent the non-reactive internal motion in solid
rocket motors according to both laboratory experiments (Yamada, Goto & Ishikawa
1976; Dunlap et al. 1990; Gazanion, Chedevergne & Casalis 2014) and computations
(Sabnis, Gibeling & McDonald 1989; Apte & Yang 2003; Venugopal, Moser & Najjar
2008). By forcing the flow to enter the chamber perpendicularly to the sidewall, the
Taylor–Culick model exhibited a realistic axial velocity that could satisfy the no-slip
requirement at the sidewall despite its strictly inviscid character. As shown by
Chedevergne, Casalis & Majdalani (2012), this simple model compared very well
with direct numerical simulations of a circular-port chamber except in the close
vicinity of the headwall, where the inevitable development of a viscous boundary
layer could not be accounted for.

The continued interest in Taylor–Culick type formulations may be attributed to
its suitability as a base flow representation in modelling combustion instability
phenomena and related pressure oscillations in rocket systems. In this vein, one
may cite several studies that explore the linear instability behaviour of hydrodynamic
perturbations (Casalis, Avalon & Pineau 1998; Griffond & Casalis 2000; Chedevergne,
Casalis & Féraille 2006; Abu-Irshaid, Majdalani & Casalis 2007; Chedevergne et al.
2012; Boyer, Casalis & Estivalèzes 2013), acoustic energy balance formulations
(Fabignon et al. 2003; Flandro & Majdalani 2003; Majdalani, Flandro & Fischbach
2005; Majdalani, Fischbach & Flandro 2006; Fischbach, Majdalani & Flandro
2007; Flandro, Fischbach & Majdalani 2007), vortico-acoustic wave approximations
(Majdalani & Flandro 2002; Majdalani 2009), particle mean flow effects (Féraille &
Casalis 2003) and rocket performance characteristics (Saad, Sams & Majdalani 2006;
Sams, Majdalani & Saad 2007).

In the spirit of improving the practicality and relevance of Taylor–Culick formulati-
ons to realistic rocket systems, several extensions have been systematically pursued
in the past two decades. These have been warranted by the need to incorporate the
effects of grain regression (Majdalani, Vyas & Flandro 2002, 2009), port variability
(Kurdyumov 2006), wall tapering (Saad et al. 2006; Sams et al. 2007), axisymmetric
headwall injection (Majdalani & Saad 2007), viscosity (Majdalani & Akiki 2010) and
potential flow steepening (Saad & Majdalani 2010). For the effects of compressibility,
two general approaches have been successfully advanced. The first relied on a
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similarity reduction of the Navier–Stokes equations into an integral formulation that
could suitably account for the slow axial pressure variations that occurred in long
chambers (Balakrishnan, Liñan & Williams 1992; Akiki & Majdalani 2016). Although
the resulting equations had to be solved numerically along different streamlines, the
integral framework enabled us to capture the effects of arbitrary sidewall mass
injection. The second approach applied a Rayleigh–Janzen expansion technique while
assuming a constant wall injection speed to extract closed-form analytical expressions
for the compressible Taylor–Culick profiles in both axisymmetric (Majdalani 2007)
and two-dimensional planar configurations (Maicke & Majdalani 2008).

Since most former studies have focused on circular grain configurations, the
purpose of this study is to extend the Taylor–Culick flow description to more practical
propellant grain perforations that comprise stars, multi-fins, wagon-wheels, dog-bones
or dendrites. To do so requires the incorporation of a radial deviation from a fixed
chamber radius. The concept of perturbing the injection velocity or the location of
the injection site has, in fact, been previously explored by Balachandar, Buckmaster
& Short (2001). Their work led to important physical insight into the streamwise
evolution of axial vorticity along with the subdivision of the fluid domain into an
inviscid annulus that extended radially inwards into a viscous core. Furthermore, for a
radial deviation of ε, the analysis showed that the cross-flow Reynolds number could
not exceed 1/ε in their linear perturbation range. A subsequent study by Kurdyumov
(2006) presented a mathematical model that could be solved numerically for a variable
cross-section, thus confirming the evolution of axial vorticity in the presence of
viscous effects. It also helped to characterize the behaviour of the pressure distribution
and its deviation from the traditional Taylor–Culick value. Along similar lines, a
closed-form analytical solution was developed by Van Horn & Majdalani (2014) for a
non-circular star-shaped grain under incompressible, inviscid and rotational conditions.
However, the latter dismissed the effects of the tangential velocity at the basis of
their analysis, thus leading to a second-order asymptotic approximation that remained
limited to a modest number of lobes, m, being constrained by ε < 1/m.

In what follows, a similarity solution will be applied to the viscous Navier–Stokes
equations, along with a judiciously constructed perturbation expansion to derive a
higher-order description of the incompressible flow field in a porous tube with uniform
wall injection. The first objective will be to achieve a second-order formulation that
extends the range of applicability of the ensuing model to sufficiently large values of
the cross-flow Reynolds number, namely, to levels that correspond to practical rocket
simulations and cold flow experiments. The second objective will be to provide a
solution that can be reproduced with relative ease.

The paper is organized as follows. First, the problem formulation is presented
along with the governing equations, including the proposed geometric configuration,
the wavy surface definition, and the mapped coordinate system that will be necessary
to shift the wall boundary conditions to a virtually fixed location. Second, after
recovering Berman’s fourth-order differential equation at leading order, an asymptotic
expansion of the asymmetric problem is pursued to the second order in ε. Third, a
comparison to numerical simulations produced from a nonlinear Navier–Stokes solver
is performed while varying the cross-flow Reynolds number, Re, radial deviation
amplitude, ε, and number of lobes, m. Lastly, the limitations of this framework are
presented and discussed along with several recommendations for future use.
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2. Solution methodology
2.1. Geometry and governing equations

Our geometric configuration consists of a semi-infinite porous cylinder that is closed
at the headwall while admitting a uniformly distributed sidewall injection. Considering
any real function α with zero mean, the cross-section is determined by the tangentially
evolving radius, rw = a(1+ εα), where a is fixed and ε is a parameter. As shown in
figure 1, the fluid is injected perpendicularly to the wavy surface at a constant speed
Uw. In view of this geometry, the steady incompressible Navier–Stokes equations are
considered with all spatial coordinates, time, velocity and pressure variables made
dimensionless using a, a/Uw, Uw and ρU2

w, respectively. The corresponding cross-flow
Reynolds number may be written as Re = Uwa/ν, where ν denotes the kinematic
viscosity. Then using u= (ur̄, uθ̄ , uz̄) and p for the velocity and pressure, our system
of equations reduces to

∇̄ · u= 0 and u · ∇̄u=−∇̄ p+
1

Re
∇̄

2u, (2.1a,b)

where the overbar in ∇̄ denotes differentiation with respect to the unmodified
dimensionless variables (r̄, θ̄ , z̄).

