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Slopes of the U7 operator acting on a space of overconvergent
modular forms
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Abstract

Let χ be the primitive Dirichlet character of conductor 49 defined by χ(3) = ζ for ζ a primitive
42nd root of unity. We explicitly compute the slopes of the U7 operator acting on the space of
overconvergent modular forms on X1(49) with weight k and character χ7k−6 or χ8−7k, depending
on the embedding of Q(ζ) into C7. By applying results of Coleman and of Cohen and Oesterlé,
we are then able to deduce the slopes of U7 acting on all classical Hecke newforms of the same
weight and character.

1. Introduction

Let N be an arbitrary positive integer. Suppose that f is a normalized cuspidal Hecke eigenform
for Γ1(7N) whose q-expansion at∞, f(q) =

∑∞
n=1 anq

n, is defined over a number field L. Then
f is an eigenform for the U7 operator with eigenvalue a7. We define the slope of U7 acting on
f to be the 7-adic valuation† of a7 viewed as an element of C7. From this definition it is clear
that the slope depends on the embedding of L into C7.

In particular, suppose now that L contains the cyclotomic field K = Q(ζ), where ζ is a fixed
primitive 42nd root of unity. This would necessarily be the case, for example, if f were a
newform for Γ1(49) with character χ defined by χ(3) = ζ. Over the degree 12 extension K/Q,
the prime ideal (7) factors as (7) = (π1)6(π2)6, where

π1 =−ζ8 + ζ6 − ζ4 + ζ and π2 = ζ9 + ζ8 + ζ4 + ζ3 − ζ − 1.

Thus there are two types of embedding of L into C7, which can be described as follows. Let
Ki =K(πi), the completion of K at the prime ideal (πi). The image of L must generate a
complete subfield L̂⊆ C7 that contains either K1 or K2, and we say that the embedding is of
type 1 or type 2 accordingly. This is a convenient distinction if we wish to do concrete global
calculations over K but draw conclusions over C7. Alternatively, note that the 42nd cyclotomic
polynomial factors over F7 as

Φ42(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1
= (x+ 2)6(x+ 4)6.

Since v(π1)(ζ + 2) = 1 (in K), this implies that the embedding is of type 1 precisely when
v(ζ + 2)> 0 (in C7) and is of type 2 when v(ζ + 4)> 0.

At this point we are able to state the main result of the paper.

Theorem 1.1. Let k be an integer greater than 1. Fix a primitive 42nd root of unity, ζ,
and let χ be the Dirichlet character of conductor 49 defined by χ(3) = ζ.
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The classical space Sk(Γ1(49), χ7k−6) is diagonalized by U7 over K1. The slopes of U7 acting
on this space are precisely those values in the set{

1
6
·
⌊

9i
7

⌋
: i ∈ N

}
which are less than k − 1 (each corresponding to a one-dimensional eigenspace).

The classical space Sk(Γ1(49), χ8−7k) is diagonalized by U7 over K2. The slopes of U7 acting
on this space are precisely those values in the set{

1
6
·
⌊

9i+ 6
7

⌋
: i ∈ N

}
which are less than k − 1 (each corresponding to a one-dimensional eigenspace).

Our general approach follows what has become the standard line of attack for slope questions
such as these (see [11, Section 2] for a survey of related past work). We view the classical forms
as a subspace of the overconvergent forms on X1(49) with the same weight and character. These
are defined as sections over a certain rigid-analytic subspace of the modular curve, as in [4]
(see Section 4). Using Eisenstein series, we pull back the overconvergent forms with weight
and character to overconvergent forms of weight 0 on X0(49), on which a ‘twisted’ U7 operator
acts with the same eigenvalues†. Then, by choosing a ‘basis’ for these overconvergent forms
(which are really just holomorphic functions on a wide open disk), the twisted U7 operator
can essentially be viewed as an infinite matrix whose characteristic series can be computed
explicitly. The bulk of this work is done in Section 5. Finally, the coefficients of the characteristic
series give the U7 slopes of all overconvergent forms with the given weight and character,
and then we are able to apply well-known results of Coleman and of Cohen and Oesterlé to
determine which of these forms must have been classical.

There are a couple of important ways, however, in which our work differs from previous
studies. First of all, analogous explicit slope calculations were previously done only over genus 0
modular curves. For example, the work of [11] is set over X0(25). Similarly, in [12], Loeffler
focuses primarily on X0(p) where p= 2, 3, 5, 7 or 13. Genus 0 certainly simplifies the process
of describing the matrix representing Up. By working over X0(49), though, we show that this
condition is by no means necessary. A second important distinction in our work is that we do
not ultimately restrict our overconvergent forms to an affinoid subdomain in order to apply
Serre’s theory of compact operators. Instead, we view the wide open disk over which the forms
are defined as a residue disk in the stable model for the genus 1 curve X0(49). This enables
us to ‘lift and reduce’ overconvergent forms to meromorphic functions on the good reduction,
which makes it possible to argue independence via the Riemann–Roch theorem in the proofs
of Theorems 6.1 and 6.2. Thus, the stable reduction of the modular curve plays a key role in
our proof, which may offer a new line of attack for more specific cases or even the general case.

In Section 7, we were able to independently verify our theorem in the weight 2 case using
some very useful data which we found on William Stein’s Modular Forms Database website [15].
In addition to this acknowledgment, we would also like to express our appreciation for
the open source computational software package Sage [14], which was used for all of our
explicit calculations. The files for all of these calculations are available on the second author’s
website.

Note. With a highly computational paper such as this, it can be difficult to keep track of
the extensive and technical notation. In order to assist the reader, we have included a running
notation index in Appendix B.

†The characters in Theorem 1.1 are chosen precisely so that one of these Eisenstein series will not vanish over
the relevant rigid subspace. Thus the ‘holomorphicity factor’ in the definition of Ũ7 may be disregarded, and
the argument simplifies greatly (see § 4.1 and Theorem 6.2).
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2. Explicit models

We will need explicit equations for the modular curves X0(7) and X0(49), as well as for the
moduli-theoretic maps between them and the j-line. These can be imported directly from [13,
Section 2], but we repeat them here for the convenience of the reader.

For X0(7), which has genus 0, we may choose as a parameter the eta quotient t= (η1/η7)4.
Like all eta quotients, the divisor of t is supported on the cusps and, in this case, is given by
(t) = (0)− (∞). Let φ1 :X0(7)→X(1) be the so-called ‘forgetful’ map which fixes q-expansions
at infinity, and let φ7 :X0(7)→X(1) be the map for which φ∗7F (q) = F (q7). Then we have

φ∗1(j) =
(t2 + 13t+ 49)(t2 + 245t+ 2401)3

t7
(1)

= 1728 +
(t4 − 10 · 72t3 − 9 · 74t2 − 2 · 76t− 77)2

t7
, (2)

φ∗7(j) =
(t2 + 13t+ 49)(t2 + 5t+ 1)3

t
(3)

= 1728 +
(t4 + 14t3 + 63t2 + 70t− 7)2

t
. (4)

The Atkin–Lehner involution on X0(7) is also given by w∗7t= 49/t.
From equation (2) and the fact that j = 1728 is the only supersingular j-invariant (mod 7), we

see that the unique supersingular annulus is the region where 0< v(t)< 2. From equation (1),
we see that X0(7) has two elliptic points of order 3, defined by t2 + 13t+ 49. From the Newton
polygon of this quadratic, we see that the t-coordinates of the two elliptic points have 7-
adic valuation 0 and 2. Thus they lie in the ordinary locus, with one on either ‘side’ of the
supersingular annulus (see [13, Figure 1] for a picture). For consistency, we will always denote
these elliptic points by e1 and e2, where v(t(e1)) = 0 and v(t(e2)) = 2. This is an important
point for us, particularly since the elliptic points occur in the support of the Eisenstein series
which we use to pass between overconvergent forms of different weight and character (see
Proposition 4.3).

For the genus 1 modular curve X0(49), we may choose as parameters the two eta quotients
x= η1/η49 and y = (η7/η49)4. These are also supported on the cusps and have the following
divisors:

(x) = 2(0)− 2(∞), (y) = (0) +
6∑
i=1

(C7,i)− 7(∞).

Here, as in [13, Section 2], we use C7,i to represent those cusps whose underlying generalized
elliptic curve is the Néron 7-gon. The equation for X0(49) in terms of these parameters is given
by

y2 − 7xy(x2 + 5x+ 7)− x(x6 + 7x5 + 21x4 + 49x3 + 147x2 + 343x+ 343) = 0. (5)

Defining φ1, φ7 :X0(49)→X0(7) as above, we clearly have φ∗7t= y. From [13, Section 2] we
also have φ∗1t= x4/y and w∗49(x, y) = (7/x, 49y/x4). This curve also has two elliptic points, ê1
and ê2, which lie over e1 and e2 via either map. The fibers over e1 and e2 figure prominently
in our work, and thus are described in great detail in Lemma 4.2.

At times, it will be useful to have a Weierstrass equation for X0(49), and in this case we
take

z =
y − 7

2x(x2 + 5x+ 7)
x2 + 7x+ 7

,

which results in the equation

z2 = x(x2 + 21
4 x+ 7). (6)

https://doi.org/10.1112/S1461157012000095 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012000095


116 L. J. P. KILFORD AND K. MCMURDY

Moreover, a good reduction model X for X0(49) exists over any Galois extension of Q7

containing a root α of x4 + 7. In particular, if we let z = α3Z and x= α2X, we obtain the
equation

Z2 =X(X2 − 1) (mod α2). (7)

Let D be the infinite residue disk on X . Since it is the region described by v(x)< 1/2, it is
identical to the disk denoted by W∞ in the proof of [13, Claim 2.4(i)]. By equation (5), we
must have v(y) = 7

2v(x) and hence v(φ∗1t) = 1
2v(x) over all of D. Conversely, when v(t)< 1/4,

the Newton polygon for x over φ∗1t shows exactly one root with valuation 2v(t) and six roots
with valuation 1/2. Thus, φ1 has degree 1 on D, mapping it onto the disk in X0(7) described by
v(t)< 1/4. In particular, s := α/φ∗1t is a parameter on D which identifies it with the standard
unit disk.

3. Eisenstein series

In order to translate forms with character to forms on X0(49), we will use various Eisenstein
series on X1(49). In this section, we define these Eisenstein series using the well-known q-
expansion formula (see [8, § 2.2], for example) and compute their divisors using Shimura’s
theory of divisors [16, § 2.4]. This enables us to avoid holomorphicity issues when dividing by
these forms. In all cases, we use Bk,ε to represent the generalized Bernoulli number for weight
k and character ε (as defined in [8, § 2.2]).

