Transversals of squares

N.H. Williams

Let κ and λ be cardinal numbers. Take any family $A = \{A_{v}; v \in N\}$ where each A_{v} is a product $A_{v} = B_{v} \times C_{v}$ with $|B_{v}| = |C_{v}| = \aleph_{\alpha}$, such that if $B \times C \subseteq A_{\mu} \times A_{v}$ (for $\mu \neq v$) then |B|, $|C| < \lambda$. We investigate under what conditions on α, κ, λ and |N| there will be a set T with $1 \leq |T \cap A_{v}| < \kappa$ for each v.

This note discusses the following question. Let κ and λ be cardinals (finite or infinite). Let $\{A_{\nu}; \nu \in N\}$ be a family of sets where each A_{ν} is of the form $B_{\nu} \times C_{\nu}$ with $|B_{\nu}| = |C_{\nu}| = \aleph_{\alpha}$, such that if $B \times C \subseteq A_{\mu} \times A_{\nu}$ (for $\mu \neq \nu$) then |B|, $|C| < \lambda$. For which values of α, κ, λ and |N| is there a set T such that $1 \leq |T \cap A_{\nu}| < \kappa$ for each ν in N?

The corresponding question when one supposes that $|A_{\nu}| = \aleph_{\alpha}$ and $|A_{\mu}A_{\nu}| < \lambda$ if $\mu \neq \nu$ has been extensively discussed by Erdös and Hajnal [1]. We shall use methods based on those in [1] to obtain the positive results here.

The Generalized Continuum Hypothesis will be assumed throughout.

NOTATION. Given a set A, define the two-dimensional cardinality ||A|| of A (when it exists) by $||A|| = \kappa$ if there are B, C with $|B| = |C| = \kappa$ for which $B \times C \subseteq A$, and the same is not true of any B', C' with $|B'| = |C'| > \kappa$. A family $A = \{A_{ij}; v \in N\}$ will be called

353

Received 5 June 1972.

a $\kappa \times \kappa - family$ if each A_{\vee} is of the form $B_{\vee} \times C_{\vee}$ where $|B_{\vee}| = |C_{\vee}| = \kappa$. Define Sq(A) to be the least cardinal λ such that $||A_{\mu} \cap A_{\vee}|| < \lambda$ (for $\mu \neq \nu$ from N). A set T will be called a λ -transversal of A if $1 \leq |T \cap A_{\vee}| < \lambda$ for each A_{\vee} in A. Here we always suppose $\lambda < |A_{\vee}|$, since otherwise possibly $T \cap A_{\vee} = A_{\vee}$. For a set A, put dom(A) = $\{a; \exists b(\langle a, b \rangle \in A)\}$ and $\operatorname{codom}(A) = \{b; \exists a(\langle a, b \rangle \in A)\}$.

Cardinals will be identified with initial ordinals. If κ is a cardinal, $Cf(\kappa)$ is defined to be the least λ such that κ can be written as a union of λ sets each of power less than κ . Thus κ is regular just when $Cf(\kappa) = \kappa$, and $Cf(\kappa) = 2$ when κ is finite (and $\kappa > 1$). Define κ^+ to be the least cardinal greater than κ .

We start by making the following trivial observation.

LEMMA 1. Let R, S be sets of power \aleph_{α} . Let $A = \{A_{\nu}; \nu < \kappa\}$ be an $\aleph_{\alpha} \rtimes \aleph_{\alpha}$ -family. Suppose that either

(i)
$$\kappa < \aleph_{\alpha}$$
 and for some $\lambda < \aleph_{\alpha}$, $||A_{v} \cap (R \times S)|| < \lambda$ for each v , or

(ii) $\kappa < Cf(\aleph_{\alpha})$ and $||A_{\nu} \cap (R \times S)|| < \aleph_{\alpha}$ for each ν .

Then $R \times S \notin UA$.

Proof. Suppose (i) to hold. For each \vee , either $|R \cap dom(A_{\vee})| < \lambda$ or $|S \cap codom(A_{\vee})| < \lambda$. Since $|U\{R \cap dom(A_{\vee}); |R \cap dom(A_{\vee})| < \lambda\}| \le \lambda \kappa < \aleph_{\alpha}$, we may choose x in $R - U\{dom(A_{\vee}); |R \cap dom(A_{\vee})| < \lambda\}$. Similarly we may choose y in $S - U\{codom(A_{\vee}); |S \cap codom(A_{\vee})| < \lambda\}$. But then $\langle x, y \rangle \in (R \times S) - UA$, so $R \times S \notin UA$. The situation is similar if (*ii*) holds.

