
T H E N U M B E R OF SPARSELY E D G E D L A B E L L E D
H A M I L T O N I A N G R A P H S

by E. M. WRIGHTt

(Received 20 August, 1981)

An (n, q) graph is a graph on n labelled points and q lines, no loops and no multiple
lines. We write N = \n(n-1), B(a, b) = a\l{b\(a - b)\} and B(a, 0) = l, so that there are
just B(N, q) different (n, q) graphs. Again h(n, q) is the number of Hamiltonian (n, q)
graphs. Much attention has been devoted to the problem of determining for which
q = q(n) "almost all" (n, q) graphs are Hamiltonian, i.e. for which q we have

as n -»oo. I proved [8, Theorem 4] that qn'312 —> <x> is a sufficient condition by showing
that, for such q, almost all (n, q) graphs have about the average number of Hamiltonian
circuits (H.c.s). My calculations also showed that this last result was false if <jn~"3/2-» 0 and
so that this method would not take us much further. But, by other methods, the sufficient
condition has been successively improved by Komlos and Szemeredi to

q > Cn exp(Vlog n),
by Posa to

q> Cn log n

and again by Komlos and Szemeredi to

q>( |+e)nlogn.

Finally Korsonov [5] announced a proof that

Q,(n, q) = (q/n) -\ log n -\ log log n -> oo
is a sufficient condition. Since this is also a necessary condition (a trivial deduction from
[3, Theorem 2]), this settles the matter, except for the possibility of a "threshold" result
(in the language of [2]) when Q,(n, q) tends to a finite limit as n -»oo.

There remains the problem of finding a formula, exact or asymptotic, for h(n, q)
when fl-» -oo as n^oo. It is trivial that

h(n,n + k) = O (k<0), h(n,n) = K(n-l)!}. (1)

Here I give exact formulae for h(n, n + k) for k = 1,2,3; the work is a little cumbrous for
k = 3 but could, with sufficient labour, be extended to k = 4. Beyond that, the method
seems impracticable. But we can prove two much more extensive asymptotic results fairly
simply. We write
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THEOREM 1. If k/n -»0 as n ^ 0 0 , then h(n, n + k)/M-> 1.

We write

= -log(l-0)-0=I 6'lt

and (o for the number for which 0 < 4 w < l and A(4w) = 4. A routine calculation shows
that a = 0-248304 . . . . We write e for any fixed positive number independent of n and k.

THEOREM 2. If 0<k<(a-e)n, then

log h(n, n + k) = log M+ O(l)

as n —* oo.

It is of some interest to contrast our state of knowledge about f(n, n + k), the number
of connected (n, q) graphs, with that about h(n, n + k). Trivially f(n, n + k) = 0 when
fc < - 1 and (not trivially) f{n, n -1) = n"~2, a result due to Cayley [1] (see also [6]). Again
Renyi [7] found a formula for f(n,n), Bagaev one for f(n,n + l) and I [9] found a
recurrence method, well adapted to machine computation, to calculate an exact formula
for f(n, n + k) for successive k and general n. The result becomes cumbrous and uninfor-
mative as k gets larger, but the calculation was taken as far as k = 24, when it was halted
by the limits on the memory of the machine and not by any complication of method [4].
On the other hand, I have only succeeded in finding an asymptotic approximation to
f(n, n + k) for large n when k = o(n113), a result greatly inferior to Theorem 1 above, and
that at the cost of a much more elaborate proof [11]. When k = 0(1), a much simpler
deduction from the recurrence method is sufficient.

Similar results are true for u(n, n + k), the number of non-separable (n, n + k) graphs,
and for v(n,n + k), the number of smooth graphs, i.e. connected graphs without end
points (see [10]). For each of these functions, the asymptotic result is valid for k = o(nin).

Thus, for h(n, n + k), we have asymptotic results valid over a much wider range of k
than for f{n, n + k), u(n, n + k) or v(n, n + k), but for these last functions we can calculate
exact formulae for small k by a recurrence method and this seems to be impossible for
h{n,n + k).

