Transversals of squares

N.H. Williams

Let K and λ be cardinal numbers. Take any family
$A=\left\{A_{v} ; v \in N\right\}$ where each A_{v} is a product $A_{v}=B_{v} \times C_{v}$ with
$\left|B_{v}\right|=\left|C_{v}\right|=\kappa_{\alpha}$, such that if $B \times C \subseteq A_{\mu} \times A_{v}$ (for $\mu \neq v$) then $|B|,|C|<\lambda$. We investigate under what conditions on α, κ, λ and $|N|$ there will be a set T with $1 \leq\left|T \mathcal{A}_{v}\right|<\kappa$ for each v.

This note discusses the following question. Let K and λ be cardinals (finite or infinite). Let $\left\{A_{v} ; v \in N\right\}$ be a family of sets where each A_{v} is of the form $B_{v} \times C_{v}$ with $\left|B_{v}\right|=\left|C_{v}\right|=N_{\alpha}$, such that if $B \times C \subseteq A_{\mu} \times A_{\nu}$ (for $\mu \neq \nu$) then $|B|,|C|<\lambda$. For which values of α, K, λ and $|N|$ is there a set T such that $I \leq\left|T \cap A_{v}\right|<K$ for each v in N ?

The corresponding question when one supposes that $\left|A_{v}\right|=K_{\alpha}$ and $\left|A_{\mu} \cap A_{\nu}\right|<\lambda$ if $\mu \neq v$ has been extensively discussed by Erdös and Hajnal [1]. We shall use methods based on those in [1] to obtain the positive results here.

The Generalized Continuum Hypothesis will be assumed throughout.
NOTATION. Given a set A, define the two-dimensional cordinality $\|A\|$ of A (when it exists) by $\|A\|=K$ if there are B, C with $|B|=|C|=K$ for which $B \times C \subseteq A$, and the same is not true of any B^{\prime}, C^{\prime} with $\left|B^{\prime}\right|=\left|C^{\prime}\right|>K$. A family $A=\left\{A_{\nu} ; \nu \in N\right\}$ will be called

Received 5 Jume 1972.
a $k \times k$-fomily if each A_{v} is of the form $B_{v} \times C_{v}$ where $\left|B_{v}\right|=\left|C_{v}\right|=K$. Define $S q(A)$ to be the least cardinal λ such that $\left\|A_{\mu} \cap A_{\nu}\right\|<\lambda$ (for $\mu \neq v$ from N). A set T will be called a λ-tronsversal of A if $1 \leq\left|T \cap A_{\nu}\right|<\lambda$ for each A_{ν} in A. Here we always suppose $\lambda<\left|A_{\nu}\right|$, since otherwise possibly $T \cap A_{\nu}=A_{\nu}$. For a set $A, \operatorname{put} \operatorname{dom}(A)=\{a ; \exists b((a, b) \in A)\}$ and $\operatorname{codom}(A)=\{b ; \exists a(\langle a, b\rangle \in A)\}$.

Cardinals will be identified with initial ordinals. If k is a cardinal, $\mathrm{Cf}(\mathrm{k})$ is defined to be the least λ such that k can be written as a union of λ sets each of power less than K. Thus K is regular just when $C f(k)=K$, and $C f(\kappa)=2$ when K is finite (and $K>I)$. Define K^{+}to be the least cardinal greater than K.

We start by making the following trivial observation.
LEMMA 1. Let R, S be sets of power K_{α}. Let $A=\left\{A_{\nu} ; v<\kappa\right\}$ be an $\aleph_{\alpha} \times{ }_{\alpha}-$ family. Suppose that either
(i) $\kappa<\kappa_{\alpha}$ and for some $\lambda<\kappa_{\alpha},\left\|A_{\nu} n(R \times S)\right\|<\lambda$ for each v, or
(ii) $K<\operatorname{Cf}\left(\kappa_{\alpha}\right)$ and $\left\|A_{\nu}^{n(R \times S)}\right\|<\kappa_{\alpha}$ for each v. Then $R \times S \notin U A$.

Proof. Suppose (i) to hold. For each v, either $\left|R \operatorname{Rom}\left(A_{\nu}\right)\right|<\lambda$ or $\left|\operatorname{Sncodom}\left(A_{\nu}\right)\right|<\lambda$. Since $\left|U\left\{R \operatorname{ndom}\left(A_{\nu}\right) ;\left|R \operatorname{ndom}\left(A_{\nu}\right)\right|<\lambda\right\}\right| \leq \lambda \kappa<K_{\alpha}$, we may choose x in $R-U\left\{\operatorname{dom}\left(A_{\nu}\right) ;\left|R \cap \operatorname{dom}\left(A_{\nu}\right)\right|<\lambda\right\}$. Similarly we may choose y in S - U\{codom $\left.\left(A_{v}\right) ;\left|S n c o d o m\left(A_{\nu}\right)\right|<\lambda\right\}$. But then $\langle x, y\rangle \in(R \times S)-U A$, so $R \times S \notin U A$. The situation is similar if (ii) holds.

