ANZIAM J. 62 (2020), 302-317
doi:10.1017/S1446181120000243

POINTWISE RESIDUAL METHOD FOR SOLVING PRIMAL
AND DUAL ILL-POSED LINEAR PROGRAMMING
PROBLEMS WITH APPROXIMATE DATA
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Abstract

We propose a variation of the pointwise residual method for solving primal and dual
ill-posed linear programming with approximate data, sensitive to small perturbations.
The method leads to an auxiliary problem, which is also a linear programming problem.
Theorems of existence and convergence of approximate solutions are established and
optimal estimates of approximation of initial problem solutions are achieved.
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1. Introduction

The traditional approach to solving linear programming (LP) problems is the follow-
ing: there is a preset scheme of computation that fixes a solution method, for example,
the simplex method, proposed by von Neumann [23], Dantzig [4] and Kantorovich [8]
in the early to mid 20th century, or polynomial methods [9, 10, 13, 21], and then the
influence of errors that occur in the process of calculation or inscribed in the initial
data on the final result is subsequently estimated [14—17, 19]. Such approach is well
justified for LP problems with a well-conditioned constraint matrix.

Some articles contain a discussion of linear programming problems with a linear
perturbation introduced through a parameter £ > 0. An interesting approach is given
by Avrachenkov et al. [3]. Here the authors have constructed a linear programming
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problem, which is independent of &, and such that its optimal solutions are the so-called
limiting optimal solutions for the perturbed linear program.

The expansion of computational practice has led to the need to find solutions that are
resistant to small changes (perturbations) in the coefficients of the objective function,
the matrix and the right-hand side of the constraints for ill-posed LP problems.
For such problems, traditional methods are ineffective and lead to solutions that are
difficult to interpret [7, 12] (for example, model problems in this article).

The ability to solve unstable LP problems appeared thanks to regularization
methods invented in the 1960s. The most common method of these was Tikhonov’s
regularization method [15—17]. Its main idea is to stabilize the problem by intro-
ducing a regularization parameter based on the residual principle, which is to
balance the residual value of the regularized solution with the errors in the matrix
and the right-hand side of the LP constraints. Application of this regularization
method in computational practice to solve unstable LP problems requires, as a
rule, iterative solutions of nonlinear optimization problems in order to select the
optimal parameter [11, 17]. Tikhonov’s regularization method was further developed
in [18, 21, 22]; it offered variations that lead to a regularized problem, which is also an
auxiliary LP problem.

In this paper, we propose a simple idea for a method (which we call the pointwise
residual method) to solve unstable LP problems with approximate data, taking into
account the pointwise setting of initial data. Such approach was also considered in
the literature [6, 7, 21, 22]. This method, first of all, unlike traditional methods of
regularization, leads to just a single iteration of solving a regularized problem (also LP)
that allows us to use standard computational resources. Secondly, it allows us to obtain
approximate solutions that approximate the exact solution of the problem with accurate
data, with the same order of accuracy as the accuracy of the initial data, that, in turn,
verifies the optimality of our method in terms of the order of the error.

2. Pointwise residual method

Let us consider a fundamental LP problem

pu) ={c,u) —»inf, uelU={ue Rr_:_ | Bu < dj, (2.1)
where (c,u) = Zj'.’:] cju; is an objective function, ¢ = [cy, ¢, .. ., el
R ={u = [ur,up,...,u,)" |u; >0, j=1,...,n}is a set of nonnegative vectors,
b]] b12 e bln dl
B - b21 b22 bzn ERpxn, d= d2 c RP
byt by ... by d,
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and RP*" and R? are the space of p X n matrices and the space of p-dimensional vectors,
respectively. We assume that

U+2, ¢.= lilrellf]go(u) > —oo0. (2.2)
Then the solution set of the LP problem (2.1) is not empty [19, 21], that is,
Us={ueUl|opm)=¢}+2.
Alongside (2.1), consider its dual problem
Y(v)=—(d,v) >sup, veV={(veR]|c+ B'v > 0}, 2.3)

where BT € R is a transposed matrix B. Under the conditions (2.2), the solution set
of (2.3) is

Vi={veViyw =yt £ 0,

where " = sup,ey Y(v) < oo [15, 23]. LP duality theory yields that u, € U,, v* € V*
if and only if

Bu,.-d<0, -B'v-¢<0, {(c,u)+(d,v)<O0.
Let

W:{w:[‘vl]eR’fﬂBu—dso, ~B'v-c<0, (c,u)+<d,v)§0}.

We consider the normal solution of a system of inequalities that determine W,

. u
fw) =||w|l; — inf, w= [V] e W, 2.4)
where ||Wll; = |ug| + |uz| + -+ + |u,| + [vi| + [v2| + -+ +|vp| is the octahedral norm
of w. In this case u € R", v € R"; therefore, we have [|W|l; = u; +up + -+ u, + vy +

V2 + -+ +v,. As has been mentioned above, under the conditions (2.2) the solution
set U, of the problem (2.1) and the solution set V* of the problem (2.3) are not
empty. Therefore, W # @ and the function f(w) > 0, which is bounded below, attains
its infimum on a nonempty set W. Let f, = infycw f(W) and {w*} be a sequence that
minimizes f(w):

lim f(w) = f..
Then, due to Weierstrass’s theorem [20], the following theorem holds.