COROLLARY 2. Let $A=\{A_{v};\,v<\kappa\}$ be any $\overset{N}{\alpha}\overset{\times N}{\alpha}$ -family such that either

(i) $\kappa < \aleph_{\alpha}$ and $Sq(A) < \aleph_{\alpha}$, or

(ii) $\kappa < Cf(\aleph_{\alpha})$ and $Sq(A) \leq \aleph_{\alpha}$. Then A has a 2-transversal. (Note that a 2-transversal is a genuine transversal, in the usual sense.)

Proof. By the Lemma, for each
$$\nu$$
 we may choose x_{ν} in
 $A_{\nu} = \bigcup\{A_{\mu}; \mu \neq \nu\}$. Then $T = \{x_{\nu}; \nu < \kappa\}$ is a 2-transversal of A.

Examples show that if κ is increased above the limits in Corollary 2, then a 2-transversal may not always exist. For (*i*), the following result from [1, \$4.5] may be used. Given $\lambda < \aleph_{\alpha}$, there is a family $\{B_{\nu}; \nu < \aleph_{\alpha}\}$ of sets each of power \aleph_{α} such that $|B_{\mu} \cap B_{\nu}| < \lambda$ if $\mu \neq \nu$, for which there is no set T such that $1 \leq |B_{\nu} \cap T| < \lambda$ for each ν . If one now takes the family $A = \{\aleph_{\alpha} \times B_{\nu}; \nu < \aleph_{\alpha}\}$, then clearly A is an $\aleph_{\alpha} \approx^{\kappa} \alpha^{-f}$ family with $Sq(A) \leq \lambda$, and yet A has no λ -transversal. Using the same method with the appropriate family constructed in [1, \$4.4] gives an $\aleph_{\alpha} \approx \Re_{\alpha}^{-f}$ family $A = \{A_{\nu}; \nu < Cf(\aleph_{\alpha})\}$ with $Sq(A) = \aleph_{\alpha}$ which has no λ -transversal for any λ with $\lambda < Cf(\aleph_{\alpha})$.

These examples show that the results in the next two theorems are the best that can be expected.

THEOREM 3. Let $A = \{A_{\nu}; \nu < Cf(\aleph_{\alpha})\}$ be an $\aleph_{\alpha} \times \aleph_{\alpha}$ -family with $Sq(A) \leq \aleph_{\alpha}$. Then there is a $Cf(\aleph_{\alpha})$ -transversal for A.

Proof. Given the family A, we shall construct a $Cf(\aleph_{\alpha})$ -transversal T. By Lemma 1 (*ii*), for each μ with $\mu < Cf(\aleph_{\alpha})$ we have that $A_{\mu} \notin U\{A_{\nu}; \nu < \mu\}$, and so we can choose $x_{\mu} \in A_{\mu} - U\{A_{\nu}; \nu < \mu\}$. Put $T = \{x_{\mu}; \mu < Cf(\aleph_{\alpha})\}$. Then for any ν it follows that $T \cap A_{\nu} \subseteq \{x_{\mu}; \mu \leq \nu\}$, and so $|T \cap A_{\nu}| < Cf(\aleph_{\alpha})$. Thus T is indeed a $Cf(\aleph_{\alpha})$ -transversal for A.

We need to make use of the following result, the proof of which comes from a simple modification to the proof of an analogous result of Tarski [2, Théoreme 5]. LEMMA 4. Let S be a set of power \aleph_{α} , and suppose that $Cf(\aleph_{\alpha}) \neq Cf(\lambda)$. Then $S \times S$ cannot be decomposed into a family A of more than \aleph_{α} subsets where $Sq(A) \leq \lambda$, with $||A|| \geq \lambda$ for each A in A.

LEMMA 5. Let λ and β be given, and if $\beta = \gamma + 1$ suppose that $Cf(\aleph_{\gamma}) \neq Cf(\lambda)$. Let S be any set with $|S| < \aleph_{\beta}$, and suppose $B = \{B_{\gamma}; \gamma \in N\}$ is a family with $Sq(B) \leq \lambda$, where always $B_{\gamma} \subseteq S \times S$ and $||B_{\gamma}|| \geq \lambda$. Then $|N| < \aleph_{\beta}$.