2.2. Mapping to a circular cross-section
To simplify the application of the boundary conditions at the sidewall, and thus
avoid the need for Taylor-series expansions about a fixed radius, it is helpful to map
the dimensionless spatial coordinates (r, θ, z) in such a manner to relocate the wall
boundary conditions to a spatially invariant point. This may be accomplished through
the coordinate transformation:

r=
r

1+ εα(θ)
, θ = θ, z= z. (2.2)

The vector basis (er, eθ , ez) defined in figure 1 remains unchanged. Although this
substitution affects the form of the radial and tangential derivatives, the wall surface
can now be specified using A(r)= r − 1= 0. The corresponding normal unit vector,
n= nrer + nθeθ , becomes

n=
∇A
‖∇A‖

∣∣∣∣
r=1

=
(1+ εα)er − εα

′eθ
√
(1+ εα)2 + εα′2

, (2.3)

and so the wall-normal injection condition simplifies to u = −n at r = 1. Naturally,
this substitution gives rise to a more complex form of the Navier–Stokes equations,
which is detailed in appendix A.

2.3. On the minimum perturbation order
In their elegant analysis of the axisymmetric flow in a porous tube, Balachandar
et al. (2001) establish a framework in which small perturbations of the form
ε cos(mθ) may be imposed at the sidewall. By examining the asymptotic behaviour
of the ensuing solution as r→ 0, a viscous core is shown to be present near the
centreline. Accordingly, viscous effects dominate on the scale of r = O(1/

√
Re)

for wall perturbations of O(ε). Furthermore, as we enter the viscous core region, the
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a

FIGURE 1. Sketch of the geometric configuration and coordinate systems corresponding
to a non-circular, wavy cross-section with α= cos(mθ). The sketch corresponds to m= 7
lobes and a 20 % radial deviation in ε.

axial vorticity, which accompanies the evolution of a finite tangential velocity, appears
at O(εRe). Consequently, the linear perturbative analysis remains valid as long as
εRe� 1. To overcome this practical limitation, Balachandar et al. (2001) introduce
a nonlinear patch on the scale of r = O(

√
ε). This viscous correction leads to a

solution that extends the range of applicability to εRe� 1, where the axial vorticity
increases to O(1). A similar conclusion may be reached in our analysis, which
requires second-order perturbations of O(ε2) to adequately capture the nonlinear
interactions that evolve at previous orders. Moreover, a second-order approximation
will be warranted to satisfy mass conservation requirements by virtue of the angular
dependence being of the harmonic form, eimθ .

The approach that we follow is therefore compatible with Balachandar’s framework,
as it seeks to derive a second-order viscous solution for a periodically distorted
cross-section. In this process, however, an effort will be made to secure the no-slip
condition in all three spatial directions, including the axial and tangential velocities
at the sidewall, thus leading to a uniformly valid solution that extends from r= 0 to
1 inclusively.

To justify the need to carry out a second-order approximation, it may be instructive
to revisit the mass flow rate evaluation at the sidewall. We start by remarking that,
for an identical mean radius, the circumference of the cross-section corresponding to
a wavy wall, such as a star-shaped grain configuration, will always exceed that of its
counterpart with a fixed circular radius. Then, recognizing that α is a periodic function
with a vanishing mean value, the mass surplus can be estimated using an asymptotic
expansion of ṁw(z), namely,

ṁw(z) = z
∫ 2π

0

√
r2
+ r′2 dθ = z

∫ 2π

0

√
(1+ εα)2 + ε2α′2 dθ

= z
[

2π+ ε2
∫ 2π

0

1
2
α′2 dθ +O(ε3)

]
. (2.4)

The resulting equality confirms that the first-order corrections have no bearing on the
injected mass flow rate. In particular, the axial velocity, which contributes to the mass
injection, cannot by itself secure the mass balance without taking into account its
interactions at the second order. Moreover, a second-order representation will enable
us to extend the validity of the model to larger deviation amplitudes with ε2

� 1,
while simultaneously aiding in improving the permissible range of Reynolds numbers
to εRe� 1, as predicted by Balachandar et al. (2001).
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2.4. Asymptotic expansion
Given the above considerations, the velocity and pressure fields, (u, p), may be
decomposed using

u= u(0) + εu(1) + ε2u(2) + o(ε2),

p= p(0) + εp(1) + ε2p(2) + o(ε2),

}
(2.5)

where superscripts denote successive asymptotic orders. This two-term approximation
may be substituted back into the Navier–Stokes equations, expressed through (A 1),
and then further linearized using binomial expansions of (1 + εα)−1 terms. These
operations enable us to identify and segregate three sets of equations that appear at
O(1), O(ε) and O(ε2), consecutively. A similar expansion may be applied to the wall
injection boundary condition (2.3), thus leading to

ur(1, θ, z)=−
1+ εα√

1+ ε
[
2α + ε

(
α2 + α′2

)] =−1+
1
2
α′2ε2

+ o(ε2),

uθ(1, θ, z)=
εα′√

1+ ε
[
2α + ε

(
α2 + α′2

)] = α′ε− αα′ε2
+ o(ε2).

 (2.6)

When translated to the asymptotic velocity corrections, these expressions give rise to
an assortment of conditions that must be imposed at successively increasing orders,
namely,

u(0)r (1, θ, z) = −1, u(0)θ (1, θ, z) = 0, u(0)z (1, θ, z) = 0,
u(1)r (1, θ, z) = 0, u(1)θ (1, θ, z) = α′, u(1)z (1, θ, z) = 0,
u(2)r (1, θ, z) = α′2/2, u(2)θ (1, θ, z) = −αα′, u(2)z (1, θ, z) = 0.

 (2.7)

The solution to the three sets of equations and their associated boundary conditions
will be described in §§ 2.5–2.7.

Furthermore, to justify the use of the upcoming similarity transformation, it will
be helpful to examine the mass conservation requirement. By equating the radial
mass flow rate ṁw(z), which originates from the sidewall over a length of tubing that
extends from the headwall to a point z, to the axial mass flow rate ṁcross(z), crossing
section z, one arrives at the following equality:

z
∫ 2π

0

√
r2
+ r′2 dθ =

∫ 2π

0

∫ 1

0
uz (r, θ, z) r dr dθ. (2.8)

A sufficient condition for uz to satisfy the previous relation (2.8) is to assume a linear
variation with respect to z, as foretold by Hiemenz (1911). To make further headway,
only separable product solutions are sought, thus turning the linear dependence on z
into a necessary condition. Procedurally, this enables us to specify the axial velocity
corrections, u(0)z , u(1)z and u(2)z , with a linear dependence on z.

2.5. Leading-order analysis
In the absence of angular wall deformation (ε = 0), the classical problem of an
injection-driven motion in a circular cylinder is restored. Being independent of θ , one
recovers u(0)θ = 0 and ∂θ f = 0 for any scalar function f . In this situation, Berman’s
formulation may be employed with a streamfunction ψ(r, z) = zF(r), where F(r)
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represents the characteristic mean flow function (Berman 1953). The leading-order
solution may be subsequently retrieved from Berman’s fourth-order nonlinear ordinary
differential equation:[(

F
r

)(
F′

r

)′
−

(
F′

r

)2
]′
−

1
Re

[
1
r

(
r
(

F′

r

)′)′]′
= 0,

lim
r→0

(
F′

r

)′
= lim

r→0

F
r
= F′(1)= 0, F(1)= 1.