1. Preliminaries. We write Ls = Ls(k) for the number of (n, n + k) graphs contain-
ing s Hamiltonian circuits (H.c.s), each graph being counted according to the number of
different sets of s H.c.s which it contains. By the Inclusion-Exclusion Theorem, we have
then

h(n, n + k) = Ll-L2 + L3-L4 + ... . (2)

and

L,-L2^h(n,n + k)^Lv (3)

We label the points of an (n, q) graph by the numbers 1,2, 3 , . . . , n and regard a and
o + n as labelling the same point. A Gs, graph is an (n, n + t) graph which has s H.c.s, one
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of which is the basic circuit 1, 2, 3 , . . . n, and in which every line occurs in at least one of
the s H.c.s. The number of Gs, is Tsl, where each Gs, is counted according to the number
of such different sets of s H.c.s it contains. Clearly

T 1 0 = l , Tlr = Ts O=Ts l = 0 ( t > O , s > l ) . (4)

We now find a formula for Ls(k) in terms of the Tsl. An (n, n + k) graph contributes 1
to Ls(k) for every different set of s H.c.s which it contains. The sub-graph formed by a set
of s H.c.s is isomorphic to a Gs, in s ways, since each of the s H.c.s may be taken as
isomorphic to the basic circuit in the GSI. The H.c. isomorphic to the basic H.c. may be
any of %{(n -1)!} possible H.c.s and, given a particular set of s H.c.s isomorphic to a Gs(,
the remaining k- t edges in the (n, n + k) graph may be chosen in B(N- n-t,k-t) ways.
Hence

I (5)
2s ,=0

Using (4) in this, we obtain

L,(fc) = i{ (n - l ) !}B(N-n ,k ) = M (6)

and L,(l) = 0 if ss=2. Hence

Mn,n + l) = L1(l) = Kn-3)(n!). (7)

Again, for s5=2, (5) becomes

Ls(k) = ijL^i TslB(N-n-t,k-t). (8)
2s2s , = 2

2. Proof of Theorems 1 and 2. T2, is the number of ways in which t new lines can
be added to the basic H.c. so as to produce a further H.c. to which each of the new lines
belong. The t lines of the basic H.c. which do not occur in the second H.c. can be chosen
in B(n, t) ways. When these t lines are removed, the basic H.c. is reduced to a graph with t
components, each of which is either a path or an isolated point. To construct the new H.c.
we join up these t components with t new lines. We can arrange the components in
2-{(f-1)!} different orders and we can then choose the sense of each component in the new
H.c. in at most 2 ways. Hence we can construct the new H.c. in at most 2'~]{(t-1)!} ways
and so

Thus, by (8),
k

L 2 ( k ) « ( n - 1 ) ! X 2 ' - 3 0- l ) !B(n , t)B(N-n-t,k-t)
1 = 2

and, by (6),

L(k)IUk)^t a,,
1 = 2
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if we write
a, = 2'(f- l)!B(n, t)B(N- n-t,k- t)/B(N- n, k)

0'2 ' fn . . . (n - f+ l ) fc . . . (k
" f t ( N - n ) . . . ( N - n -

where 0 = 2knftN- n) = 4k/(n-3). Hence

LtikVLM « -Mlog(l -

and so, by this and (3) and (6), we have

l-±A(0)«h(n, n + fc)/M«l. (9)

If k/n->0 as « -»» , we have 0-»O and A(0) = O(02)-> 0. Theorem 1 follows at
once from (9). Next, if fc<(w-e)n, we have k < ( w - | e ) ( n - 3 ) for n>no(£) and so
A(0)<4-8 for a positive 8 depending on e but not on k and n. Theorem 2 follows from
(9).

3. The value of h{n, n + k) for k =£3. To avoid trivialities we take n >7. In view of
(1) and (7), we have only to calculate h(n, n + 2) and h{n, n + 3), i.e. by (8), to calculate
Ts2 and Ts3 for s^2 .

We can add a pair of lines, viz. {a, b} and {a +1 , b +1}, chosen in just N—n ways, to
the basic H.c. to produce a second H.c. Hence

We cannot obtain a third H.c. in this way and so Ts2 = 0 for s ^ 3 . Hence, by (8),

L2(2) = Kn-l)!T2 2 = (n-3)(n!)/8 Ls(2) = 0

and so, by (2),

The calculation of h{n, n + 3) is more tedious and we omit the details. We find that

T23 = |n(n-4)(2n-7) , T33 = §n(n-3), T43 = n

and Ts3 = 0 for ss*5. Hence, by (4) and (8),

L2(3) = n!(n-4)(3n2 + 2n-37)/48,

L3(3) = n!(n -3)/4, L4(3) = n!/8

and Ls(3) = 0 for s>5 . Thus (2) gives us

h(n, n + 3) = n!(n5-9n4 + 15n3 + 29n2 + 68n-404)/96.

With sufficient labour, we could use this method to calculate h(n, n + 4), but the prospect
is somewhat daunting. Beyond k = 4, the method seems impracticable.
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