Proposition 3.1. Let τ be an odd character of conductor 7, defined by τ(3) = β for β some
primitive 6th root of unity. Let E1,τ be the weight 1 Eisenstein series on X1(7) defined by

E1,τ (q) = 1− 2
B1,τ

∞∑
n=1

(∑
d|n

τ(d)
)
qn.

The divisor of E6
1,τ , considered as a modular form on X0(7), is 4(eβ), where eβ ∈X0(7) is the

elliptic point with t(eβ) = 3β − 8.

Proof. Let F be the weight 2 meromorphic form on X0(7) which corresponds to the
differential −dt via the well-known correspondence between weight 2 forms and differentials.
Then, since (dt) =−2(∞), we may apply [16, Proposition 2.16] to see that the divisor of F as
a modular form is given by

(F ) = (0)− (∞) + 2
3 (e1) + 2

3 (e2).

Therefore, since the Eisenstein series is holomorphic, g := E6
1,τ/F

3 must be a function on X0(7)
whose divisor satisfies (g) > 3(∞)− 3(0)− 2(e1)− 2(e2). Comparing q-expansions of functions
in L(4(∞)), which is finite-dimensional and spanned by {1, t, t2, t3, t4}, we find that

t3(t2 + 13t+ 49)2 · g = (t− (3β − 8))4. 2

Lemma 3.2. Let τ be as above. Let E7,τ be the weight 7 Eisenstein series onX1(7) defined by

E7,τ (q) = 1− 14
B7,τ

∞∑
n=1

(∑
d|n

τ(d)d6

)
qn.

The divisor of E6
7,τ , considered as a modular form on X0(7), is given by (E6

7,τ ) = 4(eβ) + 6(0) +
6(P1) + 6(P2) + 6(P3), where eβ is as above and the t-coordinates of the Pi satisfy

P (t) = 16346149t3 + (32722347β + 179781490)t2

+ (178382295β + 587942474)t+ (141531747β + 388829945) = 0.
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Proof. Take F as above, and compare q-expansions to see that the following two functions
in L(28(∞)) are equal:

E6
7,τ t

21(t2 + 13t+ 49)14

F 21
= (t− (3β − 8))4t6

(
P (t)

16346149

)6

. 2

Proposition 3.3. Let χ be an odd, primitive Dirichlet character of conductor 49, defined
by χ(3) = ζ where ζ is a primitive 42nd root of unity. Let E1,χ be the weight 1 Eisenstein series
on X1(49) defined by

E1,χ = 1− 2
B1,χ

∞∑
n=1

(∑
d|n

χ(d)
)
qn.

Let êζ be the elliptic point of X0(49) with x(êζ) = 3ζ7 − 1. The divisor of E42
1,χ, as a modular

form on X0(49), is given by (E42
1,χ) = 28(êζ) + 42(Q) + 6

∑6
i=1 i(C7,i) (with correct ordering of

the C7,i), where

1849 · x(Q) = −2040ζ11 − 2342ζ10 + 266ζ9 + 3903ζ8 + 883ζ7

− 2873ζ6 − 3359ζ5 + 2840ζ4 + 2968ζ3 + 1515ζ2 − 3229ζ − 5616.

Proof. Take β = ζ7, so that β is a primitive 6th root of unity and we have χ7 = τ (with τ
as in Lemma 3.2). So, by Lemma 3.2, g := E7

1,χ/E7,τ can be viewed as a function on X0(49)
whose divisor satisfies

6(g) > φ∗1(−4(eβ)− 6(0)− 6(P1)− 6(P2)− 6(P3))

(where eβ is the elliptic point on X0(7) with t(eβ) = 3β − 8). Taking into account that
φ∗1(0) = 7(0) while φ∗1(∞) = (∞) +

∑6
i=1(C7,i), we see that

h := g · (t− (3β − 8))P (t)y4x2 ∈ L(36(∞)).

Therefore, as this space is finite-dimensional and spanned by {1, x, z, x2, xz, . . . , x18}, we may
compare q-expansions to write h= f1(x) + zf2(x) for polynomials fi(x) over the cyclotomic
field.

The divisor of E1,χ will now follow if we can compute the divisor of h. So we first substitute
z =−f1(x)/f2(x) into equation (6) to determine the x-coordinates of the zeros of h, and then
plug back in to get z (and subsequently y). Thus we see that

(h) = (0) +
6∑
i=1

i(C7,i) + 7(Q) + 5(êζ) + (aβ) + (bβ)− 36(∞),

where φ∗1(eβ) = (êζ) + 3(aβ) + 3(bβ) (see Lemma 4.2 for more explanation). In conclusion, we
have

(E42
1,χ) = 6(g) + φ∗1(E6

7,τ )

= 6(h)− 6φ∗1(t− (3β − 8))− 6φ∗1(P (t))− 24(y)− 12(x) + φ∗1(E6
7,τ )

= 28(êζ) + 42(Q) + 6
6∑
i=1

i(C7,i). 2

4. Overconvergent modular forms

In order to draw conclusions about slopes of classical modular forms, it is imperative that we
be able to apply the main theorem from [4], which can be rephrased as follows.
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Theorem 4.1 [4, Theorem 1.1]. Every p-adic overconvergent modular form of weight k and
level pn with slope strictly less than k − 1 is classical.

So we must be careful to define our space of overconvergent modular forms on X1(49) in a way
that is consistent with the intrinsic definition given in [4, Section 1]. Adapting this definition to
our situation, we first let f2 : E1(49)→X1(49) be the universal generalized elliptic curve† over
X1(49) and let ω = f2∗Ω1

E1(49)/X1(49)
. Then, for k ∈ Z, we define the space of (holomorphic)

overconvergent modular forms of weight k on X1(49) by

Mk(49) := ωk(W1(49)),

where W1(49) is a certain wide open subspace of the curve. In order to do our calculations on
X0(49), we must determine the image of this W1(49) under the forgetful map from X1(49) to
X0(49).

According to [4, Section 1], W1(p2) lies over W1(p), which is defined as the connected
component containing the cusp, ∞, of the rigid subspace of X1(p) where v(Ep−1)< p/(p+ 1).
Here Ek, for k > 4 even, is the well-known lifting of the Hasse invariant to a weight k Eisenstein
series for SL2(Z), as described in [10, § 2.1]. Recall from [10, Section 3] (see also [1, Section 3])
that for a given elliptic curve this condition on Ep−1 is equivalent to the existence of the
canonical subgroup. Thus, W1(p) is simply the rigid subspace of X1(p) whose points correspond
to pairs (E, P ) where E is an elliptic curve and P is a point which generates the canonical
subgroup of E. Alternatively, in the language of [1, Section 4], W1(p) is the wide open
neighborhood of the cusp, ∞, which extends into each supersingular annulus precisely as far
as the too-supersingular circle. By valuation considerations, as in the proof of [13, Claim 2.2],
it is then clear that the forgetful image of W1(7) in X0(7) is simply the disk‡ described on
our explicit model by v(t)< 7/4. To move up to W1(p2), we are to take the inverse image
of W1(p) under the map Φ :X1(p2)→X1(p) which is given, in moduli-theoretic terms, by
Φ(E, P ) = (E/(pP ), P̄ ). Therefore, the forgetful image of W1(49) in X0(49) is precisely φ−1

7 of
this disk§. Given that y = φ∗7t, this is the rigid subspace of X0(49) described by v(y)< 7/4 or,
equivalently, by v(x)< 1/2 (from equation (5)). Thus we conclude that the forgetful image of
W1(49) in X0(49) is the residue disk D which was introduced at the end of Section 2.

Lemma 4.2. Let e1 and e2 be the two elliptic points on X0(7) described in Section 2. The
φ1 and φ7 fibers over these points satisfy the following conditions:

(i) φ−1
1 (e1) ∩ D = φ−1

7 (e1) ∩ D = {ê1};
(ii) φ−1

1 (e2) ∩ D = φ−1
7 (e2) ∩ D = ∅.

Proof. It is straightforward to verify this lemma by completely explicit means. In particular,
let γ be a root of t2 + 13t+ 49. Then γ is the t-coordinate of either e1 or e2, depending on
whether v(γ) = 0 or 2.

Since φ1 :X0(49)→X0(7) is determined by φ∗1t= x4/y, we can compute φ−1
1 (ei) by

substituting γ−1x4 for y in equation (5). The resulting polynomial in x is a constant multiple of

x(x− (γ + 7))(x2 + ((7/3)γ + 56/3)x+ (7γ + 49))3.

Setting v(γ) = 2, we see that φ∗1(e2) = (ê2) + 3(a2) + 3(b2), where v(x(ê2)) = 1 and v(x(a2)) =
v(x(b2)) = 1/2 (from the Newton polygon of the quadratic). So none of these points lie on
D. On the other hand, if we set v(γ) = 0, we find that φ∗1(e1) = (ê1) + 3(a1) + 3(b1), where

†The existence of the universal curve over X1(M) where M > 4 follows easily from [7, IV.3]; see [9,
Proposition 2.1], for example.
‡This is the maximal open disk containing ∞ on which φ1 :X0(7) → X(1) has degree 1.
§In the language of [6, § 3B], the forgetful image of W1(p2) in X0(p2) is W2 0. See also [6, Theorem 5.3].
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v(x(ê1)) = 0 while v(x(a1)) = v(x(b1)) = 1/2. So ê1 ∈ D, but the other two (non-elliptic) points
in φ−1

1 (e1) are not on D.
Since φ7 :X0(49)→X0(7) is determined by y = φ∗7t, we may compute φ∗7(ei) by substituting

y = γ into equation (5). This results in the polynomial

(x− (γ + 7))(x2 + ((1/3)γ + 14/3)x+ γ + 7)3,

and the rest of the reasoning is the same. Note that γ−1(γ + 7)4 = γ. So it really is the same
elliptic point, êi, which lies over ei via both φ1 and φ7. 2

It is worth pointing out here that D is also a residue class in our good reduction model for
X0(49). This is a fact which we exploit in our proof of the main theorem, and it is not at all a
coincidence; indeed, it is a consequence of [6, Theorem 5.3]. More generally, the forgetful image
of W1(p2) in X0(p2) is always the unique wide open neighborhood of∞ which extends into the
supersingular locus precisely far enough to contain one full residue class of each supersingular
component in the stable model. So just as the arithmetic of our good reduction model for
X0(49) is used in our proof, it is reasonable to expect that the stable reduction of X0(p2)
might be a key component in a more general proof.