 (2.9)

In the above, the boundary conditions may be ascribed to axisymmetry and
wall-normal injection. In hindsight, the solutions obtained by Taylor (1956) and
Culick (1966) correspond to Berman’s formulation in the limit of Re → ∞. In
fact, the Taylor–Culick profile begins to resemble Berman’s solution for Re > 100.
Nonetheless, as we aim to extend the validity of the viscous model to a generic
non-axisymmetric configuration, we continue to employ Berman’s model and retain
its dependence on the cross-flow Reynolds number. Thus, for a given Re, (2.9) may
be solved numerically for F(r), and so the three velocity components and pressure at
order O(1) may be deduced directly from

u(0)r =−
F(r)

r
, u(0)θ = 0, u(0)z = z

F′(r)
r
, p(0) = P0 −

κ0

2
z2
−

F2

2r2
, (2.10a−d)

where both P0 and κ0 represent undetermined integration constants that may be
obtained from Berman’s expression in the modified coordinate system (r, θ, z).

2.6. First-order analysis
The system of linear equations (A 1) is written at the order O(ε) and rearranged
into (C 1). Guided by the wall-normal injection conditions requiring the appearance
of α and its derivative, a solution is sought using separation of variables. Note that
no additional axial pressure gradient is required for product solutions, since the mass
flow surplus (2.4) is of second order. The solution then simply reads

u(1)r = vr(r)α(θ),

u(1)θ = vθ(r)α
′(θ),

u(1)z = zvz(r)α(θ),
p(1) = q(r)α(θ).

 (2.11)

The substitution of these expressions into (C 1) gives rise to a θ -dependent system
in which every equation can be collapsed into the form of φ(r) = −α′′(θ)/α(θ),
where φ denotes an operator that may be constructed from the aforementioned
functions and their derivatives. Naturally, without any loss of generality in the space
of real functions, harmonic variations of the form α(θ) = cos(mθ) are retained, m
being a constant. Since m represents the number of lobes along a fixed circular
circumference, it will be referred to hereafter as the circular wavenumber. The
underlying consequence of this choice for α is that the mass flow conservation can
be expressed at the third order using

ṁw(z)= z
[
2π+ 1

2ε
2πm2

+ o(ε3)
]
. (2.12)
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For the reader’s convenience, the θ -dependent system of equations is provided
in (C 2). The system consists of one first-order and three second-order ordinary
differential equations. The corresponding injection conditions, which stem from (2.7),
lead to vθ(1) = 1 and vr(1) = vz(1) = 0. In order to achieve closure, four additional
constraints are still necessary, and these may be specified at r = 0 by introducing
Taylor-series expansions of the different functions with respect to r in (C 3). After
some effort, we arrive at v′r(0) = −F′′(0)/2 and vr(0) = vθ(0) = vz(0) = 0, with the
additional realization that m2

6= (0, 1), to avoid a mathematically incongruent outcome.
In practice, we are only interested in cross-sections with m > 3.

With the advent of a sufficient number of boundary conditions, a collocation method,
such as the one described by Canuto et al. (1988), may be used to discretize the
system of equations and recover the first-order velocity and pressure corrections.

2.7. Second-order analysis
To make further headway, we proceed to decompose the second-order corrections
using the following classical forms:

u(2)r (r, θ, z) = u(2)r,0(r)+ u(2)r,2(r) cos(2mθ),

u(2)θ (r, θ, z) = −mu(2)θ,2(r) sin(2mθ),

u(2)z (r, θ, z) = z[u(2)z,0(r)+ u(2)z,2(r) cos(2mθ)],

p(2)(r, θ, z) = − 1
2κz2
+ p(2)0 (r)+ p(2)2 (r) cos(2mθ).

 (2.13)

On the right-hand side of the resulting momentum equations at O(ε2), terms that
depend on the two previous orders, which are caused by nonlinear interactions, may
be explicitly seen (appendix C). Computing this second-order correction will therefore
enable us to capture the nonlinearities alluded to by Balachandar et al. (2001) when
εRe is no longer a small quantity. The resulting set of seven linear equations can
be subsequently consolidated into two concise and independent systems: the first
assortment consists of four linear equations that prescribe (u(2)2 , p(2)2 ), as given
by (D 1), and the second entails three linear equations that control (u(2)0 , p(2)0 ), as
given by (D 2). Being independent, these two systems may be solved separately.
Moreover, since u(2)θ only appears in the first system, each set leads to a well-posed
problem with the same number of equations and unknowns, except for the constant
κ . Its determination will be described separately.

The boundary conditions associated with u(2)2 may be readily obtained from (2.7),
specifically at the wall and the centreline, using the r→ 0 Taylor-series expansions
introduced previously. These produce

u(2)r,2(1)=−m2/4, u(2)θ,2(1)=−1/2, u(2)z,2(1)= 0,
u(2)r,2
′

(0)= u(2)r,2(0)= u(2)θ,2(0)= u(2)z,2
′

(0)= 0.

}
(2.14)

With the boundary conditions in hand, the computation of (u(2)2 , p(2)2 ) may be achieved
easily using a discrete collocation, for instance.

Unlike (u(2)2 , p(2)2 ), the three linear equations for (u(2)0 , p(2)0 ) may be carefully reduced
into a single third-order ordinary differential equation that depends solely on u(2)r,0. This
equation is given by (D 3). The undetermined pressure constant κ , which appears on
the right-hand side of (D 3), has a direct influence on u(2)z,0(1). Since κ appears as a
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m 3 4 5 6 7 8 9 10 11 12

Re= 100 35.4 71.1 117.0 173.0 239.4 316.0 403.0 500.0 607.2 725.0
Re= 250 34.9 69.9 114.8 169.7 234.6 309.5 394.2 488.9 593.4 707.8
Re= 500 34.7 69.5 114.1 168.7 233.2 307.6 391.8 485.9 589.8 703.4

TABLE 1. Calculated values of the pressure constant κ for different values of m and Re.

forcing term in a linear relation, the connection between u(2)z,0(1) and κ proves to be
linear. At the outset, a unique value for κ may be retrieved for a given set of input
parameters in order to secure u(2)z,0(1)= 0. For the reader’s convenience, its values for
different ranges of Re and m are provided in table 1.

2.8. Characterization at successive orders and wavenumbers
In summary, the velocity and pressure fields may be expressed using

ur =−
F
r
+ εvr cos(mθ)+ ε2

[
u(2)r,0 + u(2)r,2 cos(2mθ)

]
,

uθ =−mεvθ sin(mθ)−mε2u(2)θ,2 sin(2mθ),

uz = z
{

F′

r
+ εvz cos(mθ)+ ε2

[
u(2)z,0 + u(2)z,2 cos(2mθ)

]}
,

p= P0 −
κ0

2
z2
−

F2

2r2
−

F′

rRe
+ εq cos(mθ)+ ε2

[
p(2)0 + p(2)2 cos(2mθ)−

κ

2
z2
]
.