COROLLARY 2. Let $A=\left\{A_{\nu} ; \nu<\kappa\right\}$ be any $X_{\alpha} x_{\alpha}-f o m i l y$ such that either

$$
\text { (i) } k<N_{\alpha} \text { and } \mathrm{Sq}(A)<\kappa_{\alpha} \text {, or }
$$

(ii) $k<\operatorname{Cf}\left(\kappa_{\alpha}\right)$ and $\mathrm{Sq}(\mathrm{A}) \leq \kappa_{\alpha}$. Then A has a 2-transversal. (Note that a 2-transversal is a genuine transversal, in the usual sense.)

Proof. By the Lemma, for each v we may choose x_{ν} in $A_{\nu}-U\left\{A_{\mu} ; \mu \neq \nu\right\}$. Then $T=\left\{x_{\nu} ; \nu<\kappa\right\}$ is a 2-transversal of A.

Examples show that if K is increased above the limits in Corollary 2, then a 2-transversal may not always exist. For (i), the following result from [1, §4.5] may be used. Given $\lambda<\kappa_{\alpha}$, there is a family $\left\{B_{\nu} ; \nu<\mathcal{K}_{\alpha}\right\}$ of sets each of power κ_{α} such that $\left|B_{\mu} \cap B_{\nu}\right|<\lambda$ if $\mu \neq \nu$, for which there is no set T such that $1 \leq\left|B_{\nu} \sim T\right|<\lambda$ for each ν. If one now takes the family $A=\left\{{ }_{\alpha}{ }_{\alpha} \times B_{\nu} ; \nu<N_{\alpha}\right\}$, then clearly A is an $\mathcal{N}_{\alpha} \times \aleph_{\alpha}$-family with $\mathrm{Sq}(A) \leq \lambda$, and yet A has no λ-transversal. Using the same method with the appropriate family constructed in [1, 54.4] gives an $\aleph_{\alpha} \times{ }_{\alpha}$-family $A=\left\{A_{\nu} ; v<\operatorname{Cf}\left(\aleph_{\alpha}\right)\right\}$ with $\operatorname{Sq}(A)=\kappa_{\alpha}$ which has no λ-transversal for any λ with $\lambda<\operatorname{Cf}\left(\kappa_{\alpha}\right)$.

These examples show that the results in the next two theorems are the best that can be expected.

THEOREM 3. Let $A=\left\{A_{v} ; v<\operatorname{Cf}\left(\aleph_{\alpha}\right)\right\}$ be an $\kappa_{\alpha} \times \aleph_{\alpha}-$ family with $\mathrm{Sq}(\mathrm{A}) \leq \kappa_{\alpha}$. Then there is a $\operatorname{Cf}\left(\kappa_{\alpha}\right)$-transversal for A.

Proof. Given the family A, we shall construct a $\operatorname{Cf}\left({ }_{\alpha}\right)$-transversal T. By Lemma 1 (ii), for each μ with $\mu<\operatorname{Cf}\left(\mu_{\alpha}\right)$ we have that
$A_{\mu} \not \pm U\left\{A_{\nu} ; \nu<\mu\right\}$, and so we can choose $x_{\mu} \in A_{\mu}-U\left\{A_{\nu} ; \nu<\mu\right\}$. Put $T=\left\{x_{\mu} ; \mu<\operatorname{Cf}\left(\kappa_{\alpha}\right)\right\}$. Then for any ν it follows that $T \cap A_{\nu} \subseteq\left\{x_{\mu} ; \mu \leq \nu\right\}$, and so $\left|T \cap A_{\nu}\right|<\operatorname{Cf}\left(\kappa_{\alpha}\right)$. Thus T is indeed a Cf $\left(\aleph_{\alpha}\right)$-transversal for A.

We need to make use of the following result, the proof of which comes from a simple modification to the proof of an analogous result of Tarski [2, Théoreme 5].

LEMMA 4. Let S be a set of paver κ_{α}, and uuppose that $\mathrm{Cf}\left(N_{\alpha}\right) \neq \mathrm{Cf}(\lambda)$. Then $S \times S$ cannot be decomposed into a family A of more than N_{α} subsets where $\mathrm{Sq}(A) \leq \lambda$, with $\|A\| \geq \lambda$ for each A in A .

LEMMA 5. Let λ and B be given, and if $\beta=\gamma+1$ suppose that $\operatorname{Cf}\left(\mathcal{N}_{\gamma}\right) \neq \operatorname{Cf}(\lambda)$. Let S be any set with $|S|<\kappa_{B}$, and suppose $B=\left\{B_{v} ; v \in N\right\}$ is a fomily with $\mathrm{Sq}(B) \leq \lambda$, where always $B_{v} \subseteq S \times S$ and $\left\|B_{v}\right\| \geq \lambda$. Then $|N|<\kappa_{\beta}$.

