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1. Introduction

Let E be a topological vector space (over the real or complex field). A well-
known geometric form of the Hahn-Banach theorem asserts that if U is an open
convex subset of E and M is a subspace of E which does not meet U, then there
exists a closed hyperplane H containing M and not meeting U . In this paper we
prove, among other things, that if S is a left amenable semigroup (which is the
case, for example, when S is abelian or when S is a solvable group, see [3, p.11]),
then for any right linear action of S on E, if U is an invariant open convex subset
of E containing an invariant element and M is an invariant subspace not meeting
U, then there exists a closed invariant hyperplane H of E containing M and not
meeting U. Furthermore, this geometric property characterizes the class of left
amenable semigroups.

In section 4 of this paper, we also characterize amenability of a semigroup S
by similar geometric properties when S acts on partially ordered topological vec-
tor spaces with a topological order unit.

Since our method of proof carries over quite easily to topological semigroups,
it is in this more general setting that we shall state our results. However, it is
to our best knowledge that both Theorem 1 and 2 are new even for discrete semi-
groups except (a)<>(b) in Theorem 1 which is due to Silverman [10].

2. Preliminaries

For the rest of this paper S will be fixed topological semigroup (i.e., S is
a semigroup with a Hausdorff topology such that the mapping (a, b) — ab from
S x S into § is separately continuous).

Let C(S) be the space of bounded continuous real-valued functions on S
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with the sup norm topology. For each fin C(S) and a in S, define the left translate
of fby: I,f(t) = f(at) for all tin S. Then a function f in C(S) is left uniformly
continuous if the mapping a — I f from S into C(S) is continuous. Then as is
known (see [9,p. 64] and [8]), LUC(S), the space of left uniformly continuous
functions on S, is translation invariant, sup norm closed subspace of C(S) con-
taining 1, the constant one function on S. Following Namioka [9, p. 67], we call
S left amenable when LUC(S) has a LIM (left invariant mean) ¢, ie. ¢ is a
linear functional on LUC(S) such that [[¢ | = ¢(1) = 1 and ¢(I,f) = ¢(f) for
all ae S, fe LUC(S). Note that this definition of amenability agrees with that of
Day [2] for discrete semigroups. However, there exists many topological semi-
groups S such that LUC(S) has a LIM but S is not left amenable as a discrete
semigroup (see e.g. [7], p.72]). For excellent expositions of the subject on amen-
able semigroups, we refer the readers to Day [2], [3] and Greenleaf [5].

Let E be a topological vector space. Then a right linear action of S on E
is a separately continuous map from S x E — E, denoted by (s, x) - s - x satisfying

(1) (ab)-x = b-(a-x) for all a,beE

(2) for each se S, the map x —» s x is a linear from E into E.

3. Invariant subspaces

In this section we shall be concerned with linear actions of S on topological
vector spaces. Theorem 1 (2) <>(b) is due to Silverman [10] for the case when S
has the discrete topology. (see also [3, p. 4.] and [11, p. 576]).

A real-valued function on a vector space E is sublinear if p(x + y) £ p(x)
+ p(y) and p(Ax) = ip(x) for all x,ye E, 1 2 0.

THEOREM 1. The following conditions on S are equivalent:
(a) S is left amenable

(b) For any right linear action of S on a real topological vector space E ,
if p is a continuous sublinear map on E such that p(s - x) £ p(x) for all se S,
xeE, and if ¢ is an invariant linear functional on an invariant subspace F
of E such that ¢ < p, then there exists an invariant extension ¢ of ¢ to E such
that ¢ < p.

(c) For any right linear action of S on a topological vector space E, if U
is an invariant open convex subset of E containing an invariant element, and
M is an invariant subspace of E which does not meet U, then there exists a
closed invariant hyperplane H of E such that H contains M and H does not
meet U.

(d) For any right linear action of S on a Haudsroff topological vector
space E with a base of the neighbourhoods of the origin consisting of invariant
open convex sets, then any two points in E; = {xe€ E; sx = x for all se S} can
be separated by a continuous invariant linear functional on E.
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PRrROOF. (a) = (b): Let m be a LIM on LUC(S). By Hahn-Banach extension
theorem, ¢ has an extension y to E such that y < p. For each x € E define (T, yXs)
= y(s - x). Then T,y e C(S). Furthermore, T,y is even left uniformly continuous
since if {a,} is a netin S and a,—~a, let y, = a,* x —a - x, then

1Ty — 1T = sup {|3(s* y)|; s€S} £ |p(yd)| + | p(— y)| =0

since — p(—y) £ y(s- y) £ p(y)foreachse S, yeE,and y,— 0. Forany xeE,
define ¢(x) = m(T,y), then for any xe F, T,y(s) = ¢(x) for all s S, and hence
#(x) = é(x). Furthermore, if x € E, then §(x) < sup {y(s-x); seS} £ p(x) and
s+ x) = m(T, ;3) = m((Ty)) = m(T,y) = §(x) for all s€S.

(b) = (¢). We first assume that E is a real topological vector space. Let e be
an invariant element in U, W = U — e and p be the Minkowski functional on E
for W (i.e. p(x) = inf {4 > 0; xe AW}). Then p is sublinear, non-negative and
continuous on E. Furthermore, p(s - x) < p(x) for all se S, xeE. Let F be the
linear span of M and e. Then F is invariant. Define on F an invariant linear
functional ¢ by: ¢(x) = Aif x = h —~ le, he M. Then ¢ < p. Indeed, if p(x) < A
and x = h— le, he M, (we may assume that A > 0), then p(h/A—e) <1 and
hence h/A — e € W which is impossible since M does not meet U . Hence using (b)
we may obtain an extension ¢ of ¢ to E such that ¢ < p. Then ¢ is continuous,
and H = ker ¢ is a closed invariant hyperplane of E containing M . Furthermore,
if xe HNU, then x — ee W and hence p(x — ¢) < 1. Consequently ¢(x) # 0,
which is impossible. Hence H does not meet U.