(2.15)

To illustrate the behaviour of the solution, we confine our attention to a polar slice
that extends between θ = 0 and 2π/m. In figure 2, we examine the sensitivity of
the solution for ur and uz at increasing asymptotic orders using characteristic values
of ε = 0.1, Re = 100 and m = 7. Only the radial variation is captured here, which
may be accomplished by plotting the solution along a spoke at θ = 0 and a fixed
value of z. The radial velocity, which is featured on the left-hand side of the graph
at three increasing orders of ε, confirms that even the first-order approximation, u(1)r ,
is considerably dissimilar from the leading-order solution. This disparity implies that
the radial displacement of the sidewall leads to a significant distortion of the mean
flow field compared to the circular configuration. However, these results also suggest
that the second-order correction, u(2)r , only weakly affects the overall radial velocity.
Although similar observations may be inferred for the tangential velocity, they are
omitted here for the sake of brevity.

In contrast, by turning our attention to the axial velocity variation on the right-hand
side, it may be seen that the second-order correction leads to a non-negligible shift in
uz, especially as the centreline is approached, where the first-order contribution is nil
by virtue of u(1)z (0) = 0. The need for a second-order correction is therefore pivotal.
In fact, the discrepancy near the centreline between Berman’s leading-order solution
and that at O(ε2) may be attributed to the mass flow rate increase reported in (2.4).
Recalling that the mass flow rate entails an integration over θ , the contribution of
the first-order correction u(1)z multiplied by the periodic function cos(mθ) vanishes
identically. However, the contribution of the second-order correction u(2)z , which
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FIGURE 2. Influence of the corrections of different orders on the asymptotic
approximations for (a) ur and (b) uz/z at ε= 0.1, Re= 100 and m= 7.
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FIGURE 3. Influence of the circular wavenumber m on (a) uθ along a spoke with
θ =π/(4m) and (b) u(2)z,0 at the centreline with θ = 0. Here ε= 0.1 and Re= 100.

involves a θ -independent term (u(2)z,0), leads to a finite contribution. Based on this
simple comparison and mathematical verification, it may be concluded that the
first-order correction affects all three velocity components, thus leading to marked
differences from the circular configuration. As for the second-order correction, it
proves to be essential to properly capture the behaviour of the axial velocity, especially
near the centreline, and therefore helps to secure the principle of mass conservation.

To better understand the effect of m on the second-order approximation, both uθ
and the centreline value of uz are depicted in figure 3 at ε = 0.1 and Re = 100.
The tangential velocity is featured in figure 3(a) along a spoke with θ =π/(4m) and
m= 5, 6, 7, 8 and 9. Interestingly, the effect of the injection condition in (2.7) on the
magnitude of uθ may be captured at the sidewall, where |uθ | increases incrementally
with m. The maximum values of uθ also shift outwards towards the sidewall with
successive increases in m.

It is also useful to explore the sensitivity of the centreline value of u(2)z (0)
to variations in m ∈ [3, 12] in figure 3(b). Since u(2)z,2(0) = 0, it is sufficient to
illustrate the behaviour of u(2)z,0(0) in order to infer the underlying trend. Although
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FIGURE 4. Isocontours of the tangential component of the rotational vorticity in an (r, z)
plane along with the corresponding streamlines according to the present formulation (solid
lines). Also shown are the streamlines obtained for Berman’s model in a circular cross-
section (dashed lines). Here we use ε= 0.1, Re= 100 and m= 7.

the relation between u(2)z,0(0) and m remains concealed in (D 2), the corresponding
curve suggests the existence of a monotonically increasing quadratic polynomial of
the form u(2)z,0(0)= c0 + c1m+ c2m2, whose coefficients in figure 3(b) are c0 =−1.242,
c1=−0.1875 and c2= 0.817. Despite the appearance of m2 in the equations explicitly,
determining the quadratic solution analytically for any Re and ε proves to be a
daunting task. Nonetheless, based on this characteristic graph, it may be ascertained
that the role of u(2)z,0(0) can be significant, especially at increasing values of m.
Although not shown, we also find that the effect of increasing the Reynolds number
on u(2)z,0(0) is negligible in comparison to m.

As for flow rotationality, figure 4 displays isocontours of the tangential component
of the steady-state vorticity Ωz in an arbitrary (r, z) plane; also provided is a
comparison of the streamlines for the present solution side by side with Berman’s.
Based on this graph, it may be seen that the star-shaped configuration leads to deeper
penetrating streamlines than the circular case. Specifically, the solid lines, which
correspond to the present formulation, consistently approach the chamber axis more
rapidly than the dashed lines of the non-wavy solution.

3. Comparison to Navier–Stokes simulations

To further illustrate the behaviour of the non-circular profile and more accurately
define its domain of applicability, a comparison is now undertaken between the results
obtained from the present semi-analytical formulation and those predicted by a Navier–
Stokes solver. To this end, the Navier–Stokes solver is introduced first along with
its computational characteristics. Second, the sensitivity of the flow computations to
variations in the three main parameters, ε, Re and m, are explored and compared to
our second-order approximations.

3.1. Solver description
Our numerical simulations are performed using a compressible Navier–Stokes solver
called CHARME, which belongs to the multi-solver suite CEDRE developed by
the French Aerospace Laboratory (ONERA). A detailed overview of the code’s
functionality is provided by Refloch et al. (2011), while examples of its computational
capabilities, which include laminar flow simulations and verifications of linear stability
analyses of rocket internal flow fields, are furnished by Chedevergne et al. (2012)
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and Boyer et al. (2013). In these studies, an excellent agreement is reported between
theory and computations, thus showcasing the solver’s effectiveness in capturing
the mean flow development as well as the unsteady hydrodynamic instabilities that
evolve in a rocket chamber. As usual, the latter may be idealized as a porous tube
with uniform wall injection, which is consistent with the geometric configuration
used presently. As for the code, a second-order discretization stencil is implemented
for spatial interpolation, while Euler’s fluxes are computed using a Roe scheme.
Throughout these simulations, the length and mean radius of the porous tube are kept
constant at 8a and a= 1 cm, respectively. Although the value of a may be modified,
the aspect ratio is held constant. Furthermore, the wall injection speed Uw is adjusted
to calculate the targeted Reynolds numbers while ensuring that it remains sufficiently
small to promote low compressibility levels. At the headwall, a slip condition that
is compatible with our model is applied to avoid the development of an undesirable
boundary layer. In the domain exit plane at z = 8a, a pressure outlet condition is
imposed. The code is fully three-dimensional and the assumption of linear axial
variation is not forced. Then, using a three-dimensional unstructured mesh with
approximately four million total elements, 600 cells are selected to construct the
axial grid along the sidewall, whereas 150 cells are distributed radially along the
diameter. Although the mesh size can generally depend on Re, ε and m, the present
discretization size is confidently chosen because of its demonstrated effectiveness in
previous studies of analogous flow fields (Chedevergne et al. 2012; Boyer et al. 2013).
In what follows, the term ‘model’ will be used to denote second-order asymptotic
results obtained from the present framework, whereas ‘CFD’ will refer to numerical
(computational fluid dynamics) simulations acquired from the nonlinear Navier–Stokes
solver.