4.1. Twisted U7 operator

From [4, Section 1], the Hecke operator Up can be extended to a linear operator on Mk(pn)
which acts on q-expansions at infinity in the usual way, taking

∑
n anq

n to
∑
n anpq

n. The
diamond-bracket operators, 〈d〉 for d ∈ (Z/pnZ)∗, also extend naturally and can be used to
define character subspaces of Mk(pn) which are preserved by Up. In particular, let k be an
integer and let ε be a Dirichlet character of conductor 49. Then take Mk,ε(49)⊆Mk(49) to
be the subspace defined by F |〈d〉= ε(d)F . We want to compute the spectrum of the linear
operator U7 on Mk,χτk−1(49), where χ and τ are as in the previous section. The following
proposition shows that this space can be identified with the space of rigid-analytic functions
on the disk D ⊆X0(49), the space of functions which we denote from this point on by M0.

Proposition 4.3. Let χ be an odd primitive Dirichlet character of conductor 49 and τ an
odd character of conductor 7, determined by χ(3) = ζ and τ(3) = β as in Section 3. There is
an isomorphism Ψ :M0→Mk,χτk−1(49) given by

Ψ(F ) = F · E1,χ · Ek−1
1,τ · (t−1 − t(e1)−1)−dk(χ,τ)

for some dk(χ, τ) ∈ Z.

Proof. The character of Ψ(F ) is clearly correct. So if both Eisenstein series were holomorphic
and non-vanishing on W1(49), we could simply take dk(χ, τ) = 0 and the statement would
follow. This is nearly the case, as we will show that the only zeros of E1,χ · Ek−1

1,τ on W1(49),
if any, are those lying over ê1. So then we may exploit the fact that

φ∗1(t−1 − t(e1)−1) = (ê1) + 3(a1) + 3(b1)− 7(0) (8)

and choose dk(χ, τ) so as to cancel out these zeros without introducing any new zeros or poles
on W1(49).

So we begin by considering the zeros of E1,χ and E1,τ which do not lie over either elliptic
point of X0(7). In particular, from Proposition 3.3, we must consider the special point Q and
the six cusps denoted by C7,i. The cusps can be dealt with easily, since y vanishes at these
points and v(y)< 7/4 on D. To eliminate Q, we consider the roots of the minimal polynomial
for x(Q),

1849x12 + 35336x11 + 293356x10 + 1345736x9 + 3511340x8 + 4649708x7 + 4436705x6

+ 32547956x5 + 172055660x4 + 461587448x3 + 704347756x2 + 593892152x+ 217533001.
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The Newton polygon of this polynomial is the straight line from (0, 0) to (12,−6). So all of
its roots have valuation 1/2 regardless of the embedding into C7 (the completion of a fixed
algebraic closure of Q7). Therefore, v(x(Q)) must equal 1/2, and Q /∈ D.

Now we consider the zeros of E1,χ and E1,τ which do lie over some elliptic point. By
Lemma 4.2 and Propositions 3.1 and 3.3, any such zeros will lie on W1(49) if and only if
they lie over ê1, and either êβ = ê1 or êζ = ê1 (or both). Let δβ = 1 if êβ = ê1, δβ = 0 otherwise,
and similarly for δζ . Then ordê1(E1,χ · Ek−1

1,τ ) makes sense and is given by

ordê1(E1,χ · Ek−1
1,τ ) = 2

3δζ + 2
3 (k − 1)δβ .

Although this may not be an integer, we can set dk(χ, τ) = bordê1(E1,χ · Ek−1
1,τ )c.

Putting all of the preceding information together, we are now in a position to argue that Ψ is
an isomorphism. LetGk(χ, τ) be the factor by which we multiply F to get Ψ(F ). The fact that Ψ
is at least an injection follows immediately from the fact thatGk(χ, τ) is a meromorphic form on
X1(49) with poles only over a1 and b1, and these points do not lie onD by Lemma 4.2. Moreover,
taking F to F/Gk(χ, τ) defines an inverse function from Mk,χτk−1(49) toM0. Indeed, the only
possible zeros of Gk(χ, τ) which lie on W1(49) are the points over ê1, and we have chosen
dk(χ, τ) so that 0 6 ordê1Gk(χ, τ)< 1. So F/Gk(χ, τ) is a meromorphic function on D which
is holomorphic away from ê1 and has ordê1(F/Gk(χ, τ))>−1. Hence this is a holomorphic
function in M0, and we have shown that Ψ is an isomorphism. 2

Let V be the map from M1(pn) to M1(pn+1) for which V (F (q)) = F (qp). As is explained in
[5, Section B3] (see also [3, (3.3)]), Up and V interact according to the formula Up(F · V (G)) =
G · Up(F ). So if we pull back U7 via Ψ to a linear operator on M0, we arrive at the operator
Ψ−1 ◦ U7 ◦Ψ given by

Ψ−1 ◦ U7 ◦Ψ(F ) =
U7(F · E1,χ · Ek−1

1,τ · (t−1 − t(e1)−1)−dk(χ,τ))

E1,χ · Ek−1
1,τ · (t−1 − t(e1)−1)−dk(χ,τ)

= E−1
1,χ · U7

(
F · E1,χ ·

Ek−1
1,τ

V (E1,τ )k−1
· (y−1 − t(e1)−1)dk(χ,τ)

(t−1 − t(e1)−1)dk(χ,τ)

)
.

Instead of applying this operator directly to compute the spectrum of U7 on Mk,χτk−1(49), we
choose for convenience to work with the following ‘twisted’ U7 operator on M0:

Ũ7(F ) := E−1
1,χ · U7(F · E1,χ) ·

(
E1,τ

V (E1,τ )

)k−1

·
(
y−1 − t(e1)−1

t−1 − t(e1)−1

)dk(χ,τ)

. (9)

Separating out the τ part simplifies our argument greatly, and the following proposition shows
that U7 and Ũ7 have precisely the same eigenvalues.

Proposition 4.4. The linear operators Ψ−1 ◦ U7 ◦Ψ and Ũ7 onM0 have precisely the same
eigenvalues, and have isomorphic eigenspaces for each eigenvalue.

Proof. Suppose that F ∈M0 is an eigenform for Ψ−1 ◦ U7 ◦Ψ with eigenvalue λ ∈ C7. We
claim that

G := F ·
(

E1,τ

V (E1,τ )

)k−1

·
(
y−1 − t(e1)−1

t−1 − t(e1)−1

)dk(χ,τ)

is also an eigenform for Ũ7 with eigenvalue λ.
First we must show that G is in fact a form in M0. Recall that E1,τ is a form on X1(7).

So although V raises the level, V (E1,τ ) is still a form on X1(49). Then, since V preserves
characters and weight, the quotient E1,τ/V (E1,τ ) is a (meromorphic) weight 0 form on X1(49)
with trivial character and therefore can be viewed as a function on X0(49). The only remaining
question is whether G has any poles on D which were introduced when we divided by V (E1,τ )
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and (t−1 − t(e1)−1). It does not, and this follows directly from Lemma 4.2. In particular, ê1
is in both φ−1

1 (e1) and φ−1
7 (e1) (and unramified for both). So it must occur as a zero of the

denominator precisely as many times as it does for the numerator. Thus, G is holomorphic
on D.

Now we compute Ũ7(G) to show that G is an eigenvector with eigenvalue λ:

Ũ7(G) = E−1
1,χ · U7(G · E1,χ) ·

(
E1,τ

V (E1,τ )

)k−1

·
(
y−1 − t(e1)−1

t−1 − t(e1)−1

)dk(χ,τ)

= (Ψ−1 ◦ U7 ◦Ψ(F )) ·
(

E1,τ

V (E1,τ )

)k−1

·
(
y−1 − t(e1)−1

t−1 − t(e1)−1

)dk(χ,τ)

= λF ·
(

E1,τ

V (E1,τ )

)k−1

·
(
y−1 − t(e1)−1

t−1 − t(e1)−1

)dk(χ,τ)

= λG.

So at this point we have constructed an injection from the λ-eigenspace of Ψ−1 ◦ U7 ◦Ψ into
the λ-eigenspace of Ũ7. The argument is identical for the other direction. 2

5. Explicit formulas for Ũ7 in the weight 1 case

Recalling the notation of Section 1, let L be a number field which contains the cyclotomic field
K = Q(ζ). Let L̂ be the finite extension of Q7 which is generated by the embedding of L into
C7. So L̂ must contain either K1 or K2, and we say that the embedding is of type 1 or type 2
accordingly. Now suppose that L also contains a root α of x4 + 7. Then, as was explained at
the end of Section 2, the parameter s= α/t identifies D with the wide open unit disk BL̂(1).
In other words, the ring of analytic functions on D over L̂ is given by

AL̂(D) =
{ ∞∑
n=0

ans
n : an ∈ L̂, lim

n→∞
|an|rn = 0 if 0 6 r < 1

}
.

Our overall strategy is essentially to represent the linear operator Ũ7 on AL̂(D) as an infinite
matrix by writing it in the ‘basis’ {s, s2, s3, . . .}. Therefore, the ultimate goal of this section
is to arrive at an explicit formula for Ũ7(si). Initially, we assume for convenience that k = 1,
so that dk(χ, τ) = 0 and Ũ7 simplifies to

Ũ7(F ) = E−1
1,χ · U7(F · E1,χ).

As a result of Proposition 4.4, the contribution of E1,τ will be easy to take into account later.
To be clear,AL̂(D) is not a p-adic Banach space, and {si} is not a true Banach basis. However,

the structure is still quite nice in other ways which can be exploited. In particular, the sup
norm, which we denote by | · |sup (or simply | · | when the context is clear), can be defined on
the (Banach) subspace of AL̂(D) consisting of those functions with bounded valuation, by

|f |sup = max
x∈D(C7)

|f(x)|= max
n
|an|.

If we set

Ao
L̂

(D) = {f ∈AL̂(D) : |f |sup 6 1},
A+

L̂
(D) = {f ∈AL̂(D) : |f |sup < 1},

AL̂(D) = Ao
L̂

(D)/A+

L̂
(D),

then AL̂(D)∼= FL̂[[s]], where FL̂ is the residue field of L̂. Moreover, if we take X to be the good
reduction model of X0(49) introduced in Section 2, the infinite point on X is the reduction of
D, and there is a natural isomorphism between AL̂(D) and ÔX ,∞ (see [6, Proposition 2.8], for
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example). This connection between analytic functions on the disk and functions in the stalk
of a smooth point on the stable reduction is a key tool in our proof of the main theorem for
overconvergent forms. Thus we highlight it with the following formal remark.

Remark 5.1. As Coleman shows in [4], overconvergent forms naturally live on the wide
open W1(pn). However, this space is usually restricted down to an affinoid so that spectral
theory on Banach spaces may be applied. Our approach is quite different. In some sense, we
lift the overconvergent forms up to an affinoid which contains W1(pn) as a residue class. Thus
we are able to take advantage of arithmetic on the reduction of this affinoid.