If E is a topological vector space over the complex field, as usual, we can
regard E as a vector space over the real field and then obtain a real closed invariant
hyperplane K containing M and not meeting U. Let H = K NiK, then H is a
closed invariant complex hyperplane containing M and not meeting U .

(¢) = (d). If x, y in E are distinct, using (c) we can obtain an invariant closed
hyperpalane H such that x — y¢ H. Define ¢(z) = 4 if z = h + A(x — y) with
he H. Then ¢ is continuous and invariant. Furthermore ¢(x) # ¢(y).

(d) = (a). Consider the right linear action of S on LUC(S) defined by the
map (s,f) = l,.f. Then {AW; A > 0} where W = {fe LUC(S); | f|| < 1} is a base
of open convex invariant neighbourhoods of the origin. Hence there exists a con-
tinuous invariant linear functional ¢ on LUC(S) such that ¢(1) # 0. It follows
from [9, prop. 3.2] that ¢* is also invariant and u = ¢*/¢p*(1) is a LIM on
LUC(S)

COROLLARY. If S is abelian, a solvable group, or a compact semigroup with
finite intersection property for right ideals, then S has properties (b), (c) and
(d) of Theorem 1.

PRrOOF. It is known that in each of the cases, S is left amenable (see [3, p.11]
and [4, p.70].
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4. Invariant ideals

Let E be a partially ordered topological vector space over the real field. An
element ee E is a topological order unit if e is an order unit (i.e., for each xe E |
there exists A > 0 such that — le £ x < Ae) and the absolutely convex set [ —e,e]
is a neighbourhood of E, where [a,b] = {xeE; a £ x £ b} for any a,beE.
A subspace I of E is a proper ideal if I # E and x e E implies [0,x] = I. An
action of S on E is positive if s-x = 0 for all seS and x = 0. The action is
normalized (with respect a topological order unit e) if s-e = e for all seS.

Note that if E is a partially order vector space (no topology) and e is an order
unit of E. Then p, the Minkowski functional of [ — ¢, ¢] on Ei.e. p(x) = inf{1 > 0;
— le £ x £ Ae} is a semi-norm on E, and e will become a topological order unit
of the locally convex space E equipped with the topology determined by p.

An important example of partially ordered topological vector space that we
shall be concerned with is LUC(S) with the natural ordering f < g if and only
if f(s) =< g(s) forall seS. In this case, 1, the constant one function on S,isa
topological order unit of LUC(S).

It is known [1, p.124} that if & is a commuting family of positive normalised
linear endomorphisms of a partially ordered vector space E with a unit, then E
contains a proper maximal ideal which is invariant under each map in & . Our
next result shows that a much stronger result also holds.

THEOREM 2. The following conditions on S are equivalent:
(a) S is left amenanble.

(b) For any positive normalised right linear action of S on a partially
ordered topological vector space E with a topological order unit e, if F is an
invariant subspace of E containing e, and ¢ is an invariant monotonic linear
functional on F, then there exists an invariant monotonic linear function ¢ on
E extending ¢.

(c) For any positive normalised right linear action on a partially ordered
topological vector space E with a topological order unit e, E contains a maximal
proper ideal which is invariant under S.

PROOF. (a) = (b). Without loss of generality, we may assume ¢(e) = 1. Let
m be a LIM on LUC(S) and p be the Minkowski functional on the set [ — e, e]
Then p is a continuous semi-norm on E. Furthermore, p(s - x) < p(x) for all
seS. By a theorem of Ruth and Krein (see |6, p. 24, proof of Theorem 1.6.1])
¢ has a monotonic extension y to E and y £ g where g is the sublinear functional
on E defined by

q(x) = inf {¢(y); yeF and y = x}

Then for any xeE, if — e £ x < de, 2 >0, then g(x) £ ¢(Je) = .. Hence
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y £ g £ p. Now as in the proof of Theorem 1 (a) = (b), define ¢(x) = m(T,y),
where (T,7)(s) = y(s - x). Then ¢ is an invariant extension of ¢, and ¢ is mono-
tonic since if x = 0, then T,y = 0 and hence m(T,y) = 0.

(b) = (c). If E has dimension 1, then {0} is the maximal proper ideal of E
which is invariant. If E has dimension greater than 1, define a monotonic in-
variant function ¢ on F = {le; A€ R} by ¢(1-e) = 4 for all Ae R. Now if ¢ is
a monotonic invariant extension of ¢ to E and I = ker ¢, then [ is an invariant
hyperplane of E. Furthermore, I is an ideal, since if xel and 0 £ y < x, then
d(y) =0ie [0,y]<]I.

(c) = (a). Consider a normalised positive right linear action of S on LUC(S)
defined by the map (s,f)— I, f. If LUC(S) consists of only constant fucntions,
then any mean on LUC(S) is a LIM. Otherwise, LUC(S) has a non-trivial maximal
proper ideal M which is invariant under the action of S. Then there exist a linear
function ¢ on LUC(S) such that ¢(1) =1, ¢ = 0 and ¢(f) = O for all feM
(see [1, p. 121]). It is easy to see that ¢ is even a LIM.

COROLLARY. If S is abelian, a solvable group or a compact semigroup with
finite intersection property for right ideals, then S has properties (b) and (c)
of Theorem 2.
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