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LOWER BOUNDS FOR THE RAMSEY NUMBERS

BY
PIERRE ROBILLARD

ABSTRACT. A lower bound for a family of Ramsey numbers is
derived using a geometrical argument.

The Ramsey number N(q, 4., . . ., g;, r) is defined as the least n such that for
every t-ary partition A;UA,U - - - UA; of the (?) unordered r-subsets in an n-element
set, there must exist one i for which A; contains all the (%) r-subsets of a g;-subset.
We want to find a lower bound for a family of Ramsey numbers.

In order to prove that n* is a lower bound for the number N(qy, g, ..., qs 1)
it is sufficient to produce a partition AFUAIU. .. U4} of the (**) unordered r-
subsets in an n*-element set where it is impossible to find a set 4; containing all the
(#) r-subsets of a g;-subset.

Let us consider the finite projective geometry PG(r—1, ¢g) of dimension (r—1)
over the field GF(q) (¢ is a prime number or the power of a prime number). A set
of points in PG(r—1, g) is said to possess the property P, if no d-subset of them are
linearly dependent. We denote by my(r, ¢) the maximum number of points we can
choose in PG(r—1, ¢) so that no d are dependent. The number m(r, g) arises in
connection with some problems of the theory of confounded factorial designs [2]
and error correcting codes [3]. The evaluation of my(r, q) is known as ‘the packing
problem’.

The geometry PG(r—1, ¢q) contains (g"—1)/(g—1)=N points. Let S denote the
set of all () unordered r-subsets of PG(r—1, q). Let 4, consist of all the r-subsets
of points of S with the property P,. Let A, consist of all the r-subsets of points of
S — A, with the property P,_, and in general let 4, consist of all the r-subsets of
points in S—|J?={ 4; with property P,_, ., forv=2,3,...,r—1.

From the definition of m,(r, q) it follows easily that no (m,(r, g)+ 1)-subset of
points exists with all its r-subsets contained in 4;. For each v-subset T of points in
PG(r—1, q) whose(?) unordered r-subsets are contained in 4, we can associate an
rxv matrix M(T) the columns of which represent (in some given order) the v
points of T. From the definition of 4, it follows that M(T) has rank r—1. Thus
one can premultiply M(T) by a nonsingular matrix 4 and obtain the matrix
M*(T)=A- M(T) the last row of which is null. If we delete this last row, each column
of M*(T) represents a point of PG(r—2, q); this new set of v points has property
P, _,. The maximum number of points of PG(r—1, ¢) one can choose such that all
its r-subsets are contained in A, is then m,_,(r—1, ¢). A similar argument applies
for the set 4, and the maximum number is m,_,..(r—v+1, q).
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As my(s,q)=s+1 for g<s then m,(w,q)— 0 as w—> o0, and there exist an
integer w>2 for which the inequality m,(w, q) > r holds. We now have the follow-
ing

THEOREM 1.

1) Nmlr,@)+1,m_r—=1,9)+1,...,mw,)+1,r) > (- 1D/(g—1)

COROLLARY. The inequality (1) remains true if some mgs, q) are replaced by a
value m¥(s, q) > mgs, q).

We now apply the result of the theorem when r=3 and consider the geometry

PG(2, q); A; consists of all the independent triplets of points of PG(2, ¢) and 4,
of all the dependent triplets of points. In this case we have

(2) m2(2’ q) = q+ 1

3) my(3,q9) = q+1 ifqisodd
=g+2 if qiseven.
Then
N(g+2,9+2,3) > ¢g?+g+1 ifqgisodd
N(g+3,9+2,2) > q>+q+1 if qis even.
For example this gives
NG, 4,3) > 7
N(5,5,3) > 13
N(7,6,3) > 21
N(,17,3) > 31
for g=2, 3, 4, 5 respectively.
Gulati [6] has proved that m(t, 2)=t+1 for t>4. This, with (2) and (3), leads
to the inequality
Nr+2,r+1,...,6,5,4,3) >2'—1 forr > 4.

The upper bounds for m(t, q) derived in [1, 4, 5, 6] can also be used to obtain
some lower bounds for the Ramsey numbers.

A generalization. We consider again the geometry PG(r—1, g) and S denotes the
set of all the unordered r-subsets of points. 4, now consists of all the r-subsets of
points S with property P,, where r>r; >2. A, consists of all the r-subsets of points
of §—A4, with property P,, where r;>ry,>2 and in general 4, consists of all the
r-subsets of points S—|_J{={ 4, with property P,, where r,_,>r,>2. We now have

THEOREM 2.
N(mrl(r3 q)+ 19 mrg(rl - 13 ¢1)+ 1, LR mrw(rw-l_ 1, q)+ 19 rl) > (‘I" 1)/(‘]" 1)
where all the quantities mg(t, q) in the left-hand side are greater than or equal to r.

The proof of this theorem follows the lines of the proof of Theorem 1.
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As an application of Theorem 2 we consider the values r=4, r; =3, and ry=2.
It is known that
my(4,q) = ¢*+1

and
my(2,9) = q+1.
Thus
N(@?+2,9+2,3) > ¢®*+q¢%*+q+1 forg > 1.
Then

N(6, 4,3) > 15
N(11,5,3) > 40

N(18,6,3) > 85
for g=2, 3, 4 respectively.
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