Proof. Since $|B| \leq|S|^{+}$, if $|S|^{+}<\kappa_{\beta}$ then certainly $|N|<\kappa_{\beta}$. And if $|S|^{+}=\aleph_{\beta}$, then Lemma 4 applies to give the result.

THEOREM 6. Let λ and α be given, and if $\alpha=\gamma+1$ suppose that either $\lambda=\kappa_{\gamma}$ or $\operatorname{Cf}(\lambda) \neq \operatorname{Cf}\left(\mu_{\gamma}\right)$. Then every $\kappa_{\alpha} \alpha_{\alpha}-$ fomily A of κ_{α} sets with $\mathrm{Sq}(\mathrm{A}) \leq \lambda$ has a λ^{+}-transversal.

Proof. The case when $\lambda^{+}=\kappa_{\alpha}$ is covered by Theorem 3, so we may suppose $\lambda^{+}<\kappa_{\alpha}$. Take a suitable family $A=\left\{A_{\nu} ; \nu<\kappa_{\alpha}\right\}$.

Write $A \sim X$ for $\{(a, b\rangle \in A ; a \notin \operatorname{dom}(X)$ and $b \notin \operatorname{codom}(X)\}$.
Use transfinite induction to define elements x_{μ} when $\mu<\kappa_{\alpha}$ as follows. Put $X_{\mu}=\left\{x_{\nu} ; \nu<\mu\right\}$ and $X_{\mu}^{*}=\operatorname{dom}\left(X_{\mu}\right) \times \operatorname{codom}\left(X_{\mu}\right)$. Write

$$
A_{\mu}^{\prime}=\left(A_{\mu} \sim X_{\mu}\right)-U\left\{A_{\rho} ;\left|A_{\rho} \cap X_{\mu}\right| \geq \lambda\right\} .
$$

Choose x_{0} in A_{0}. When $\mu>0$, if $A_{\mu}^{\prime}=\varnothing$ put $x_{\mu}=x_{0}$; otherwise choose x_{μ} from A_{μ}^{\prime}.

Since $\left|x_{\mu}\right|<\kappa_{\alpha}$ when $\mu<\kappa_{\alpha}$, by applying Lemma 5 to $B_{\mu}=\left\{A_{\rho} \cap X_{\mu}^{*} ;\left\|A_{\rho} \cap X_{\mu}^{*}\right\| \geq \lambda\right\}$, it follows that $\left|B_{\mu}\right|<K_{\alpha}$. The choice of x_{v} ensures that $\left\|A_{\rho} \cap X_{\mu}^{*}\right\| \geq \lambda$ exactly when $\left|A_{\rho} \cap X_{\mu}\right| \geq \lambda$. Now since $\left\|A_{\mu}\right\|=K_{\alpha}$, also $\left\|A_{\mu} \sim_{\mu}\right\|=K_{\alpha}$ and so Lemma 1 (i) shows that
$A_{\mu} \approx X_{\mu} \pm U\left\{A_{\rho} ;\left|A_{\rho} \cap X_{\mu}\right| \geq \lambda\right\}$, unless of course $\left|A_{\mu} \cap X_{\mu}\right| \geq \lambda$. Thus either $\left|A_{\mu} \cap X_{\mu}\right| \geq \lambda$ or else $x_{\mu} \in A_{\mu}$.

Put $T=\left\{x_{\nu} ; \nu<K_{\alpha}\right\}$; so always $\left|T \cap A_{\nu}\right| \geq 1$. And for any A_{μ}, if for some ρ it happens that $\left|A_{\mu} \cap\left\{x_{\nu} ; \nu<\rho\right\}\right|=\lambda$, then for all ν, where $\nu \geq \rho$, either $x_{\nu}=x_{0}$ or $x_{\nu} \vDash A_{\mu}$. Hence always $\left|T \sim A_{\mu}\right| \leq \lambda$, and so T is a λ^{+}-transversal for A.

In the case $\alpha=\gamma+1$, I do not know if the restriction on λ in Theorem 6 can be lifted. However, by changing B_{μ} to $\left\{A_{\rho} \cap X_{\mu}^{*} ;\left\|A_{\rho} \cap X_{\mu}^{*}\right\|>\lambda\right\}$, one establishes the following result.

THEOREM 7. For all λ, if A is any $\kappa_{\alpha}{ }^{*} \kappa_{\alpha}-$ fomily of κ_{α} sets with $\mathrm{Sq}(\mathrm{A}) \leq \lambda$, then A has a λ^{++}-tronsversal.