3.2. On the linearity of the axial velocity with respect to z
Inspired by Berman’s solution and the mass conservation relation (2.8), the axial
velocity component can be assumed to be linear with respect to the axial coordinate
z. In order to verify that the CFD solution will indeed mimic this linear behaviour,
figure 5 is used to compare our model to the computed solution for ε= 0.1, Re= 100
and m = 7. To magnify the possible departures from the expected linearity, the
leading-order contribution of O(1), i.e. Berman’s solution, is subtracted from the
axial velocity component uz, thus leaving only first- and second-order corrections.
Based on this comparison, it is clear that the computed axial velocity remains linear
with respect to z up to approximately z= 7 using r= 0.3. Beyond this location, it is
possible for the outlet pressure condition to slightly influence the axial development of
the flow field. Apart from this outlet effect, it may be argued that the Navier–Stokes
solver in figure 5 helps to validate the assumption of a linear variation with respect to
z. Moreover, the visual agreement in the resulting slopes confirms that the simulation
accurately reproduces the radial and tangential evolutions of the modelled flow. In
fact, additional comparisons only reinforce this behaviour. In the interest of simplicity,
subsequent results will be displayed halfway through the chamber at z= 4.

3.3. Flow characterization based on both asymptotics and computations
To take advantage of the periodicity in the angular direction, flow field comparisons
are reproduced in a polar slice that extends from θ = 0 to 2π/m. Note that the mesh
used in conjunction with the Navier–Stokes simulations does not rely on periodic
conditions; the tangential coordinate θ extends over the full range of [0,2π]. We begin
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FIGURE 5. Evolution along the domain of the axial velocity εu(1)z + ε
2u(2)z at two radial

locations of r= (0.3, 0.8) in the θ =π/m plane for ε= 0.1, Re= 100 and m= 7.

in figure 6 with the isocontours of the three velocity components using ε= 0.1, Re=
100, z= 4 and m= 7. Despite the linearization that affects the second-order asymptotic
framework, an excellent agreement may be noted between the isocontours generated
from the numerical simulations and those obtained from the asymptotic model for all
three radial, tangential and axial velocity components.

By turning our attention first to the tangential velocity, it may be confirmed that
its maximum absolute values occur at θ = π/(2m) and 3π/(2m) taken along the
sidewall because of surface waviness; as for its sign, it depends on whether the
flow is situated above or below the meridian line at θ = π/m, where the tangential
velocity vanishes identically. The tangential velocity also vanishes at the domain
delimiting lower and upper spoke lines located at θ = 0 and 2π/m, where the radial
velocity ur matches the wall-normal velocity in both direction and magnitude. At
those specific sites, both axial and tangential velocities vanish, thus leaving the flow
to enter the chamber radially inwards towards the centreline (i.e. with no directional
distortion). Naturally, |uθ | diminishes while moving inwards away from the sidewall,
or when moving tangentially towards the meridian lines as well as the upper and
lower domain delimiting lines. In anticlockwise fashion, uθ switches from negative to
positive values as we cross from 0< θ < π/m to π/m< θ < 2π/m. Moreover, given
that the tangential velocity is induced by small deviations from a circular cross-section,
it remains smaller than its radial and axial counterparts, being asymptotically driven
by O(ε) surface displacements, unlike the radial and axial velocities, which are chiefly
induced by the mass injection mechanism.

At this juncture, it may be helpful to recall that, in the absence of surface waviness,
the isocontours of the axisymmetric axial velocity lead to concentric circles that
exhibit a maximum value along the centreline. In the present configuration, the
isocontours of uz stretch radially outwards along the meridian line of θ = π/m,
where the chamber radius happens to be the shortest. Naturally, the area contraction
in flow cross-section at this angular position induces a local increase in the axial
velocity. Conversely, these isocontours shift radially inwards at the upper and lower
boundaries where local wall expansions lead to an increase in the flow cross-section
and, therefore, a corresponding reduction in uz.
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FIGURE 6. Isocontours of the radial, tangential and axial velocity components based on
(a) nonlinear Navier–Stokes computations and (b) linear asymptotics at O(ε2). Using ε=
0.1, Re= 100, z= 4 and m= 7, the spokes depicting extrema are identified with dashed
lines at their corresponding angular locations.

In fact, continuity may be used to partly explain the trends observed in the
isocontours of the radial velocity. Upon close inspection of the corresponding graphs,
it may be ascertained that ur vanishes along the centreline, where uz reaches its
peak value, and that it increases in regions of axial velocity deficit. This behaviour
may be attributed to the flow turning mechanism that affects the wall-injected
stream, specifically as it negotiates a 90◦ turn before merging axially with the
core flow. At θ = π/m, owing to the stretched axial velocity isocontours, the radial
velocity deceleration towards the centreline is more rapid than at the θ = 0 and
2π/m borderlines, where the flow may be seen to be radially expanded. Another
characteristic of ur, which has been well documented in the literature, corresponds to
its velocity overshoot compared to its wall value (Saad & Majdalani 2010). Despite
the unitary speed of |ur|=1 at the sidewall, |ur| undergoes first an increase in absolute
value due to the sudden radial pinching of the circumferential area that is normal
to the injected flow, and which does not permit the flow to develop a sufficient uz
component to adequately transport the mass axially. The resulting increase in |ur|
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FIGURE 7. Isocontours of the axial vorticity based on (a) nonlinear Navier–Stokes
computations and (b) linear asymptotics at O(ε2). Here ε= 0.1, Re= 100, z= 4 and m= 7.

may be noted in the peak contour points in figure 6, namely, those that materialize
at some intermediate positions between the wall and the centreline. Naturally, when
the flow is pinched, the locus of these extrema moves closer to the centreline.

As alluded to earlier, another byproduct of waviness and viscosity may be
the production of axial vorticity, which is absent in the strictly axisymmetric
Taylor–Culick model (Balachandar et al. 2001). To illustrate the corresponding
behaviour, isocontours of axial vorticity, namely, Ωz, are displayed in figure 7 for
ε = 0.1, Re= 100, z= 4 and m= 7. Using the variable coordinate transformation at
the wall, Ωz may be expressed as

Ωz =
1

1+ ε cos(mθ)

[
∂ruθ −

εm sin(mθ)
1+ ε cos(mθ)

∂rur −
1
r
∂θur +

uθ
r

]
. (3.1)

Note that this vorticity component vanishes for the axisymmetric case. In order to
improve the velocity gradients and thus the vorticity, the spatial integration scheme
within the Navier–Stokes solver is increased to the third order in figure 7. Graphically,
one may infer that the Navier–Stokes computations tend to agree qualitatively with
the second-order asymptotic solution, especially in the two bulk regions where the
axial vorticity is largest. Nonetheless, discrepancies may also be seen at the sidewall
near θ = π/(2m) and 3π/(2m). The bulk vorticity regions that develop in this
configuration are consistent with those detailed by Kurdyumov (2006). Furthermore,
the dissimilarities observed near the sidewall may be attributed to the practical
limitations associated with asymptotic expansions. They may also be ascribed to the
compounded effects of numerical errors that accrue during the evaluation of velocity
gradients within the Navier–Stokes solver.