5.1. Calculation of Ũ7(xj) for j = 1, . . . , 6

Although our ultimate goal is to find an explicit formula for Ũ7(si) for each i= 1, 2, . . . , it is
difficult to do this directly because the divisor of s on X0(49) is (∞) +

∑6
m=1 (C7,m)− 7(0).

In Appendix A, we show how Up affects poles at the cusps, and it follows that Ũ7(si) will
necessarily have a pole of order 49i at the cusp 0. So this approach becomes computationally
problematic for even small i. As it turns out, it is much easier to compute Ũ7(xj) for j = 1, . . . , 6
first, and then derive formulas for Ũ7(si) by using the following reasoning.

Recall that Up(F · V (G)) =G · Up(F ). Applying this to our situation, since g(y) = V (g(t))
for any rational function g, we have

Ũ7(g(y)F ) = E−1
1,χ · U7(g(y) · F · E1,χ)

= E−1
1,χ · g(t) · U7(F · E1,χ) = g(t)Ũ7(F ). (10)

But the function field of X0(49), even over the global field K, is a degree 7 extension of K(y)
and can be viewed as a vector space with basis {x6, x5, . . . , x, 1}. So any weight 0 form, that
is, function on X0(49), can be written as

F = g6(y)x6 + g5(y)x5 + . . .+ g1(y)x+ g0(y),

where the gj are rational functions. Then, by linearity and equation (10), we have

Ũ7(F ) = g6(t)Ũ7(x6) + g5(t)Ũ7(x5) + . . .+ g1(t)Ũ7(x) + g0(t).

Thus, if we obtain explicit formulas for Ũ7(xj) for j = 1, . . . , 6 first, then in some sense we get
for free a completely explicit formula for Ũ7.

Proposition 5.2. Let Q be the zero of E1,χ given in Proposition 3.3, and let xQ be its
x-coordinate. Then

y(x− xQ)
x

· Ũ7(xj) ∈ L(7(∞)) = Span{1, x, z, x2, xz, x3, x2z} for j = 1, 2, 3;

y2(x− xQ)
x

· Ũ7(xj) ∈ L(15(∞)) = Span{1, x, z, x2, . . . , x7, x6z} for j = 4, 5, 6.

Proof. We have assumed that k = 0, and hence Ũ7(F ) = E−1
1,χ · U7(F · E1,χ). From this

expression it is clear that Ũ7(F ) can only have poles at the zeros of E1,χ and at points
which arise from the poles of F through a p-isogeny of the corresponding elliptic curve as
in Appendix A. But in this case, (xj) = 2j(0)− 2j(∞). So we only need to consider the orders
at the cusps, at ê1, and at Q. Applying a slight variant of Lemma A.1, we see that y and y2

suffice to move all cuspidal poles to ∞ (being able to divide by x is a ‘coincidence’ which one
sees after comparing q-expansions to determine the actual coefficients). Because ordê1(E1,χ)< 1
and Ũ7(xj) is a legitimate function on X0(49), it follows that Ũ7(xj) cannot have a pole at
this point. Finally, while Ũ7(xj) clearly does have a pole at Q, it is easily moved to ∞ upon
multiplying by (x− xQ). 2
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From Proposition 5.2, we could write each Ũ7(xi) for i6 6 explicitly as a rational function in
x and z over K = Q(ζ). Approximations of these functions will suffice for our purposes, but in
order to give an approximation we must first be clear about how the global field is embedded
into C7. Recall from Section 1 that the ideal (7) factors in K as (π1)6(π2)6, where

π1 =−ζ8 + ζ6 − ζ4 + ζ and π2 = ζ9 + ζ8 + ζ4 + ζ3 − ζ − 1.

Therefore, completing K at either prime ideal (πi) results in a degree 6 totally ramified
extension of Q7 for which πi is a uniformizer. We call the resulting two complete fields K1

and K2, respectively.
Over either Ki, we may consider the reduced affinoid A⊆X0(49) defined over Q7 by

v(x2 + 7) = 1 or, equivalently, v(z) = 3/4. Instead of stating our approximations for Ũ7(xi)
in terms of individual coefficients, we will bound our error terms using the spectral norm on
A, which is highly compatible with the sup norm on D that was mentioned above†. In order
to simplify things notationally, for any f ∈AKi(A) let vi(f) be twice the minimal πi-adic
valuation of f over all C7-valued points of A (so ‖f‖A = 7−vi(f)/12). For either i, we then
have vi(x) = 6, vi(z) = 9 and vi(y) = 21. The following proposition gives sufficiently precise
approximation formulas for the Ũ7(xi), with the error bounded using the spectral norm on A
in this manner.

Proposition 5.3. Approximations for the functions in Proposition 5.2 over the field
K1 are as given below. We write f ≡ g, v1 = a, e1 > b to mean that v1(f) = v1(g) = a
and v1(f − g) > b.

y(x− xQ)
x

· Ũ7(x) ≡ 6z(x+ π3
1)2, v1 = 21, e1 > 22;

y(x− xQ)
x

· Ũ7(x2) ≡ xz(x+ π3
1) + 5π2

1x
2(x+ π3

1), v1 = 21, e1 > 23;

y(x− xQ)
x

· Ũ7(x3) ≡ 2π1x
2z, v1 = 23, e1 > 24;

y2(x− xQ)
x

· Ũ7(x4) ≡ π1x
4(x2 + 7)(x+ π3

1), v1 = 44, e1 > 45;

y2(x− xQ)
x

· Ũ7(x5) ≡ 3x5z(x+ π3
1) + 2π2

1x
5(x+ π3

1)(x+ 4π3
1), v1 = 45, e1 > 47;

y2(x− xQ)
x

· Ũ7(x6) ≡ 4π2
1x

6(x+ π3
1), v1 = 46, e1 > 47.

Proof. In each case, we simply compute the v1 of all individual terms in the particular
polynomial in x and z. With the exception of Ũ7(x2) and Ũ7(x5), we then keep only those
terms for which v1 was minimal. Note that we have also taken ‘first-order’ approximations
of the coefficients. For Ũ7(x2) and Ũ7(x5), we also hold on to a second level of terms. In the
later stages of our proof it will become evident why the extra level of precision was necessary
in these two cases, namely because we are forced to do one column operation on the matrix
representing Ũ7 while maintaining the approximation. 2

By precisely the same reasoning, then, we derive the analogous approximation formulas for
Ũ7(xi) over K2.

Proposition 5.4. Approximations for the functions in Proposition 5.2 over the field
K2 are as given below. We write f ≡ g, v2 = a, e2 > b to mean that v2(f) = v2(g) = a

†Over L̂, A is the complement in X of four residue classes, one of which is D. So for any f which is holomorphic
on D ∪ A, we have |f |sup = ‖f‖A.
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and v2(f − g) > b.

y(x− xQ)
x

· Ũ7(x) ≡ 3π2z(x+ π3
2)2, v2 = 23, e2 > 24;

y(x− xQ)
x

· Ũ7(x2) ≡ 2π2xz(x+ π3
2) + 5π3

2x
2(x+ π3

2), v2 = 23, e2 > 25;

y(x− xQ)
x

· Ũ7(x3) ≡ 3π2
2x

2z, v2 = 25, e2 > 26;

y2(x− xQ)
x

· Ũ7(x4) ≡ 2π2
2x

4(x2 + 7)(x+ π3
2), v2 = 46, e2 > 47;

y2(x− xQ)
x

· Ũ7(x5) ≡ π2x
5z(x+ π3

2) + 5π3
2x

5(x+ π3
2)(x+ 4π3

2), v2 = 47, e2 > 49;

y2(x− xQ)
x

· Ũ7(x6) ≡ 6π3
2x

6(x+ π3
2), v2 = 48, e2 > 49.

5.2. Calculation of Ũ7(si) for i= 1, . . . , 7

Now that we have approximations for Ũ7(xj), j = 1, . . . , 6, we can use these to generate
approximations for Ũ7(si). Once again, the main idea here is to write each si in the form

si = gi,6(y)x6 + gi,5(y)x5 + . . .+ gi,1(y)x+ gi,0(y),

which we know can be done since the function field of X0(49) over K is a degree 7 extension
of K(y). We then use equation (10) to conclude that

Ũ7(si) = gi,6(t)Ũ7(x6) + gi,5(t)Ũ7(x5) + . . .+ gi,1(t)Ũ7(x) + gi,0(t).

Finally, we approximate the gi,j(t) using the fact that v1(t) = v2(t) = 3, and combine these
approximations with the ones from Propositions 5.3 and 5.4 to obtain approximations for the
Ũ7(si) with respect to either embedding. To simplify matters slightly, we initially deal with t−i

rather than si. These differ by a scalar, and t is defined over Q7.

Proposition 5.5. Let A⊆X0(49) be the affinoid over Q7 defined by v(x2 − 7) = 1, as
above. Write

t−i = gi,6(y)x6 + gi,5(y)x5 + . . .+ gi,1(y)x+ gi,0(y), 1 6 i6 7.

Then t7igi,j(t) is a polynomial in t of degree less than 7i. Each of these polynomials has a
unique dominant term on A, which is given in the following table.

t−i t7igi,6(t) t7igi,5(t) t7igi,4(t) t7igi,3(t) t7igi,2(t) t7igi,1(t) t7igi,0(t)

t−1 7t5 5 · 7t5 2 · 72t5 t6 7t6 3 · 7t6 5 · 72t6

t−2 t12 2 · 7t12 6 · 7t12 5 · 72t12 2 · 7t13 3 · 7t13 4 · 72t13

t−3 6 · 72t18 2 · 7t19 3 · 7t19 6 · 72t19 t20 2 · 7t20 6 · 7t20

t−4 2 · 72t25 t26 3 · 7t26 2 · 7t26 5 · 72t26 3 · 7t27 7t27

t−5 2 · 7t32 5 · 72t32 3 · 7t33 7t33 2 · 73t32 t34 3 · 7t34

t−6 6 · 7t39 72t39 t40 4 · 7t40 5 · 7t40 3 · 72t40 4 · 7t41

t−7 4 · 7t46 5 · 7t46 6 · 72t46 4 · 7t47 6 · 7t47 3 · 72t47 t48
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Proof. It follows directly from equation (5) that y2/x is a polynomial in x and y. Indeed,
one can simply solve the equation to get

y2/x= x6 + 7x5 + 21x4 + 49x3 + (7y + 147)x2 + (35y + 343)x+ 49y + 343.

Clearly, this equation can be used to write (y2/x)i as a polynomial in x and y. The degree
of the resulting polynomial in x may initially be quite large. However, the function which it
represents can then be brought into ‘standard form’, that is, written as a polynomial of degree
at most 6 in x, by repeatedly substituting

x7 =−7x6 − 21x5 − 49x4 − 154x3 − 378x2 − 392x+ y2,

which is just the same equation in a different form.
Once we have a method for writing (y2/x)i in standard form, it carries over directly to t−i,

since

t−i = (y/x4)i = y−7i(y2/x)4i.