THEOREM 2.1. The solution set for the problem (2.1) is not empty, that is,
W.={weW|fw)=f}#02

and the sequence {wW* € W} converges to some point w, € W,.
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Let the data set {B, d, ¢} in (2.1) be replaced by approximate values {B,d, ¢}, where

En EIZ Em El El
B=|b2 b2 o Dl ppa Go|h| g o |2 epn
by by ... by d, S
satisfy the conditions
by — byl < Ay, ldy—d| <65, [6—cjl <&, 2.5)
where A >0,6,>0,§2>0,5= Lp ,P>»j=1,...,n, are estimation levels in assigning

the data {B, d, c¢}. In general, the problem (2. 4) with approximate data
fow) = Iwll = inf, weW,
where
W={w=[uv]" €eR"™ |Bu-d<0,-B'v-C<0,({u)+(d,v) <0},

can be insoluble. Also, in case it is soluble, its solution may be unstable (see example
in Section 4). Therefore, one may apply methods for solving such problems [6, 7, 12,
17, 20-22]. One of such regularization methods is the so-called “pointwise residual
method”.

Let

An Ap o ... Al,, 51
Api Ap
= {A, 6, &} are error margins in assigning initial data {B.d in (2.5). Consider a set
W)={w=[uv] eR” |Bu-d<Au+6, -B'v-c<ATv+¢
€ u) +(d,v) < (£, u) + (5, V)
or
We)={w=[wv]" eR*” | B-Au<d+5 -B+A)v<T+¢
€-&uy+({d-6,v) <0l

The inequalities of the set W(o) are linking residual vectors (ﬁu - H) and (—ETV -0
with the errors A, 9, &. It is easy to verify that W € W(o); therefore, the set W(o) is a
special extension of the set W. We should note that W(o) # @ because W # @.

Let us consider the problem

f(w) =|lw|l; — inf, we W(o) (2.6)
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and denote f.(0) = infyew(r) f(W). Analogously to Theorem 2.1, the following theorem
is valid.

THEOREM 2.2. The solution set for the problem (2.6)
W.(o) ={w e W(o) : f(w) = fu(0)} # @

is nonempty and every minimizing sequence {wWX} € W(or) for the function f(w)
converges to some point W.(o) € W.(o) for k — oo.

For the purpose of finding numerical solutions, as it is not necessary to solve the
problem exactly, it is sufficient to determine the vector w(o, &) € W(o) through the
conditions

fw)<filo)+e, €=0. 2.7)

We denote vectors satisfying the property (2.7) by W.(o, &) € W(o). Now we show
that the vectors in W,(o, €) can be taken as approximate solutions of (2.4).

3. Estimation of the speed of convergence

Let
BW.(o,e),W,) = sup inf [[w(o) — w||

w(o)eW, (o.g) WEWs
be the B-distance between nonempty sets W.(o, €) and W..

THEOREM 3.1. Under the constraints (2.2) and (2.5), we have (W, (o, &), W,) = 0 if
o={A,6,(} - 0and e — 0.

PROOF. Take arbitrary sequences
(0¥} = (056561 0, & =0, koo

By the definition of exact upper bound, there exists a sequence {w*} € W,(c*, &) such
that

1
k 9
As W C W(0o), then £.(0) < f. and, for all {wK} € W,(c, &) € W(o) from (2.7),

inf w8 — wll > B(W.(cF, &), W,) - k=1,2,.... (3.1)
weW.,

FOWE) = IWHL < fulo) + &5 < f, + &5, (3.2)

Therefore, the sequence {w‘} is bounded and so one can extract a convergent
subsequence out of it. Without loss of generality, we assume that the sequence is
itself convergent: {w*} — W, = [u.,V"]” for k — co. Considering that ut e R’} for all
w = [u¥, v¥ " € W, (0%, &), uk e R", vk e R,

Bu* — d < 2(Afu* + 6. (3.3)
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Component-wise,
(Bu* — d), < 2((A*u®), + 65 < 2[AF@h + ik + -+ db) + 61

< 2(AMMy + 65 < 2(AKIWEIlL + 65),  AF = max A,

1<j<n R
From (3.2),
(But — d), < 2[A (f, + &) + 6], (3.4)
s = ﬁ AF = max Af, o = max 6’;.
1<s<p 1<s<p
Analogously,
(-BTv —¢); < 2[AF(f, + 9+ €1, j=1,....n, (3.5)

(e, ufy +(d, v*) < 2]y + SFIVEIL) < 2M (S, )kl + IV¥Il)
< 2M(S*, Ewlly < 2M (8", (. + &), (3.6)

where ?“ = {nax {-‘j’?, M(’('S},?‘) = max{?‘,f }. Taking the limit in (3.4), (3.5) and (3.6)
<j<n
for k — oo or (7%} = {AF, 5%, &} — 0, & — 0,

s:ﬁ, j=1...,n,
or
Bu.-d<0, -B'vi-¢<0, {(c,u)+(dv.)<0,

that is, W, = [u,,V.]” € W; thus, (3.2) yields [[W.|| < f.. Therefore, W, = [u,,V.]” is
the solution of (2.4), that is, w, € W,. Taking the limit in (3.1) for k — oo implies that
BW.(o, &), W.) = 0. O