3.4. Sensitivity to various Reynolds numbers, radial deviations and wavenumbers
To further explore the effects of varying the Reynolds number, radial deviation
amplitude and circular wavenumber on the flow development, the sensitivity of the
three velocity components to these parameters may be quantified by comparing
the second-order corrections to the individual computations taken along different
polar angles. Guided by the isocontours of figure 6, both ur and uz seem to display
interesting structures along angular cuts taken at θ = 0 and π/m, whereas uθ may
be best featured at θ = π/(2m). We therefore proceed to evaluate the three velocity
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FIGURE 8. Comparison between (a) the axial velocity correction at Re= 100, z= 4 and
ε = (0.01, 0.1) along a constant θ = π/m spoke, and (b) the radial velocity correction at
ε = 0.01, z = 4 and Re = (100, 1000) along a constant θ = 0 spoke. Here we use both
Navier–Stokes computations (symbols) and second-order asymptotics (lines) for [u(1)z +

εu(2)z ]/z and u(1)r + εu
(2)
r with m= 7 crests.

components along their most representative inclination angles and showcase their
outcomes in figures 8–10 using both asymptotics and computations.

As we seek to better understand the role of ε on the axial velocity, the second-order
corrections obtained asymptotically are compared to those computed in figure 8(a)
using Re = 100, z = 4, m = 7 and two values of ε that correspond to 0.01 and 0.1.
Results are deliberately displayed along a constant θ = π/m spoke where the
largest deviations from the axisymmetric motion may be realized. To further
magnify differences, the exact Berman solution that is recovered at leading order is
subtracted from both solutions, and the outcome is divided by ε, thus leaving us with
[u(1)z + εu

(2)
z ]/z. In view of the dual magnification levels that are implemented, it may

be argued that the agreement between computations and asymptotics is satisfactory,
especially in the ability of the model to capture both sidewall and centreline variations
with ε rather consistently. The most noticeable discrepancies remain small and mostly
confined to the annular region that extends approximately between r≈ 0.4 and 0.7.

In fact, because of the magnification effect, these discrepancies actually fall within
the numerical uncertainty that accompanies our simulations. The reasons are these.
Since the mesh is uniformly discretized along the z direction, the accuracy of uz/z
directly depends on the finite gap between two axial positions. Furthermore, the
disparities can stem either from higher-order terms that are not accounted for in the
asymptotic formulation, or from the diffusive nature of the second-order discretization
scheme that is adopted in the Navier–Stokes solver.

As for the influence of the Reynolds number on the radial velocity, it is illustrated
in figure 8(b) using ε = 0.01, m = 7 and two values of Re that correspond to 100
and 1000, respectively. Choosing a relatively small value of ε enables us to compute
the flow field with a large Reynolds number. Here, too, we display only the second-
order correction in the radial velocity, u(1)r + εu

(2)
r , by subtracting the leading-order

contribution. The agreement that is achieved between the numerical simulations and
the asymptotic formulation is gratifying to note, especially as the Reynolds number is
set at 1000.
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FIGURE 9. Sensitivity of the tangential and axial velocities to variations in m using both
computations (symbols) and second-order asymptotics; here we take ε= 0.1 and Re= 100.
Results are shown along constant angular spokes of (a) θ = π/(2m) for the tangential
velocity uθ/ε= u(1)θ + εu

(2)
θ and (b) θ = 0 for the axial velocity [u(1)z + εu

(2)
z ]/z.

In figure 9(a), the sensitivity of the tangential velocity on the circular wavenumber
is characterized by showcasing uθ/ε= u(1)θ + εu

(2)
θ along a polar angle of θ =π/(2m)

using ε= 0.1, Re= 100 and m= 5, 7 and 9. The skipping of even values of m reduces
visual clutter by helping to distinguish between the remaining curves, especially since
the use of m = 4, 6 and 8 leads to nearly identical trends. It is also guided by
practical reasons, such as the preferred grain perforations in industry, which are
invariably designed with an odd number of star points, crests or lobes, with the hope
that such arrangements would help to mitigate the development of acoustic instabilities.
Here, too, the agreement between computations and the modelled solution appears to
be excellent in the core region. However, small differences begin to appear when the
wavenumber is increased or when the sidewall is approached. We also remark that at
θ =π/(2m), the contribution of second-order terms to the tangential velocity become
negligible because of the sin(2mθ) term that appears in the definition of u(2)θ . As one
may surmise from (2.13), the minor disparities that are detected near the sidewall
may be attributed to the omission of third-order terms in the asymptotic expansion
of the injection velocity. Asymptotically, one must have

uθ(1, θ, z)= α′ε+ αα′ε2
+ α′

(
α2
−

1
2α
′2
)
ε3
+ o(ε3), (3.2)

where the quantity α′(α2
−

1
2α
′2)ε3 reduces to m3ε3/2 at θ =π/(2m); this third-order

correction actually matches the gap between the computational and second-order
asymptotic values at the wall, which widens with successive increases in m and ε.

The sensitivity of the axial velocity on the circular wavenumber is illustrated
in figure 9(b) along a different polar angle, namely θ = 0, at the same Reynolds
number and deviation values. Here, Berman’s contribution u(0)z is subtracted from
the total axial velocity component in order to showcase the correction only, as done
previously in figure 8. Consistently with the behaviour observed in the tangential
velocity comparison, the agreement between computations and the modelled solution
appears to be quite satisfactory for m = 5, although it slowly deteriorates as m is
increased. As before, the overshoot of the model near r≈ 0.9 may be attributed to the
diffusivity of the Navier–Stokes solver; the accuracy of the simulation along the axis
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FIGURE 10. Isocontours of (a) the radial velocity ur for m= 5, (b) the radial velocity ur
for m= 7, (c) the tangential velocity uθ for m= 7 and (d) the axial velocity uz for m= 7
using ε= 0.2 and Re= 100.

remains limited by the finite discretization in the axial direction. Since the absolute
value of the axial velocity along the axis |u(2)z (0)| increases with m, so does the
uncertainty associated with the axial mesh discretization, thus leading to a growing
disparity between the simulations and the modelled solution. Furthermore, it may be
helpful to note that the displayed velocity components are divided by ε to better
differentiate among the curves. Nonetheless, the noted discrepancies remain small
compared to the total velocity magnitude u.

Before leaving this discussion, it may be instructive to note that, in the foregoing
work, the product εRe has been consistently smaller than 10. Nonetheless, comparisons
could have been undertaken for values that reach εRe ≈ 30. Above this level, the
Navier–Stokes solver will have difficulty converging onto a steady periodic solution.
An example of the model’s validity for εRe = 20 is provided in figure 10, where
isocontours of the velocity are displayed at two different values of m. By comparing
the upper and lower sections of the graph, the ability of the model to mirror the
computed solution seems gratifying, except in what concerns the negative peak
magnitudes of ur in the model, which overshoot their computed values. The axial
velocity in figure 10(d) also exhibits different lobe shapes when comparing the
modelled solution to its simulation at the same contour levels.