Proof. Since $|B| \leq |S|^+$, if $|S|^+ < \aleph_\beta$ then certainly $|N| < \aleph_\beta$. And if $|S|^+ = \aleph_\beta$, then Lemma 4 applies to give the result.

THEOREM 6. Let λ and α be given, and if $\alpha = \gamma + 1$ suppose that either $\lambda = \aleph_{\gamma}$ or $Cf(\lambda) \neq Cf(\aleph_{\gamma})$. Then every $\aleph_{\alpha} \times \aleph_{\alpha}$ -family A of \aleph_{α} sets with $Sq(A) \leq \lambda$ has a λ^{+} -transversal.

Proof. The case when $\lambda^+ = \aleph_{\alpha}$ is covered by Theorem 3, so we may suppose $\lambda^+ < \aleph_{\alpha}$. Take a suitable family $A = \{A_{\nu}; \nu < \aleph_{\alpha}\}$.

Write $A \sim X$ for $\{(a, b) \in A; a \notin \text{dom}(X) \text{ and } b \notin \text{codom}(X)\}$.

Use transfinite induction to define elements x_{μ} when $\mu < \aleph_{\alpha}$ as follows. Put $X_{\mu} = \{x_{\nu}; \nu < \mu\}$ and $X_{\mu}^{*} = \operatorname{dom}(X_{\mu}) \times \operatorname{codom}(X_{\mu})$. Write

$$A'_{\mu} = (A_{\mu} \circ X_{\mu}) - \cup \{A_{\rho}; |A_{\rho} \circ X_{\mu}| \geq \lambda \}$$

Choose x_0 in A_0 . When $\mu > 0$, if $A'_{\mu} = \emptyset$ put $x_{\mu} = x_0$; otherwise choose x_{μ} from A'_{μ} .

Since $|X_{\mu}| < \aleph_{\alpha}$ when $\mu < \aleph_{\alpha}$, by applying Lemma 5 to $B_{\mu} = \{A_{\rho} \wedge X_{\mu}^{*}; \|A_{\rho} \wedge X_{\mu}^{*}\| \geq \lambda\}$, it follows that $|B_{\mu}| < \aleph_{\alpha}$. The choice of x_{ν} ensures that $\|A_{\rho} \wedge X_{\mu}^{*}\| \geq \lambda$ exactly when $|A_{\rho} \wedge X_{\mu}| \geq \lambda$. Now since $\|A_{\mu}\| = \aleph_{\alpha}$, also $\|A_{\mu} \wedge X_{\mu}\| = \aleph_{\alpha}$ and so Lemma 1 (*i*) shows that $\begin{array}{l} A_{\mu} \sim X_{\mu} \not \equiv \mathbb{U}\{A_{\rho}; \ \left|A_{\rho} \cap X_{\mu}\right| \geq \lambda\} \ , \ \text{unless of course} \quad \left|A_{\mu} \cap X_{\mu}\right| \geq \lambda \ . \ \text{Thus either} \\ \left|A_{\mu} \cap X_{\mu}\right| \geq \lambda \ \text{ or else } \ x_{\mu} \in A_{\mu} \ . \end{array}$

Put $T = \{x_{\nu}; \nu < \aleph_{\alpha}\}$; so always $|T \cap A_{\nu}| \ge 1$. And for any A_{μ} , if for some ρ it happens that $|A_{\mu} \cap \{x_{\nu}; \nu < \rho\}| = \lambda$, then for all ν , where $\nu \ge \rho$, either $x_{\nu} = x_{0}$ or $x_{\nu} \notin A_{\mu}$. Hence always $|T \cap A_{\mu}| \le \lambda$, and so T is a λ^{+} -transversal for A.

In the case $\alpha = \gamma + 1$, I do not know if the restriction on λ in Theorem 6 can be lifted. However, by changing B_{μ} to $\{A_{\rho} \cap X_{\mu}^{*}; \|A_{\rho} \cap X_{\mu}^{*}\| > \lambda\}$, one establishes the following result.

THEOREM 7. For all λ , if A is any $\aleph_{\alpha} \times \aleph_{\alpha}^{-}$ family of $\aleph_{\alpha}^{}$ sets with $Sq(A) \leq \lambda$, then A has a λ^{++} -transversal.