We simply write

(y2/x)4i = hi,6(y)x6 + hi,5(y)x5 + . . .+ hi,1(y)x+ hi,0(y),

where each hi,j is a polynomial (whose degree, one sees, is less than 7i). Then we are done,
since we now have gi,j(y) = y−7ihi,j(y). To determine the dominant term of gi,j(t) = t−7ihi,j(t),
we may equivalently determine the dominant term of hi,j(t). This is a very straightforward
calculation using v1(t) = v2(t) = 3. 2

We are finally in a position now to write down approximation formulas for Ũ7(si). For this,
we must work over the 7-adic field L̂, where L is a number field containing both K and a root
α of x4 + 7. Note that since L̂ contains either K1 or K2, both v1 and v2 extend in a natural
way through the spectral norm on A⊗ L̂.

Proposition 5.6. Approximations for Ũ7(si), 1 6 i6 7, over L̂⊇K1 are as follows:

Ũ7(s1) ≡ 2απ1z/(x(x+ π3
1)), v1 = 2, e1 > 3;

Ũ7(s2) ≡ 4α2π2
1/x, v1 = 4, e1 > 5;

Ũ7(s3) ≡ α3z/x2 + 5α3π2
1/x, v1 = 6, e1 > 8;

Ũ7(s4) ≡ 3α4z/x2 + 2α4π2
1(x+ 4π3

1)/x2, v1 = 9, e1 > 11;

Ũ7(s5) ≡ 6α5z(x+ π3
1)/x3, v1 = 12, e1 > 13;

Ũ7(s6) ≡ α6π1(x2 + 7)/x3, v1 = 14, e1 > 15;

Ũ7(s7) ≡ α7/t, v1 = 18, e1 > 19.

Proof. Taking into account that v1(x) = v1(x− xQ) = 6 and v1(y) = 21 and applying
Proposition 5.3, we see that

(v1(Ũ7(x6)), . . . , v1(Ũ7(x)), v1(1)) = (4, 3, 2, 2, 0, 0, 0).

Then, from Proposition 5.5, we can compute the v1 of each gi,j(t). These values are collected
for convenience in the following matrix (note that the ordering of the terms is consistent with

https://doi.org/10.1112/S1461157012000095 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012000095


126 L. J. P. KILFORD AND K. MCMURDY

the table from Proposition 5.5):

6 6 18 −3 9 9 21
−6 6 6 18 9 9 21
15 6 6 18 −3 9 9
15 −6 6 6 18 9 9
3 15 6 6 27 −3 9
3 15 −6 6 6 18 9
3 3 15 6 6 18 −3


.

Now, by adding the entries of the ith row to the v1 values of Ũ7(xj) (given above), we are able
to determine the dominant term(s) in our approximation for Ũ7(t−i). Then we scale by αi to
obtain an approximation for Ũ7(si). We will do Ũ7(s1) in great detail, and then give only the
essential information for the i > 1 cases, as they are very similar.

For Ũ7(t−1), we look at the first row of the matrix and see that the unique dominant term will
be g1,3(t) · Ũ7(x3), for which v1 =−1 (for all other terms, v1 > 9). So, in order to approximate
Ũ7(t−1), we multiply the approximations for g1,3(t) and Ũ7(x3) from Propositions 5.5 and 5.3:

Ũ7(t−1)≡ 1
t
· x

y(x− xQ)
· 2π1x

2z, v1 =−1, e1 = 0

≡ 2π1z/(x(x+ π3
1)), v1 =−1, e1 = 0.

Here we have used the facts that t= x4/y and v1(xQ + π3
1) = 8. Finally, we multiply through

by α1, since s= αt−1, and arrive at the stated approximation for Ũ7(s1). We summarize this
process for i > 1 below:

Ũ7(t−2) ≡ g2,6(t) · Ũ7(x6), v1 =−2, e1 > 8

≡ 1
t2 ·

x
y2(x−xQ) · 4π

2
1x

6(x+ π3
1), v1 =−2, e1 >−1

≡ 4π2
1/x, v1 =−2, e1 >−1;

Ũ7(t−3) ≡ g3,2(t) · Ũ7(x2), v1 =−3, e1 > 8

≡ 1
t ·

x
y(x−xQ) [xz(x+ π3

1) + 5π2
1x

2(x+ π3
1)], v1 =−3, e1 >−1

≡ z/x2 + 5π2
1/x, v1 =−3, e1 >−1;

Ũ7(t−4) ≡ g4,5(t) · Ũ7(x5), v1 =−3, e1 > 8

≡ 1
t2 ·

x
y2(x−xQ)

·[3x5z(x+ π3
1) + 2π2

1x
5(x+ π3

1)(x+ 4π3
1)], v1 =−3, e1 >−1

≡ 3z/x2 + 2π2
1(x+ 4π3

1)/x2, v1 =−3, e1 >−1;

Ũ7(t−5) ≡ g5,1(t) · Ũ7(x1), v1 =−3, e1 > 7

≡ 1
t ·

x
y(x−xQ) · 6z(x+ π3

1)2, v1 =−3, e1 >−2

≡ 6z(x+ π3
1)/x3, v1 =−3, e1 >−2;

Ũ7(t−6) ≡ g6,4(t) · Ũ7(x4), v1 =−4, e1 > 6

≡ 1
t2 ·

x
y2(x−xQ) · π1x

4(x2 + 7)(x+ π3
1), v1 =−4, e1 >−3

≡ π1(x2 + 7)/x3, v1 =−4, e1 >−3;

Ũ7(t−7) ≡ g7,0(t) · 1≡ 1/t, v1 =−3, e1 > 0. 2
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By precisely the same reasoning, we arrive at the following approximation formulas in the
case of a type 2 embedding.

Proposition 5.7. Approximations for Ũ7(si), 1 6 i6 7, over L̂⊇K2 are as follows:

Ũ7(s1) ≡ 3απ2
2z/(x(x+ π3

2)), v2 = 4, e2 > 5;

Ũ7(s2) ≡ 6α2π3
2/x, v2 = 6, e2 > 7;

Ũ7(s3) ≡ 2α3π2z/x
2 + 5α3π3

2/x, v2 = 8, e2 > 10;

Ũ7(s4) ≡ α4π2z/x
2 + 5α4π3

2(x+ 4π3
2)/x2, v2 = 11, e2 > 13;

Ũ7(s5) ≡ 3α5π2z(x+ π3
2)/x3, v2 = 14, e2 > 15;

Ũ7(s6) ≡ 2α6π2
2(x2 + 7)/x3, v2 = 16, e2 > 17;

Ũ7(s7) ≡ α7/t, v2 = 18, e2 > 19.

5.3. Recurrence relation and the final matrix

Now that we have approximations for Ũ7(si), i= 1, . . . , 7, these can be extended to all i> 1 by
means of a 7th-order linear recurrence relation with coefficients in L̂(t), as in [11, Section 4].
The reason for this is essentially the same key fact which was used in the previous section,
namely that inside the function field of X0(49), s is algebraic of degree 7 over L̂(y). So for fixed
rational functions g0(y), g1(y), . . . , g6(y), we have

si+7 = g6(y)si+6 + g5(y)si+5 + . . .+ g1(y)si+1 + g0(y)si.

Therefore, applying equation (10) as we have done before, we obtain

Ũ7(si+7) = g6(t)Ũ7(si+6) + g5(t)Ũ7(si+5) + . . .+ g1(t)Ũ7(si+1) + g0(t)Ũ7(si).

The only practical difficulty could be in finding the coefficient functions. As we have already
seen, however, it is straightforward to write any power of x in the basis {x6, x5, . . . , 1} over
K(y) by repeatedly applying the identity

x7 =−7x6 − 21x5 − 49x4 − 154x3 − 378x2 − 392x+ y2.

Also, we know that t= x4/y. So one strategy would be to write each x4i for 0 6 i6 7 in the
basis {x6, x5, . . . , x, 1}, and then use linear algebra to solve for x28 as a linear combination of
the seven linearly independent vectors 1, x4, x8, . . . , x24. We find that

x28 = h6(y)x24 + h5(y)x20 + . . .+ h1(y)x4 + h0(y)

for the following polynomial coefficient functions:

h6(y) = −28y − 49,
h5(y) = −322y2 − 1372y − 2401,
h4(y) = −1904y3 − 15778y2 − 67228y − 117649,
h3(y) = −5915y4 − 93296y3 − 773122y2 − 3294172y − 5764801,
h2(y) = −8624y5 − 289835y4 − 4571504y3 − 37882978y2 − 161414428y − 282475249,
h1(y) = −4018y6 − 422576y5 − 14201915y4 − 224003696y3

− 1856265922y2 − 7909306972y − 13841287201,
h0(y) = y8.

Substituting (yt)i for each x4i, it follows that

t−7 =−h1(y)y−7t−6 − h2(y)y−6t−5 − . . .− h6(y)y−2t−1 + y−1.
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Finally, we substitute t= α/s and apply equation (10) to obtain the recurrence relation for
Ũ7(si):

Ũ7(si+7) =−αh1(t)t−7Ũ7(si+6)− . . .− α6h6(t)t−2Ũ7(si+1) + α7t−1Ũ7(si). (11)

Putting the above recurrence relation for Ũ7(si) together with the explicit approximations for
Ũ7(si) when 1 6 i6 7 from Propositions 5.6 and 5.7, we are now in a position to write down
approximation formulas for Ũ7(si) for all i. These are captured most succinctly by the following
proposition.

Proposition 5.8. Suppose that 1 6 i6 7 and j > 0. Let V1,i = v1(Ũ7(si)) and V2,i =
v2(Ũ7(si)). Then

Ũ7(s7j+i)≡ α6jsjŨ7(si), v1 = 18j + V1,i, e1 > 18j + 2 + V1,i,

and the analogous approximation formula holds for v2.

Proof. This is straightforward to prove by induction on j. The key is to compute the sizes of
the coefficient functions αkhk(t)tk−8, 1 6 k 6 6, in equation (11). These functions end up being
so small on A (regardless of the embedding) that only the α7t−1Ũ7(si) term in the recurrence
relation ends up being non-negligible. In particular, using the facts that v1(t) = v1(α) = 3 and
v1(7) = 12, we obtain the following.

k 1 2 3 4 5 6

v1(αkhk(t)tk−8) 24 27 18 21 24 27

On the other hand, it is immediate that v1(α7t−1) is just 18. So under the assumption of
the inductive hypothesis (which forces Ũ7(si+4) to be much smaller than Ũ7(si)), the first six
terms in the recurrence relation are always negligible. Thus, applying the recurrence relation
finishes the inductive argument. The argument for v2 is identical. 2

6. Proof of the main theorem

Now we are ready to prove a series of slope formulas. First, we prove a formula for the slopes of
all weight 1 overconvergent forms in M1,χ(49). Then we extend to all weights using powers of
the Eisenstein series E1,τ . Finally, we conclude by applying results of Coleman and of Cohen
and Oesterlé to determine the slopes of all classical forms with a specified character.

