NOTE ON A PAPER OF S. UCHIYAMA

BY
B. C. MORTIMER AND K. S. WILLIAMS

Let p be a rational prime and n a positive integer ≥ 2. We denote by $a_{n}(p)$ the least positive integral value of a for which the polynomial $x^{n}+x+a$ is irreducible $(\bmod p)$, and set

$$
\begin{equation*}
a_{n}=\liminf _{p \rightarrow \infty} a_{n}(p) . \tag{1}
\end{equation*}
$$

One of us (K. S. W. [4]) conjectured that $a_{n}=1$ for all $n \geq 2$. As has been pointed out by Uchiyama (and others) this is not true when $n \equiv 2(\bmod 3)$ and $n>2$, since then $x^{n}+x+1$ has the factor $x^{2}+x+1$ in $Z[x]$ and so $a_{n} \geq 2$ in this case. However, it was proved in [4] that $a_{2}=a_{3}=1$ and Uchiyama [3] has considered a_{n} for $n \leq 10$. Implicit in Uchiyama's paper is the following theorem:
Theorem 1. Let a_{n}^{*} be the least positive integer a such that there exists some prime p_{n} for which $x^{n}+x+a$ is irreducible $\bmod p_{n}$. Then $a_{n}=a_{n}^{*}$.

Using this theorem Uchiyama deduced that

$$
a_{2}=a_{3}=a_{4}=a_{6}=a_{7}=a_{9}=a_{10}=1, \quad a_{5}=3, \quad a_{8}=2
$$

However, doubt is cast on two of these values as Uchiyama's paper contains two errors. First of all $x^{8}+x+2$ is not irreducible $(\bmod 3)$ as claimed by him since

$$
x^{8}+x+2 \equiv\left(x^{3}+2 x^{2}+2 x+2\right)\left(x^{5}+x^{4}+2 x^{3}+x^{2}+x+1\right)(\bmod 3),
$$

thus $a_{8}=2$ is not established. Secondly $x^{10}+x+1$ is not irreducible (mod 2) since

$$
x^{10}+x+1 \equiv\left(x^{3}+x+1\right)\left(x^{7}+x^{5}+x^{4}+x^{3}+1\right)(\bmod 2)
$$

thus $a_{10}=1$ is not established. In this note we review a_{n} for $2 \leq n \leq 10$ and also consider a_{n} for $11 \leq n \leq 20$.
The following lemma eliminates cases where $x^{n}+x+a$ is reducible in $Z[x]$.
Lemma.

$$
\begin{array}{ll}
a_{n}^{*} \geq 2, & \text { if } n \equiv 2(\bmod 6), \\
a_{n}^{*} \geq 3, & \text { if } n \equiv 5(\bmod 6)
\end{array}
$$

Proof. This is clear for if $n \equiv 2(\bmod 6), n>2$, then $x^{n}+x+1$ is divisible by $x^{2}+x+1$ in $Z[x]$; and if $n \equiv 5(\bmod 6)$ then $x^{n}+x+1$ is divisible by $x^{2}+x+1$ in $Z[x]$ and $x^{n}+x+2$ is divisible by $x+1$ in $Z[x]$.

Factorizations of $x^{n}+x+a$ modulo a prime were accomplished using an algorithm due to Berlekamp [1]. In this algorithm, in order to factor $x^{n}+x+a(\bmod p)$,
a polynomial $g(x)$ is determined such that $(g(x))^{p} \equiv g(x)$ (modulo $x^{n}+x+a$). It is shown in [1] that for such a polynomial $g(x)$ we have

$$
x^{n}+x+a=\prod_{0 \leq s<p} \text { G.C.D. }\left(x^{n}+x+a, g(x)-s\right),
$$

and this factorization is non-trivial if and only if $\operatorname{deg}(g(x))>0$. The coefficients of all such possible polynomials $g(x)$ arise as the eigenvectors of the $n \times n$ matrix whose i th row consists of the coefficients of $x^{(i-1) p}$ reduced modulo $x^{n}+x+a$. Calculations were performed on Carleton University's Xerox Data Systems Sigma 6 computer and the following table gives the resulting values of a_{n}^{*} for $2 \leq n \leq 20$.