In the case of an $\aleph_{\alpha} \times \aleph_{\alpha}$ -family of power greater than \aleph_{α} , one cannot always expect to find even an \aleph_{α} -transversal. This contrasts with the results of [1]. Consider the following $\aleph_{\alpha} \times \aleph_{\alpha}$ -family A of $\aleph_{\alpha+1}$ sets with Sq(A) = 2, for which any transversal must meet some member of A in a set of power \aleph_{α} .

Let S_{ν} for $\nu < \aleph_{\alpha+1}$ be pairwise disjoint sets each of power \aleph_{α} . Now put

$$R = S_0 \times \left\{ R; R \subseteq \bigcup \{S_{\nu}; \nu < \aleph_{\alpha+1} \} \text{ and } |R| = \aleph_{\alpha} \right\},\$$

so $|R| = \aleph_{\alpha+1}$. Thus there is an enumeration $\{\langle y_{\nu}, R_{\nu} \rangle; \nu < \aleph_{\alpha+1}\}$ of R. Put

$$A = \{S_0 \times S_{\nu}; \nu < \aleph_{\alpha+1}\} \cup \left\{ (\{y_{\nu}\} \cup S_{\nu+1}) \times R_{\nu}; \nu < \aleph_{\alpha+1} \right\}.$$

Then A is indeed an $\aleph_{\alpha} \times \aleph_{\alpha}$ -family with $|A| = \aleph_{\alpha+1}$ and $\operatorname{Sq}(A) = 2$. However, let T be any transversal of A. In particular, T meets each of the sets $S_0 \times S_v$; choose $\langle x_v, y_v \rangle \in T \cap (S_0 \times S_v)$. Since $|S_0| = \aleph_{\alpha}$, there are x in S_0 and $H \subseteq \aleph_{\alpha+1}$ with $|H| = \aleph_{\alpha+1}$ such that $x_{v} = x$ for all v in H. Choose R with $|R| = \aleph_{\alpha}$ such that $R \subseteq \{y_{v}; v \in H\}$. Then there is μ with $\mu < \aleph_{\alpha+1}$ for which $\langle x, R \rangle = \langle x_{\mu}, R_{\mu} \rangle$. But then $|T \cap ((\{y_{v}\} \cup S_{\mu+1}) \times R_{\mu})| = \aleph_{\alpha}$.

In view of this negative result, one may wish to modify the definition of a transversal. Let us call T a $\lambda \times \lambda$ -transversal of A if $1 \leq ||T \cap A|| < \lambda$ for each A in A. It is however trivial that if $A = \{A_{\nu}; \nu < \aleph_{\alpha}\}$ is any family of \aleph_{α} sets with $||A_{\nu}|| = \aleph_{\alpha}$, then A has a 2×2-transversal. One chooses inductively x_{ν}, y_{ν} for $\nu < \aleph_{\alpha}$ so that $\langle x_{\nu}, y_{\nu} \rangle \in A_{\nu}$, $x_{\nu} \in \operatorname{dom}(A_{\nu}) - \{x_{\mu}; \mu < \nu\}$ and $y_{\nu} \in \operatorname{codom}(A_{\nu}) - \{y_{\mu}; \mu < \nu\}$. Then $T = \{\langle x_{\nu}, y_{\nu} \rangle; \nu < \aleph_{\alpha}\}$ is a 2×2-transversal of A.

For $\aleph_{\alpha} \rtimes_{\alpha} - families$ of more than \aleph_{α} sets one can now establish the following theorem by modifying the construction in §5 of [1].

THEOREM 8. Let α and β be given. For all γ with $\gamma \leq \alpha + \operatorname{Cf}(\aleph_{\beta})$, if $A = \{A_{\nu}; \nu < \aleph_{\gamma}\}$ is any $\aleph_{\alpha} \times \aleph_{\alpha}$ -family with $\operatorname{Sq}(A) \leq \aleph_{\beta}$ then there is an $\aleph_{\beta+1} \times \aleph_{\beta+1}$ -transversal for A.

In fact Theorem 8 is true under the weaker assumption that $|A_{\nu}| = ||A_{\nu}|| = \aleph_{\rho}$ (for each ν).

References

- P. Erdös and A. Hajnal, "On a property of families of sets", Acta Math. Acad. Sci. Hungar. 12 (1961), 87-123.
- [2] Alfred Tarski, "Sur la décomposition des ensembles en sous-ensembles presque disjoints", Fund. Math. 14 (1929), 205-215.

Department of Mathematics, Monash University, Clayton, Victoria.