The main idea in the proof of the first result is to represent Ũ7 acting on M0 as an
infinite matrix by working in the ‘basis’ {s, s2, s3, . . .}. Then we show that the matrix has
a characteristic series and compute the valuations of its coefficients. We will see that these
coefficients, cj , converge to 0 so quickly that in fact |cj+1/cj | forms a strictly decreasing
null sequence. Once this is established, it is an easy lemma to show that each Newton slope
of the characteristic series corresponds to a one-dimensional eigenspace, and that no other
overconvergent eigenforms with finite slope can exist.

Theorem 6.1. Fix a primitive 42nd root of unity, ζ, and let χ be the Dirichlet character
of conductor 49 defined by χ(3) = ζ. Let L be a number field containing K = Q(ζ) and a root
α of x4 + 7. For any type 1 embedding of L into C7, the finite slopes of U7 acting on M1,χ(49)
are given by {

1
6
·
⌊

9i
7

⌋
: i ∈ N

}
.
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For any type 2 embedding, the finite slopes are{
1
6
·
⌊

9i+ 6
7

⌋
: i ∈ N

}
.

In either case, the eigenspaces are all one-dimensional and defined over L̂.

Proof. We will make the argument for type 1 embeddings only, as the proof for type 2 is
identical. First, we fix some notation. Since Ũ7(sj) may be viewed as a holomorphic function
on the unit disk which vanishes at the origin, we may write it uniquely as

Ũ7(sj) =
∞∑
i=1

aijs
i.

Note that each of these functions has finite sup norm, given explicitly by Propositions 5.6
and 5.8, and that this determines the minimal valuation of the coefficients aij . Philosophically,
we think of M = (aij) as the matrix representing Ũ7, and hence we refer to the Ũ7(sj) as the
‘column functions’.

Now, let Mn be the n× n truncation of M , that is, Mn = (aij)16i,j6n. We define the
characteristic polynomial of Mn to be

fn(λ) = (−1)nλn det
(
Mn −

1
λ
· In
)
.

Clearly, λ is a non-zero eigenvalue of Mn if and only if 1/λ is a root of fn. We will show
that these polynomials converge to a characteristic series for M . The key is to interpret the
coefficients in terms of the classical matrix invariants. In particular, let

fn(λ) = 1− cn1λ+ cn2λ
2 − . . .+ (−1)ncnnλn.

Then cn1 is simply the trace of Mn and cnn is the determinant. More generally, cnj is the sum
of the determinants of all principal j × j minors of Mn, that is, those obtained from Mn by
deleting any (n− j) rows and then the same (n− j) columns. Clearly, since the sup norms
of the column functions form a decreasing null sequence, each (cnj)n>1 is a Cauchy and thus
convergent sequence. Indeed, for a fixed j > 0 and any m> n> j, cmj − cnj is the sum of
the determinants of all principal j × j minors of Mm which retain at least one column whose
index is greater than n. Thus, using the fact that all of the coefficients of M are integral, we
can bound |cmj − cnj | with the sup norm of the (n+ 1)st column function. For notation, let
cj = limn→∞ cnj . Then we define the characteristic series of M to be

f(λ) = 1 +
∑

(−1)jcjλj .

Next, viewing each cnj as the sum of principal minors, we show that, in fact, det(Mj) is
always the leading term by computing its valuation explicitly. To do this, we consider the
reductions (after finitely many elementary column operations) of the column functions, on the
model X for X0(49) given in equation (7). We may assume without loss of generality that

α2 = 2ζ11 − 2ζ9 − 2ζ8 − 2ζ4 + 2ζ + 1,

and hence v1(α2 + π3
1) = 8. Referring back to Proposition 5.6, we can subtract 3α · Ũ7(s3) from

Ũ7(s4) and then divide each column by an appropriate scalar to obtain the following reductions
for the first seven column functions:

Z

X(X − 1)
,

1
X
,
Z

X2
,
X − 1
X2

,
Z(X − 1)

X3
,
X2 − 1
X3

,
Z(X2 − 1)

X4
.

Similarly, if we subtract 3α · Ũ7(s10) from Ũ7(s11) and scale appropriately, then by
Proposition 5.8 the reductions of the next seven column functions will simply be the product
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of these first seven with an extra Z(X2 − 1)/X4, and so on. We would like to show that the
expansions of the first j of these reduced functions in ÔX ,∞ are always linearly independent
up through the sj term. This follows easily from the divisors of the reduced functions on X .
Indeed, using (X, Z) coordinates for points, the first seven reduced column functions have
divisors

(Z/(X(X − 1))) = (∞) + (−1, 0)− (0, 0)− (1, 0),

(1/X) = 2(∞)− 2(0, 0),

(Z/X2) = (1, 0) + (−1, 0) + (∞)− 3(0, 0),

((X − 1)/X2) = 2(1, 0) + 2(∞)− 4(0, 0),

(Z(X − 1)/X3) = 3(1, 0) + (−1, 0) + (∞)− 5(0, 0),

((X2 − 1)/X3) = 2(1, 0) + 2(−1, 0) + 2(∞)− 6(0, 0),

(Z(X2 − 1)/X4) = 3(1, 0) + 3(−1, 0) + (∞)− 7(0, 0).

Then, each time we multiply by Z(X2 − 1)/X4 to obtain the next seven functions, we add
3(1, 0) + 3(−1, 0) + (∞)− 7(0, 0) to the divisors. From the poles at (0, 0) alone, it is immediate
that the first j functions are always linearly independent. But this is not enough. We need to
show that, in fact, no non-trivial linear combination could even be a function which vanishes
j + 1 times at ∞. Suppose we had such a linear combination. At worst, the function would
be in L((1, 0) + j(0, 0)), so it would have to have divisor exactly (j + 1)(∞)− (1, 0)− j(0, 0).
If j were odd, we could then use (X) = 2(0, 0)− 2(∞) to produce a function with divisor
(0, 0)− (1, 0). If j were even, we could use X to produce a function with divisor (∞)− (1, 0).
Either is a contradiction, as the curve is not rational. So the expansions in ÔX ,∞ must be
linearly independent up through the sj term. Therefore, passing through the isomorphism
with AL̂(D), and taking into account the scaling factors, we have shown that

v(det(Mj)) =
j∑
i=1

1
6
·
⌊

9i
7

⌋
.

Finally, since v1 of any later column function must exceed v1 of any of the first j column
functions by at least 2, and since each of the elementary column operations which were
performed on Mj only increased v1 of that column by 1, it follows that det(Mj) is indeed the
unique dominant term in the convergent sum of principal j × j minors defining cnj . Therefore
the above formula for v(det(Mj)) is in fact a formula for v(cj). Having established that |cj+1/cj |
is a strictly decreasing null sequence, the claims about slopes and eigenspaces easily follow. 2

Theorem 6.2. Let k ∈ N be arbitrary. Fix a primitive 42nd root of unity, ζ, and let χ be
the Dirichlet character of conductor 49 defined by χ(3) = ζ. Let L be a number field containing
K = Q(ζ) and a root α of x4 + 7. For any type 1 embedding of L into C7, the finite slopes of
U7 acting on Mk,χ7k−6(49) are given by{

1
6
·
⌊

9i
7

⌋
: i ∈ N

}
.

For any type 2 embedding, the finite slopes of U7 acting on Mk,χ8−7k(49) are given by{
1
6
·
⌊

9i+ 6
7

⌋
: i ∈ N

}
.

In either case, the eigenspaces are all one-dimensional and defined over L̂.
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Proof. From the definition of Ũ7 (see equation (9)), we see that the infinite matrix
representing Ũ7 on this weight k space is obtained from the infinite matrix in the previous
theorem by simply multiplying each column function by the same function. (That was the
whole point of working with Ũ7 instead of the true pullback of U7 to M0.) So the key to
proving this theorem is to choose the auxiliary character τ appropriately in both cases. In
particular, if we choose it so that E1,τ/V (E1,τ ) is a holomorphic function with sup norm 1 on
D whose reduction in

AL̂(D)∼= ÔX ,∞

does not vanish at ∞, the same proof will essentially go through verbatim.
First, we apply Lemma 4.2 to obtain the following explicit formula for the extra weight

factor:
E1,τ

V (E1,τ )
= (β + 2) · y − (3β − 8)−1x4

y − (3β − 8)
·
z − (β − 3

2 )x− 2β + 3
z + ( 2

7β + 1
7 )x(x+ 7

2 )
.

(The lemma implies that the two divisors agree, and then q-expansions verify that the constant
is correct.)

In the type 1 case, we choose τ by setting τ(3) = β = ζ7, which of course implies that
χτk−1 = χ7k−6. It is easy to check (globally) that

vπ1(t(eβ)) = vπ1(3β − 8) = 12,
vπ1(x(êζ)) = vπ1(3ζ7 − 1) = 6.

So with this type of embedding into C7, both E1,χ and E1,τ are non-vanishing on W1(49) (that
is, we have δζ = δτ = 0). In equation (9), then, we have dk = 0 and there is no holomorphicity
factor to worry about. Moreover, if we do a valuation analysis on the above expression, we find
that on A (and over K1) we have

E1,τ

V (E1,τ )
≡ (β + 2) · −(3β − 8)−1x4

y
· z

( 2
7β + 1

7 )x2

≡ x2z

y

≡ x2z

z(x2 + 7)
≡ x2

x2 + 7
, v1 = 0, e1 > 3.

This function reduces to X2/(X2 − 1) on the good reduction model X and, in particular, is
holomorphic and non-vanishing at the infinite point.

The situation is very similar with the second embedding. This time we set τ(3) = β = ζ−7, so
that χτk−1 = χ8−7k. While x(êζ) is now a unit (so δζ = 1 and E1,χ has a zero on W1(49)), the
different choice of τ guarantees that, once again, E1,τ will not vanish on W1(49). Thus δβ = 0,
and we do not have to include the extra holomorphicity factor in Ũ7. The valuation analysis
for E1,τ/V (E1,τ ) on A (and over K2) is essentially the same, and we find that

E1,τ

V (E1,τ )
≡ x2

x2 + 7
, v2 = 0, e2 > 3.