From this table, the lemma and theorem 1, we obtain
Theorem 2.

$$
\begin{aligned}
& a_{n}=1, \text { for } n=2,3,4,6,7,9,10,12,13,15,16,18,19 \\
& a_{n}=2, \text { for } n=8,14,20 \\
& a_{n}=3, \text { for } n=5,11,17
\end{aligned}
$$

This suggests the following possible modification of the original ill-fated conjecture of [4] (the first line of which has been conjectured by Uchiyama):

Conjecture. For $n \geq 3$,

$$
\begin{aligned}
a_{n}=1, & \text { if } n \equiv 0,1(\bmod 3), \\
2, & \text { if } n \equiv 2 \quad(\bmod 6), \\
3, & \text { if } n \equiv 5 \quad(\bmod 6) .
\end{aligned}
$$

The work of Uchiyama [3] shows that this conjecture is true whenever n is an odd prime. From the work of Zierler [2] we see that it is also true for

$$
\begin{aligned}
n= & 22,28,30,46,60,63,153,172,303,471,532,865,900, \\
& 1366,2380,3310,4495,6321,7447,10198,11425,21846, \\
& 24369,27286,28713 .
\end{aligned}
$$

(Added in proof) Prof. M. Sato (Kyoto University) and Prof. M. Yorinaga (Okayama University) have now verified our conjecture for the remaining values of $n \leq 40$.

References

1. E. R. Berlekamp, Algebraic coding Theory, McGraw-Hill Book Company (1968), Chapter 6.
2. N. Zierler, On $x^{n}+x+1$ over $G F(2)$, Information and Control 16 (1970), 502-505.
3. S. Uchiyama, On a conjecture of K. S. Williams, Proc. Japan Acad. 46 (1970), 755-757.
4. K. S. Williams, On two conjectures of Chowla, Canad. Math. Bull. 12 (1969), 545-565.

Carleton University,
Ottawa, Canada

n	polynomial	p	reducibility $(\bmod p)$	a_{n}^{*}
2	$x^{2}+x+1$	2	irreducible	1
3	$x^{3}+x+1$	2	irreducible	1
4	$x^{4}+x+1$	2	irreducible	1
5	$x^{5}+x+3$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 7 \end{aligned}$	factor $x^{2}+x+1$ factor x factor $x+4$ irreducible	3
6	$x^{6}+x+1$	2	irreducible	1
7	$x^{7}+x+1$	2	irreducible	1
8	$x^{8}+x+2$	$\begin{array}{r} 2 \\ 3 \\ 5 \\ 7 \\ 11 \\ 13 \\ 17 \end{array}$	factor x factor $x^{3}+2 x^{2}+2 x+2$ factor $x+3$ factor $x+4$ factor $x+6$ factor $x+11$ irreducible	2
9	$x^{9}+x+1$	2	irreducible	1
10	$x^{10}+x+1$	$\begin{array}{r} 2 \\ 3 \\ 5 \\ 7 \\ 11 \\ 13 \\ 17 \\ 19 \\ 23 \\ 29 \\ 31 \\ 37 \\ 41 \\ 43 \\ 47 \\ 53 \\ 59 \\ 61 \\ 67 \\ 71 \\ 73 \end{array}$	```factor \(x^{3}+x+1\) factor \(x+2\) factor \(x^{2}+4 x+2\) factor \(x^{2}+6 x+6\) factor \(x+2\) factor \(x+11\) factor \(x^{3}+13 x^{2}+8 x+11\) factor \(x+10\) factor \(x^{2}+13 x+20\) factor \(x+15\) factor \(x+2\) factor \(x+22\) factor \(x^{5}+2 x^{4}+x^{3}-5 x^{2}-2 x+12^{*}\) factor \(x+18\) factor \(x^{2}+3 x+30\) factor \(x+5\) factor \(x^{3}+37 x^{2}+36 x+1\) factor \(x^{2}+54 x+5\) factor \(x+50\) factor \(x^{2}+50 x+23\) irreducible```	1