4. Conclusion
In this study, the Navier–Stokes equations are applied to the asymmetric problem

that arises in the context of an injection-driven mean flow motion in a porous tube
with a wavy non-circular cross-section. After mapping the radial coordinate to a fixed
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boundary, the equations of motion are transformed and shown to recover Berman’s
fourth-order differential equation in the absence of surface distortion. To make further
headway, an asymptotic expansion is pursued in the deviation amplitude, ε, which
stands for the maximum radial displacement in a unit circle. This enables us to
derive the system of equations that prescribe the stationary motion both at the first
and second orders in ε. Then using judiciously imposed similarity transformations,
the first-order system is reduced to four ordinary differential equations that can be
solved straightforwardly. Along similar lines, the second-order system is transformed
into an assortment of seven ordinary differential equations that can be solved with
equal ease. The second-order formulation is subsequently shown to provide a practical
similarity-based, asymptotic approximation to the problem at hand. Comparisons to
nonlinear numerical simulations serve to verify the accuracy of the solution and to
confirm the necessity of carrying out the analysis at least to second order. In this vein,
we find that the axial velocity component is strongly affected by the second-order
correction, which also plays a key role in securing mass conservation, especially
in long chambers. From a fundamental standpoint, a high-order approximation not
only extends our range of applicability to larger values of the Reynolds number and
deviation amplitudes, it also helps to capture the axial vorticity that evolves in the
chamber, as well as the viscous patch that develops along the centreline. Moreover,
the semi-analytical solution enables us to assess the sensitivity of the flow field to
variations in the cross-flow Reynolds number, the deviation amplitude and the circular
wavenumber, which is specified by the number of lobes or crests in an actual grain
perforation.

The inception of a viscous second-order mean flow model as a substitute to the
Taylor–Culick profile opens up a parallel line of research inquiry into the stability
and performance of rocket chambers in the presence of wall distortion. Although
numerous stability investigations of the Taylor–Culick profile exist, with and without
particle mean flow interactions, the corresponding problems in non-circular grain
configurations remain relatively unexplored. In a circular motor, for example, the
role of the tangential vorticity component on stability is relatively well understood.
However, in the presence of asymmetry and surface distortions, the impact of axial
vorticity on instability remains an open question. Given the deeply modified vorticity
structures in a non-circular configuration, it will be interesting to explore the effects
of deviation amplitudes and wavenumbers on flow instability. It is also hoped that
these and other research questions will be addressed in future work.
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Appendix A

This appendix provides the resulting system of equations after substituting (2.2)
into (2.1). When multiplied by the strictly positive quantity (1+ εα), one is left with
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ur∂rur −
εα′

1+ εα
uθ∂rur +

uθ
r
∂θur −

u2
θ

r
+ (1+ εα)uz∂zur

=−∂rp+
1+ εα

Re
∇

2u · er,

ur∂ruθ −
εα′

1+ εα
uθ∂ruθ +

uθ
r
∂θuθ +

uθ
r

ur + (1+ εα)uz∂zuθ

=
εα′

1+ εα
∂rp−

1
r
∂θp+

1+ εα
Re
∇

2u · eθ ,

ur∂ruz −
εα′

1+ εα
uθ∂ruz +

uθ
r
∂θuz + (1+ εα)uz∂zuz

=−(1+ εα)∂z p+
1+ εα

Re
∇

2u · ez,

∂rur +
ur

r
−

εα′

1+ εα
∂ruθ +

1
r
∂θuθ + (1+ εα)∂zuz = 0,



(A 1)

where the expression for ∇2u is detailed in appendix B.

Appendix B

This appendix details the scalar representation of the Laplacian ∇2u in view of the
coordinate transformation

r=
r

1+ εα(θ)
, θ = θ, z= z. (B 1)

This substitution entails, for any scalar function f ,

∂rf =
1

1+ εα(θ)
∂rf , ∂θ f =−

εα′(θ)

1+ εα(θ)
r∂rf + ∂θ f , ∂zf = ∂zf . (B 2a−c)

In cylindrical coordinates, the Laplacian of a vector u may be expanded into

∇̄
2u=


∂2

r ur +
1
r2 ∂

2
θ
ur + ∂

2
z ur +

1
r
∂rur −

2
r2 ∂θuθ −

ur

r2

∂2
r uθ +

1
r2 ∂

2
θ
uθ + ∂2

z uθ +
1
r
∂ruθ +

2
r2 ∂θur −

uθ
r2

∂2
r uz +

1
r2 ∂

2
θ
uz + ∂

2
z uz +

1
r
∂ruz

 . (B 3)

When converted into the (r, θ , z) coordinate system, the three components of ∇2u
may be expressed in vector form using

∇
2u=

Ar
Aθ
Az

 , (B 4)
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where

Ar =
1

(1+ εα)2

[
1+

(εα′)2

(1+ εα)2

]
∂2

r ur +
1

r2 (1+ εα)2
∂2
θ ur + ∂

2
z ur

+
1

r (1+ εα)2

[
1+

(εα′)2

(1+ εα)2
− ∂θ

εα′

1+ εα

]
∂rur +

2εα′

r (1+ εα)3
∂ruθ

−
2

r2 (1+ εα)2
∂θuθ −

ur

r2 (1+ εα)2
−

2εα′

r (1+ εα)3
∂θ∂rur, (B 5a)

Aθ =
1

(1+ εα)2

[
1+

(εα′)2

(1+ εα)2

]
∂2

r uθ +
1

r2 (1+ εα)2
∂2
θ uθ + ∂2

z uθ

+
1

r (1+ εα)2

[
1+

(εα′)2

(1+ εα)2
− ∂θ

εα′

1+ εα

]
∂ruθ −

2εα′

r (1+ εα)3
∂rur

+
2

r2 (1+ εα)2
∂θur −

uθ
r2 (1+ εα)2

−
2εα′

r (1+ εα)3
∂θ∂ruθ , (B 5b)

Az =
1

(1+ εα)2

[
1+

(εα′)2

(1+ εα)2

]
∂2

r uz +
1

r2 (1+ εα)2
∂2
θ uz + ∂

2
z uz

+
1

r (1+ εα)2

[
1+

(εα′)2

(1+ εα)2
− ∂θ

εα′

1+ εα

]
∂ruz −

2εα′

r (1+ εα)3
∂θ∂ruz. (B 5c)

Appendix C
This appendix contains the equations related to the determination of O(ε) terms.

The initial system at O(ε) reads:

u(0)r ∂ru(1)r + u(1)r ∂ru(0)r + u(0)z ∂zu(1)r

=−∂rp(1) +
1

Re

[
∂2

r u(1)r +
1
r2
∂2
θ u(1)r + ∂

2
z u(1)r +

1
r
∂ru(1)r −

2
r2
∂θu

(1)
θ −

u(1)r

r2
− 2α∂2

r u(0)r

−
2α + α′′

r
∂ru(0)r +

2α
r2

u(0)r

]
,

u(0)r ∂ru
(1)
θ +

1
r

u(0)r u(1)θ + u(0)z ∂zu
(1)
θ

=−
1
r
∂θp(1) + α′∂rp(0) +

1
Re

[
∂2

r u(1)θ +
1
r2
∂2
θ u(1)θ + ∂2

z u(1)θ +
1
r
∂ru

(1)
θ +

2
r2
∂θu(1)r

−
u(1)θ
r2
−

2α′

r
∂ru(0)r

]
,

u(0)r ∂ru(1)z + u(1)r ∂ru(0)z + u(0)z ∂zu(1)z + u(1)z ∂zu(0)z + αu(0)z ∂zu(0)z

=−∂zp(1) − α∂zp(0) +
1

Re

[
∂2

r u(1)z +
1
r2
∂2
θ u(1)z + ∂

2
z u(1)z +

1
r
∂ru(1)z − 2α∂2

r u(0)z

−
2α + α′′

r
∂ru(0)z

]
∂ru(1)r +

1
r

u(1)r +
1
r
∂θu

(1)
θ + ∂zu(1)z + α∂zu(0)z = 0.