So, in both cases, the weight factor fτ := E1,τ/V (E1,τ ) has sup norm 1 and reduces to
a function fτ on X which is holomorphic and non-vanishing at ∞. In going from weight 1
to weight k, then, the column functions in the infinite matrix for Ũ7 are all multiplied by
the same function (fτ )k−1. Thus, the sup norms of all the column functions are unchanged.
Moreover, after performing the exact same elementary column operations and scaling by
the exact same constants, the first j column functions will each reduce to (fτ )k−1 times
their old value. Now, suppose that some linear combination of the reductions of the first j
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of these (adjusted) column functions were equal to a function g ∈ ÔX ,∞ which vanished
at ∞ with order j + 1 or greater. Then the same linear combination of the reductions of
the original first j (adjusted) column functions would equal g · (fτ )1−k. But this function
would still vanish j + 1 times at ∞, because fτ was non-vanishing there. Since we proved
that the reductions of the first j (adjusted) column functions in the weight 1 matrix were
independent up through the sj term (in the proof of Theorem 6.1), this is a contradiction.
Therefore, the same argument from the weight 1 case can be used to show that det(Mj) is
still the strictly leading term in the expansion for cj , and of course its valuation has not
changed. In short, although the characteristic series for Ũ7 has changed, the valuations of
its coefficients have not. Thus the slopes are the same, and the eigenspaces are once again
one-dimensional. 2

We are now ready to prove our main theorem regarding classical modular forms. In addition
to the above theorem, we also apply here the theorem of Coleman which says that Up eigenforms
of small slope are classical [4, Theorem 1.1]. The other key ingredient is the following special
case of the well-known theorem of Cohen and Oesterlé.

Theorem 6.3 (Cohen–Oesterlé). Let χ be a primitive Dirichlet character of conductor 49,
and let k be an integer greater than 1. Then

dim Sk(Γ1(49), χ) =
14k − 17

3
+ ε(χ(18) + χ(30)),

where ε is 1/3 if k ≡ 0 mod 3, 0 if k ≡ 1 mod 3, and −1/3 if k ≡ 2 mod 3.

Theorem 6.4. Let k be an integer greater than 1. Fix a primitive 42nd root of unity, ζ,
and let χ be the Dirichlet character of conductor 49 defined by χ(3) = ζ.

The classical space Sk(Γ1(49), χ7k−6) is diagonalized by the U7 operator over the field K1(α).
The slopes of U7 acting on this space are precisely those values in the set{

1
6
·
⌊

9i
7

⌋
: i ∈ N

}
which are less than k − 1 (each corresponding to a one-dimensional eigenspace).

The classical space Sk(Γ1(49), χ8−7k) is completely diagonalized by the U7 operator over the
field K2(α). The slopes of U7 acting on this space are precisely those values in the set{

1
6
·
⌊

9i+ 6
7

⌋
: i ∈ N

}
which are less than k − 1 (each corresponding to a one-dimensional eigenspace).

Proof. First, consider the case of Sk(Γ1(49), χ7k−6) over K1. In this case, Theorem 6.2
guarantees the existence of an overconvergent U7 eigenform for each slope in the set{

1
6
·
⌊

9i
7

⌋
: i ∈ N

}
.

By [4, Theorem 1.1], the eigenforms corresponding to those slopes which are strictly less than
k − 1 are actually classical. To count the number of such eigenforms, we let f(i) = b9i/7c
and attempt to solve f(i)< 6(k − 1). It is easy to show by induction that for r > 0 we have
f(5 + 14r) = 6(3r + 1), f(10 + 14r) = 6(3r + 2) and f(14 + 14r) = 6(3r + 3). So every multiple
of 6 occurs in the increasing sequence (f(i))i>1, and the number of terms strictly less than
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6(k − 1) is given by 

9 + 14
(
k − 3

3

)
if k ≡ 0 mod 3,

13 + 14
(
k − 4

3

)
if k ≡ 1 mod 3,

4 + 14
(
k − 2

3

)
if k ≡ 2 mod 3.

Hence, this is the number of overconvergent U7 eigenforms (up to scalar multiples) with slope
strictly less than k − 1, which by Coleman’s theorem must be classical.

On the other hand, we can compute the dimension of Sk(Γ1(49), χ7k−6) directly with the
Cohen–Oesterlé theorem. Since 328 ≡ 18 mod 49 and 314 ≡ 30 mod 49,

χ7k−6(18) + χ7k−6(30) = ζ28(7k−6) + ζ14(7k−6)

= (−ζ7)k + (ζ7 − 1)k.

But −ζ7 and ζ7 − 1 are just the two distinct primitive cube roots of unity. So the above
expression evaluates to 2 if k ≡ 0 mod 3 and to −1 otherwise. Taking into account the values
of ε, the Cohen–Oesterlé theorem then gives the following dimensions for Sk(Γ1(49), χ7k−6):

14k − 17
3

+


1
3 (2) if k ≡ 0 mod 3,
0(−1) if k ≡ 1 mod 3,
− 1

3 (−1) if k ≡ 2 mod 3.

In each case, it is immediate that the dimension of the classical space is identical to the number
of overconvergent eigenforms which have slope less than k − 1 and hence are classical. Since we
know from the classical theory that Sk(Γ1(49), χ7k−6) does have a basis of cuspidal eigenforms
for the full Hecke algebra, and since the eigenvalues are distinct, the theorem follows in this
case.

The K2 case is very similar. This time we let f(i) = b(9i+ 6)/7c and find that f(4 + 14r) =
6(3r + 1), f(9 + 14r) = 6(3r + 2) and f(14 + 14r) = 6(3r + 3). This results in the following
formula for the number of slopes in the given set which are strictly less than k − 1:

8 + 14
(
k − 3

3

)
if k ≡ 0 mod 3,

13 + 14
(
k − 4

3

)
if k ≡ 1 mod 3,

3 + 14
(
k − 2

3

)
if k ≡ 2 mod 3.

Once again, this agrees with the dimension of the classical space by the Cohen–Oesterlé
theorem, since

χ8−7k(18) + χ8−7k(30) = ζ28(8−7k) + ζ14(8−7k)

= (ζ7 − 1)1+k + (−ζ7)1+k.

So the total dimension of the classical space is

14k − 17
3

+


1
3 (−1) if k ≡ 0 mod 3,
0(−1) if k ≡ 1 mod 3,
− 1

3 (2) if k ≡ 2 mod 3. 2

Remark 6.5. The fields of definition in Theorem 6.4 can actually be taken to be K1 and
K2, as was done in our original statement of Theorem 1.1. The reason for this is identical
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to [11, p. 174, proof of Corollary 3]. In particular, since the character is defined over Ki,
any Galois conjugate over Ki of a given classical eigenform would necessarily be a classical
eigenform with the same character and slope. But each slope only occurs once. So Galois fixes
the eigenforms, and hence they must in fact be defined over Ki.

7. Explicit verification of the main theorem

One way to quickly check that the theorem is at least reasonable is to compare the dimensions of
various character subspaces of Sk(Γ1(49)) with the numbers of slopes predicted by the theorem
in those cases. William Stein has computed these dimensions in the first several cases, and the
data is given on his website precisely as follows:

<49,
[*
<(0), [1], t^2 + 10*t^4 + 20*t^6 + 28*t^8 + 38*t^10 + 48*t^12 + 56*t^14 + 66*t^16>,
<(1), [42], 8*t^3 + 18*t^5 + 27*t^7 + 36*t^9 + 46*t^11 + 55*t^13 + 64*t^15>,
<(2), [21], 4*t^2 + 13*t^4 + 22*t^6 + 32*t^8 + 41*t^10 + 50*t^12 + 60*t^14 + 69*t^16>,
<(3), [14], 9*t^3 + 17*t^5 + 27*t^7 + 37*t^9 + 45*t^11 + 55*t^13 + 65*t^15>,
<(6), [7], 3*t^2 + 13*t^4 + 23*t^6 + 31*t^8 + 41*t^10 + 51*t^12 + 59*t^14 + 69*t^16>,
<(7), [6], 5*t^3 + 15*t^5 + 24*t^7 + 33*t^9 + 43*t^11 + 52*t^13 + 61*t^15>,
<(14), [3], t^2 + 10*t^4 + 19*t^6 + 29*t^8 + 38*t^10 + 47*t^12 + 57*t^14 + 66*t^16>,
<(21), [2], 6*t^3 + 14*t^5 + 24*t^7 + 34*t^9 + 42*t^11 + 52*t^13 + 62*t^15>
*]>.

In each entry, the second number is the order of the group generated by ψ(3) where ψ is the
character. Then the coefficient of tk represents the dimension of Sk(Γ1(49), ψ). We will compare
this data with Theorem 6.4 in the weight 2 case, and invite the reader to ‘spot check’ a few
others.

When k = 2, the theorem predicts that a basis of newforms for S2(Γ1(49), χ8) will be defined
over K1 and have slopes {1/6, 2/6, 3/6, 5/6}. This agrees with the above data, because 〈ζ8〉 has
order 21, and the coefficient of t2 is 4 in the corresponding polynomial. Similarly, we should
have a basis of newforms for S2(Γ1(49), χ−6) defined over K2 with slopes {2/6, 3/6, 4/6}.
Since 〈χ−6〉 has order 7 and the coefficient of t2 is 3 in the corresponding polynomial, this also
matches.

This, however, does not confirm any of the slopes. Stein’s dimensions were computed using
the Cohen–Oesterlé theorem, so this is essentially a check that we have incorporated Cohen–
Oesterlé correctly. For an independent check of some actual slopes, we can compare with explicit
values of a7 which are known for the weight 2 Hecke newforms (and again we take them from
Stein’s website). When ψ(3) = γ, a primitive 21st root of unity, there is exactly one family
of Galois conjugate weight 2 newforms in S2(Γ1(49), ψ). They are defined over the degree 4
extension of Q(γ) generated by the following polynomial:

x4 + (γ5 + 1)x3 + (γ10 − 5γ5 + 1)x2

+ (γ11 − 4γ10 − γ7 − γ6 − 2γ5 − γ3 + 2γ2 − γ)x
+ (2γ10 + γ9 + γ8 + γ7 − γ6 − γ5 − γ4 + γ2 + γ + 1).