* (Added in proof) Inadvertently the authors overlooked the reducibility of $x^{10}+x+1$ (mod 41). The given factor was obtained by Mr. M. Andô in Nagoya and kindly communicated to us by Prof. M. Sato of Kyoto University.

n	polynomial	p	reducibility $(\bmod p)$	a_{n}^{*}
11	$x^{11}+x+3$	2	factor $x^{2}+x+1$	
		3	factor x	
		5	factor $x+4$	
		7	irreducible	3
12	$x^{12}+x+1$	2	factor $x^{5}+x^{3}+x^{2}+x+1$	
		3	factor $x+2$	
		5	factor $x+2$	
		7	factor $x+2$	
		11	factor $x^{3}+x^{2}+9 x+10$	
		13	factor $x+2$	
		17	factor $x+5$	
		19	irreducible	1
13	$x^{13}+x+1$	2	factor $x^{5}+x^{4}+x^{3}+x+1$	
		3	factor $x+2$	
		5	factor $x+3$	
		7	factor $x+4$	
		11	factor $x+9$	
		13	factor $x+7$	
		17	factor $x+11$	
		19	irreducible	1
14	$x^{14}+x+2$	2	factor x	
		3	irreducible	2
15	$x^{15}+x+1$	2	irreducible	1
16	$\boldsymbol{x}^{16}+x+1$	2	factor $x^{8}+x^{6}+x^{5}+x^{3}+1$	
		3	factor $x+2$	
		5	factor $x+2$	
		7	factor $x^{4}+6 x^{3}+4 x^{2}+5 x+3$	
		11	factor $x+6$	
		13	factor $x^{2}+12 x+12$	
		17	factor $x+2$	
		19	factor $x^{4}+9 x^{3}+3 x^{2}+12$	
		23	factor $x+9$	
		29	factor $x^{4}+16 x^{3}+8 x^{2}+9 x+23$	
		31	factor $x^{4}+15 x^{3}+19 x^{2}+17 x+6$	
		37	factor $x+17$	
		41	factor $x+11$	
		43	factor $x^{2}+15 x+35$	
		47	factor $x+17$	
		53	factor $x^{2}+33 x+7$	
		59	factor $x+49$	
		61	factor $x^{7}+6 x^{6}+18 x^{5}+37 x^{4}+38 x^{3}+8 x^{2}+43 x+50$	
		67	factor $x^{3}+21 x^{2}+54 x+55$	
		71	factor $x^{2}+37 x+63$	
		73	factor $x+33$	
		79	irreducible	1

1974]	ON A PAPER OF UCHIYAMA			293
n	polynomial	p	reducibility $(\bmod p)$	a_{n}^{*}
17	$x^{17}+x+3$	2	```factor }\mp@subsup{x}{}{2}+x+ factor } factor }x+ irreducible```	
		3		
		5		
		7		3
18	$x^{18}+x+1$	2	factor $x^{5}+x^{2}+1$	
		3	factor $x+2$	
		5	irreducible	1
19	$x^{19}+x+1$	2	factor $x^{4}+x+1$	
		3	factor $x+2$	
		5	factor $x^{3}+3 x^{2}+2 x+3$	
		7	factor $x^{3}+3 x^{2}+3 x+4$	
		11	factor $x^{7}+4 x^{6}+x^{5}+8 x^{4}+10 x^{3}+10 x^{2}+2 x+5$	
		13	factor $x^{4}+7 x^{3}+7 x+4$	
		17	factor $x+6$	
		19	factor $x+10$	
		23	factor $x+6$	
		29	factor $x+27$	
		31	factor $x^{5}+21 x^{4}+26 x^{3}+13 x^{2}+20 x+15$	
		37	factor $x^{3}+5 x^{2}+6 x+1$	
		41	factor $x+7$	
		43	factor $x+26$	
		47	factor $x^{2}+41 x+21$	
		53	factor $x+44$	
		59	irreducible	1
20	$x^{20}+x+2$	2	factor x	
		3	factor $x^{5}+2 x^{3}+x^{2}+x+2$	
		5	factor $x+3$	
		7	factor $x+4$	
		11	factor $x+3$	
		13	factor $x+11$	
		17	factor $x+6$	
		19	irreducible	2