In the case of an $\aleph_{\alpha} \times \kappa_{\alpha}$-family of power greater than \aleph_{α}, one cannot always expect to find even an κ_{α}-transversal. This contrasts with the results of [1]. Consider the following ${ }_{K_{\alpha}} \times \aleph_{\alpha}-$ family A of $K_{\alpha+1}$ sets with $\mathrm{Sq}(\mathrm{A})=2$, for which any transversal must meet some member of A in a set of power ${ }^{\prime}{ }_{\alpha}$.

Let S_{ν} for $\nu<N_{\alpha+1}$ be pairwise disjoint sets each of power N_{α}. Now put

$$
R=S_{0} \times\left\{R ; R \subseteq U\left\{S_{\nu} ; \nu<\aleph_{\alpha+1}\right\} \text { and }|R|=\aleph_{\alpha}\right\} \text {, }
$$

so $|R|=\kappa_{\alpha+1}$. Thus there is an enumeration $\left\{\left\langle y_{\nu}, R_{\nu}\right\rangle ; \nu<\kappa_{\alpha+1}\right\}$ of R. Put

$$
A=\left\{S_{0} \times S_{v} ; v<\kappa_{\alpha+1}\right\} \cup\left\{\left(\left\{y_{v}\right\} u S_{v+1}\right) \times R_{v} ; v<s_{\alpha+1}\right\} .
$$

Then A is indeed an $\kappa_{\alpha} \times \aleph_{\alpha}$-family with $|A|=\kappa_{\alpha+1}$ and $\operatorname{Sq}(A)=2$. However, let T be any transversal of A. In particular, T meets each of the sets $S_{0} \times S_{v}$; choose $\left(x_{v}, y_{v}\right) \in T \cap\left(S_{0} \times S_{v}\right)$. Since $\left|S_{0}\right|=\kappa_{\alpha}$, there are x in S_{0} and $H \subseteq \kappa_{\alpha+1}$ with $|H|=K_{\alpha+1}$ such
that $x_{\nu}=x$ for all v in H. Choose R with $|R|=\kappa_{\alpha}$ such that $R \subseteq\left\{y_{\nu} ; \nu \in H\right\}$. Then there is μ with $\mu<K_{\alpha+1}$ for which $\langle x, R\rangle=\left\langle x_{\mu}, R_{\mu}\right\rangle$. But then $\left|T \cap\left(\left(\left\{y_{\nu}\right\} \cup U S_{\mu+1}\right) \times R_{\mu}\right)\right|=\kappa_{\alpha}$.

In view of this negative result, one may wish to modify the definition of a transversal. Let us call T a $\lambda \times \lambda$-transversal of A if $1 \leq\|T \cap A\|<\lambda$ for each A in A. It is however trivial that if $A=\left\{A_{\nu} ; \nu<\kappa_{\alpha}\right\}$ is any family of \aleph_{α} sets with $\left\|A_{\nu}\right\|=\kappa_{\alpha}$, then A has a 2×2-transversal. One chooses inductively x_{v}, y_{v} for $v<\psi_{\alpha}$ so that $\left\langle x_{\nu}, y_{\nu}\right\rangle \in A_{\nu}, x_{\nu} \in \operatorname{dom}\left(A_{\nu}\right)-\left\{x_{\mu} ; \mu<\nu\right\}$ and
$y_{\nu} \in \operatorname{codom}\left(A_{\nu}\right)-\left\{y_{\mu} ; \mu<\nu\right\}$. Then $T=\left\{\left(x_{\nu}, y_{\nu}\right\rangle ; \nu<\kappa_{\alpha}\right\}$ is a 2×2-transversal of A.

For $\aleph_{\alpha}{ }_{\alpha}{ }_{\alpha}$-families of more than \aleph_{α} sets one can now establish the following theorem by modifying the construction in $\S 5$ of [1].

THEOREM 8. Let α and β be given. For all γ with $\gamma \leq \alpha+\operatorname{Cf}\left(\aleph_{\beta}\right)$, if $A=\left\{A_{\nu} ; \nu<N_{\gamma}\right\}$ is any $\aleph_{\alpha} \times \aleph_{\alpha}-$ fomily with $\mathrm{Sq}(A) \leq \aleph_{\beta}$ then there is an $\aleph_{\beta+1} \kappa_{\beta+1}$-transversal for A.

In fact Theorem 8 is true under the weaker assumption that $\left|A_{\nu}\right|=\left\|A_{\nu}\right\|=\kappa_{\alpha} \quad($ for each $v)$.

References

[1] P. Erdös and A. Hajnal, "On a property of families of sets", Acta Math. Acad. Sci. Hungar. 12 (1961), 87-123.
[2] Alfred Tarskl, "Sur la décomposition des ensembles en sous-ensembles presque disjoints", Fund. Math. 14 (1929), 205-215.

Department of Mathematics, Monash University,
Clayton,
Victoria.