Taking a to be a root of the degree 4 polynomial, the value of a7 is then given explicitly by

(γ11 − γ10 + γ8 − γ7 − γ6 + γ5 − γ3 + γ2 − 1)a3

+ (γ8 − γ6 + γ5 − γ4 − γ3 + γ2)a2

+ (4γ11 − γ6 + γ5 + 4γ4 − γ3 + γ2 − γ)a
− (γ11 − γ10 − 3γ9 + γ8 − γ7 − 2γ6 + 2γ5 + γ4 − 3γ3 + 2γ2 + γ − 3).
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Our theorem applies in this case, since it gives the slopes (over K1) of the weight 2 newforms
with character χ8, and ζ8 is a primitive 21st root. If we take γ = ζ8 for consistency, we find
the following roots of the degree 4 polynomial over K1:

a1 = 4 + 5π1 + 1π2
1 + 2π3

1 + 3π4
1 + 5π5

1 + 6π6
1 + 4π7

1 + 4π8
1 + 1π9

1 + 1π10
1 + . . . ,

a2 = 5 + 4π1 + 2π2
1 + 3π3

1 + 4π4
1 + 1π5

1 + 5π7
1 + 5π8

1 + 3π9
1 + 2π11

1 + . . . ,

a3 = 4 + 1π1 + 5π2
1 + 4π3

1 + 1π4
1 + 6π5

1 + 1π6
1 + 3π7

1 + 5π8
1 + 6π9

1 + 5π10
1 + . . . ,

a4 = 5 + 5π2
1 + 4π3

1 + 4π5
1 + 2π6

1 + 2π7
1 + 5π8

1 + 6π111 + . . . .

Plugging these four values in for a in the expression for a7, we find π1-adic valuations of 1, 2,
3 and 5. So the theorem is verified in this case.

Similarly, we can verify our weight 2 slopes over K2 by considering all forms in S2(Γ1(49), ψ)
where γ = ψ(3) is a primitive 7th root of unity. Since our theorem predicts the slopes of those
eigenforms in S2(Γ1(49), χ−6), we must choose γ = ζ−6 for consistency. From Stein, we have
three forms to consider. The first is defined over Q(γ) and has

a7 = 2γ5 + 2γ4 + γ3 + 2.

It is easy to check that vπ2(a7) = 3 for this form. The other two are Galois conjugates defined
over the quadratic extension of Q(γ) generated by

p(x) = x2 − (γ4 + γ)x− (γ5 − γ2 − γ).

Then, if a is a root of p(x), the value of a7 is given explicitly by

a7 = (γ3 − γ2)a− (γ4 − γ2 − γ + 1).

Over K2, we have the following two roots for p(x):

a1 = 1 + 1π2 + 6π2
2 + 2π3

2 + 1π4
2 + 6π5

2 + 6π6
2 + 4π7

2 + 3π8
2 + 5π9

2 + 5π10
2 + . . . ,

a2 = 1 + 3π2 + 6π2
2 + 3π3

2 + 1π4
2 + 3π5

2 + 1π6
2 + 2π7

2 + 1π8
2 + 1π9

2 + 1π10
2 + . . . .

Setting a= a1, we find that vπ2(a7) = 4, and for a= a2 we have vπ2(a7) = 2. Thus, the theorem
is verified in this case, since all three eigenforms are defined over K2 and we have slopes of
{2/6, 3/6, 4/6}.

Appendix A. Poles of Up(f) when f is meromorphic

While this is not common in the literature, the operator Up can be applied to meromorphic
forms for X1(M) via the geometric definition. As in [10], we think of a weight k modular form
f on X1(M) as a rule which assigns to each pair (E, P ), where E is a generalized elliptic curve
and P is (roughly) a point of order M , a section of ω⊗kE . Then Up is defined by

(f |Up)(E, P ) =
1
p

∑
φ

φ∗(f(φE, φ(P ))),

where φ runs over all isogenies φ : E→ φ(E) of degree p with P /∈ ker(φ) (and analogously for
forms on X0(M)).

We must apply Ũ7 to various meromorphic functions on X0(49) and eventually arrive at an
explicit formula for Ũ7(si). In order to justify our calculations, therefore, it is imperative that
we be able to determine the orders of the poles of f |Up, particularly when f is supported
on the cusps. The following lemma shows how we have done this using families of Tate
curves. In order to simplify the exposition, we only prove the lemma here for (true) Up
applied to functions on X0(p2). The proof generalizes easily, however, to other weights and
levels.
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Lemma A.1. Let f be a function on X0(p2).
(i) If f has a pole of order m at the cusp ∞ and no other poles, then

(f |Up) >−
⌊
m

p

⌋
(∞)−

⌊
m

p

⌋∑
(Cp,i).

(ii) If f has a pole of order m at the cusp 0 and no other poles, then f |Up has a pole of
order pm at 0 and no other poles.

Proof. Fix a primitive ζ ∈ µp2 . Let Dq denote the disk |q|< 1.
To prove (i), suppose that f is holomorphic everywhere except at∞, and that the canonical

q-expansion of f at ∞ is given by
∑
n anq

n where n>−m. We may interpret the q-expansion
as the value of f on the family of Tate curves f(K∗/〈q〉, µp2). Using the geometric definition
of Up, we now compute f |Up on the family (K∗/〈qp〉, µp2):

(f |Up)(K∗/〈qp〉, µp2) =
1
p

∑
i

f(K∗/〈qp, ζipq〉, µp2) (i= 0, . . . , p− 1)

=
1
p

∑
i

f(K∗/〈ζipq〉, µp2)

=
1
p

∑
i

∑
n

an(ζipq)n

=
∑
n

an

(
1
p

)
(1 + ζnp + . . .+ ζ(p−1)np)qn

=
∑
n

anpq
np.

Thus we arrive at the familiar formula for the canonical q-expansion at infinity, (f |Up)(q) =∑
n anpq

n, and in particular the order of the pole is at most bm/pc.
Next, we determine the order of the pole of f |Up at the cusp Cp,i, by computing f |Up on

the family of Tate curves (K∗/〈qp〉, 〈ζq〉):

(f |Up)(K∗/〈qp〉, 〈ζq〉) =
1
p

∑
i

f(K∗/〈qp, ζpiq〉, 〈ζq〉) (i= 0, . . . , p− 1)

=
1
p

∑
i

f(K∗/〈ζpiq〉, 〈ζq〉)

=
1
p

∑
i

f(K∗/〈ζpiq〉, µp2)

=
1
p

∑
i

∑
n

an(ζpiq)n

=
∑
n

anpq
np.

Thinking of this series as a meromorphic function on Dq, the order of the pole at q = 0 could
be as high as pbm/pc. However, it is easy to see that the family of Tate curves in fact defined
a degree p map from Dq into X0(p2) taking q = 0 to some Cp,i. Thus the pole of f |Up at Cp,i
has order at most bm/pc.

The proof of (ii) is similar. If f has a pole of order m at the cusp 0, we know that
f(K∗/〈qp2〉, 〈q〉) = a−mq

−m + . . . with a−m 6= 0 for q ∈Dq (this family defines a degree 1 map
from Dq into X0(p2) such that q = 0 maps to the cusp 0). The p subgroups of K∗/〈qp2〉 of
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order p which are disjoint from 〈q〉 are µp and 〈ζpiqp〉 for i= 1, . . . , p− 1. Thus, applying the
definition of Up, we have

(f |Up)(K∗/〈qp
2
〉, 〈q〉) =

1
p

(
f(K∗/〈qp

2
, µp〉, 〈q〉) +

∑
i

f(K∗/〈qp
2
, ζpiqp〉, 〈q〉)

)
=

1
p

(
f(K∗/〈qp

3
〉, 〈qp〉) +

∑
i

f(K∗/〈ζpiqp〉, 〈q〉)
)

=
1
p

( ∑
n>−m

anq
pn +

∑
i

f(K∗/〈ζpiqp〉, 〈q〉)
)
.

Each of the terms f(K∗/〈ζpiqp〉, 〈q〉) must represent a holomorphic function near q = 0, since
this family of Tate curves is centered at one of the Cp,i cusps. Thus, the q-expansion of f |Up
at the family (K∗/〈qp2〉, 〈q〉) begins with a−mq

−mp. 2

Appendix B. Index of important notation

K = Q(ζ) cyclotomic field generated by primitive 42nd root of unity § 1
π1, π2 specific generators of the two primes dividing (7) in K
K1, K2 completions of K at (π1) and (π2)
L global field containing K
L̂ minimal complete subfield of C7 containing an embedding of L
χ primitive character of conductor 49 defined by χ(3) = ζ
Sk(Γ1(49), ψ) space of classical cuspforms with fixed character ψ

t eta quotient parameter for genus 0 curve X0(7) § 2
φ1, φ7 canonical level-lowering maps (φ1 is ‘forgetful’)
w7, w49 Atkin–Lehner involutions on X0(7) and X0(49)
v normalized valuation on C7 determined by v(7) = 1
(x, y) eta quotient parameters for genus 1 curve X0(49)
C7,i six cusps of X0(49) corresponding to the Néron 7-gon
(x, z) Weierstrass parameters for X0(49)
e1, e2 elliptic points of X0(7), distinguished by 7-adic placement
ê1, ê2 elliptic points of X0(49) lying over e1 and e2 (via either map)
α root of x4 + 7 in a Galois extension of Q7

X good reduction model for X0(49) defined over Q7(α)
(X, Z) Weierstrass parameters on X
D infinite residue disk of X

Bk,ε generalized Bernoulli number for weight k and character ε § 3
β primitive 6th root of unity in K
eβ elliptic point of X0(7) with t(eβ) = 3β − 8 (so either e1 or e2)
τ character of conductor 7 defined by τ(3) = β
E1,τ , E7,τ Eisenstein series with character τ and weight 1 or 7
êζ elliptic point of X0(49) with x(êζ) = 3ζ7 − 1 (so either ê1 or ê2)
E1,χ Eisenstein series with character χ and weight 1
Q special K-valued point of X0(49) which is a zero of E42

1,χ
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W1(49) wide open subspace of X1(49) § 4
Mk(49) = ωk(W1(49)) overconvergent modular forms on X1(49)
Mk,ε(49) character subspace of Mk(49)
M0 space of rigid-analytic functions on D
Ψ :M0→Mk,χτk−1(49) isomorphism of overconvergent forms with M0

dk(χ, τ) integral exponent of the holomorphicity factor in Ψ
V :M1(pn)→M1(pn+1) map defined by V (F (q)) = F (qp)
Ũ7 twisted U7 operator (with same eigenvalues)

s= α/t parameter which identifies D with BL̂(1) § 5
AL̂(D) ring of analytic functions on D
ÔX ,∞ completion of the stalk at the infinite point of X
xQ x-coordinate of special point Q from Proposition 3.3
A⊆X0(49) affinoid in X0(49) defined by v(x2 + 7) = 1
vi(f) defined for f ∈AL̂(A) by ‖f‖A = 7−vi(f)/12

f ≡ g, vi = a, ei > b vi(f) = vi(g) = a and vi(f − g) > b

M = (aij) matrix representing Ũ7 in the basis {sj} § 6
Mn the n× n truncation of M
fn(λ) characteristic polynomial of Mn

(−1)jcn j coefficient of λj in fn(λ)
f(λ) characteristic series of M
(−1)jcj coefficient of λj in f(λ)
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