(C 1)
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Thus the system of equations that controls vr, vθ , vz and q may be rearranged into:

−
1

Re
v′′r −

1
r

(
F+

1
Re

)
v′r +

[(
−

F
r

)′
+

m2
+ 1

r2Re

]
vr + q′ −

2m2

r2Re
vθ

=
1

rRe

(
2F′′ −

m2
+ 2
r

F′ +
m2

r2
F
)
,

−
1

Re
v′′θ −

1
r

(
F+

1
Re

)
v′θ +

1
r2

(
−F+

m2
+ 1

Re

)
vθ +

1
r

q −
2

r2Re
vθ

=

(
−

F2

2r2

)′
+

1
rRe

(
−F′′ +

3
r

F′ −
2
r2

F
)
,

−
1

Re
v′′z −

1
r

(
F+

1
Re

)
v′z +

1
r

(
2F′ +

m2

rRe

)
vz +

(
F′

r

)′
vr

=

(
−

F
r

)(
F′

r

)′
−

1
rRe

(
3F′′′ −

m2
+ 3
r

F′′ +
m2
+ 3

r2
F′
)
,

v′r +
1
r
vr −

m2

r
vθ + vz =−

F′

r
,



(C 2)

with the auxiliary boundary conditions

vz(1)= vr(1)= 0, vθ(1)= 1, (C 3a,b)

vz(0)= vr(0)= vθ(0)= 0, v′r(0)=−
1
2 F′′(0). (C 3c,d)

Appendix D

This appendix summarizes the equations needed to determine the O(ε2) corrections.
First, the linear equations for u(2)r,2, u(2)θ,2, u(2)z,2 and p(2)2 may be written as

u(2)′r,2 +
u(2)r,2

r
−

2m2

r
u(2)θ,2 + u(2)z,2 =−

1
2

(
vz +m2v′θ

)
, (D 1a)

−
u(2)′′r,2

Re
+

(
u(0)r −

1
rRe

)
u(2)′r,2 +

(
u(0)′r +

4m2
+ 1

r2Re

)
u(2)r,2 −

4m2

r2Re
u(2)θ,2 + p(2)′2

=
vrv
′

r

2
−

m2

2
vθ

(
u(0)′r −

vr

r
+
vθ

r

)
+

1
2Re

[
u(0)′′r

(
1−m2

)
− v′′r +

1− 4m2

r
u(0)′r

+
3m2
− 1

r
v′r +

m2
+ 1

r2
vr −

2m2

r

(
v′θ −

vθ

r

)
−

u(0)r

r2

]
, (D 1b)

−
u(2)′′θ,2

Re
+

(
u(0)r −

1
rRe

)
u(2)′θ,2 +

(
u(0)r

r
+

4m2
+ 1

r2Re

)
u(2)θ,2 −

4
r2Re

u(2)r,2 +
2
r

p(2)2

=−
vrv
′

θ

2
−

1
2r
vθvr +

m2

2r
(vθ)

2
+

1
2

q′ −
1
2

p(0)′ +
1

2Re

(
−v′′θ +

m2
+ 1

r2
vθ

+
3m2
− 1

r
v′′θ −

2
r
v′′r −

2
r2
vr +

4
r

u(0)r

)
, (D 1c)
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−
u(2)′′z,2

Re
+

(
u(0)r −

1
rRe

)
u(2)′r,2 +

(
2u(0)z +

4m2

r2Re

)
u(2)z,2 + u(0)′z u(2)r,2

=−
vrv
′′

z

2
−
(vz)

2

2
− u(0)z vz −

m2

2
vθu

(0)′
z +

m2

2r
vθvz +

1
2Re

[
u(0)′′z

(
1−m2

)
− v′′z +

1− 4m2

r
u(0)′z +

3m2
− 1

r
v′z +

m2

r2
vz

]
. (D 1d)

In the above, the lower-order terms that capture nonlinear interactions are collected
on the right-hand side of the momentum equations.

Second, the defining equations for u(2)r,0, u(2)z,0 and p(2)0 may be consolidated into

u(2)′r,0 +
u(2)r,0

r
+ u(2)z,0 =−

1
2

(
vz −m2v′θ

)
, (D 2a)

−
1

Re
u(2)′′r,0 +

(
u(0)r −

1
rRe

)
u(2)′r,0 +

(
u(0)′r +

1
r2Re

)
u(2)r,0 + p(2)′0

=−
vrv
′

r

2
+

m2

2
vθ

(
u(0)′r −

vr

r
+
vθ

r

)
+

1
2Re

[
u(0)′′r

(
1+m2

)
− v′′r +

u(0)′r

r

−
m2
+ 1
r

v′r +
m2
+ 1

r2
vr +

2m2

r

(
v′θ −

vθ

r

)
−

u(0)r

r2

]
, (D 2b)

−
1

Re
u(2)′′z,0 +

(
u(0)r −

1
rRe

)
u(2)′z,0 + 2u(0)z u(2)z,0 + u(0)′z u(2)r,0

= κ −
vrv
′

z

2
−
(vz)

2

2
− u(0)z vz +

m2

2
vθu

(0)′
z −

m2

2r
vθvz +

1
2Re

[
u(0)′′z

(
1+m2

)
− v′′z

+
u(0)′z

r
−

m2
+ 1
r

v′z +
m2

r2
vz

]
. (D 2c)

Here, again, the continuity relation may be combined with the radial momentum
equation to express u(2)z,0 and p(2)0 in terms of u(2)r,0 and its derivatives. This manipulation
leads to a single third-order ordinary differential equation for u(2)r,0, specifically,

u(2)′′′r,0

Re
+

(
2

rRe
− u(0)r

)
u(2)′′r,0 −

(
2u(0)z +

u(0)r

r
+

1
r2Re

)
u(2)′r,0 +

(
u(0)r

r2
−

2u(0)z

r

+ u(0)′z +
1

r3Re

)
u(2)r,0

= κ −
vrv
′

z

2
−
(vz)

2

2
+

u(0)r v
′

z

2
+

m2

2

(
vθu

(0)′
z −

vθvz

r
− u(0)r v

′′

θ − 2u(0)z v
′

θ

)
+

1
2Re

[(
1+m2

)
u(0)′′z − 2v′′z +

u(0)′z

r
−

m2
+ 2
r

v′z +m2

(
vz

r2
+ v′′′θ +

v′′θ

r

)]
.

(D 3)
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