Let us now estimate the approximation order of vectors w. € W, by vectors
u(o, e) € W.(o, €). Denote
A = max max Ay, 5 = max 05 = ||0]lcos, ’f\= max & = ||&le
1<s<p 1<j<n 1<s<p 1<j<n
and p(x, Y) = infyey |[x — y|| the distance between the vector x € R" and the set Y € R",
where

lx =yl =

THEOREM 3.2. Let U # @, ¢, > —co and the conditions (2.5) be satisfied. Then, for
sufficiently small A, 6, € and &, the following estimate holds:

sup  p(w, W.) = O(A, 5, €, &),

weW.,(o,€)
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PROOF. The solution set W, of (2.4) can be interpreted as a polyhedron
W,={w=[wvl'>0]||wl, <f.Bu<d,-B'v<e (c,u)+(d,v)<0}.

Then, according to Vasilyev and Ivanitskiy [21, Theorem 2.5.1] (see also the article
by Hoffman [5]), there exists a constant M > 0, depending just on the matrix B and
vectors d, ¢, such that for all w = [u, v]” € R"*? and the inequality

p(w, W,) < Mmax{([wll; = £)*, [[(Bu = d)*[lco}, I(=B"V = ©)" ||, ({c, w) + (d, V))"},
(3.7)
(Iwlly = £ = max{0; [[wll; — fi},

IBu - d)" [l = {nax(max{O; (Bu—d),}),
<s<p
I=B"v = ¢)*lleo = max(max{0; (-B"v — ¢);},
<j<n

({c,u) +(d, v))* = max{0;{(c,u) + (d, v)}.

In particular, this is true for w(o, £) € W,(c, &) C R™”. Consider the inequality (3.7)
for w = w(o, ¢) = [u(o, &), v(o, 8)]" € W.(o,e). As W C W(o), then ||w(o,e)ll; <
fi(o)+e<f. +¢€and ||w(o,&)|; —f <e&. Using the same arguments as in the proof
of (3.4),

Bu(c, &) — d); < 2(A(f, + &) +0), s=1,p.
From these inequalities,
Bu(s, &) — d,)" = max{0; Bu(s, &) — d),} < 2(A(f, + &) +0), s=1,p,
and, therefore,
[(Bu(or, &) = d)*llo = g@;(BU(m ) —d);
< 2(Alu(e, &)l + 18ll) < 2[A(f. + &) + 3.
Analogously,
I-B"v(o, &) = ©)"lleo < 2(A(f, + &) + &)
and
(e, u(o, &) +(d, V(o &) < 2M (5, E)(f. + &),
where M (:5\,’5\) = max{;S\,’g-‘\}. Then
p(w, W.) < M max{e; 2(A(f. + &) + 8): 2(A(f, + &) + €); 2M(8. )(f. + &)}
< M{e + 2(A(f. + &) + 0) + 2(A(f. + &) + &) + 2M (5, E)(f. + &))
< M{(4A +2M(S,E)(f. + &) + 200 + &) + &} forallw e Wu(o,&). 0O
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As follows from the last estimate, one can determine solutions of (2.4) with
approximate data with the same order of approximation as the order of approximation
of the initial given data set. Auxiliary problem (2.6) that determines the pointwise
residual method is also an LP problem as in the original problem (2.4), for which quite
effective methods have been developed [21].

4. Model problem 1

Consider the fundamental LP problem: determine a vector u = [u;,u;]” by the

conditions
o(u) =u; +uy — inf, uel, 4.1
where U is determined by the inequalities
up +2up <6,
—V5u; = V20u, < - V180, (4.2)

u; =0, up > 0.

The second inequality after division by -5 takes the form u; + 2u, > 6. Thus,
the problem can be reformulated as follows: find the vector u = [uy,u,]” from the
conditions

u+u — inf,

u1+2u2:6,
73] ZO, MQZO

The solution of this problem easily follows from geometric arguments (see Figure 1):

u. =[0;31", ¢, =infp(u) =3.
uelU

Let k be the number of meaningful digits in the fractional part of V5 =
2.23606797 ..., V20 = 4.47213595 .. . \/@ = 13.41640786 ... . The rounding error
does not exceed A = 0.5-107%. Using V5, V20, V180 helps to make imitation
relations (2.5). Table 1 contains approximate solutions of (4.1) by the simplex method
in Maple 2015 with rounding k digits in the fractional-part precision.

uZ
3
2 U
!
1 2 3 4 5 6 u
antigrad ¢(u)
FIGURE 1. u, = [0;3]7, ¢, = 3.
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TABLE 1. Solution of problem (4.1) by simplex method for various values of k.

Exact k
u(k) solution 0 1 2 3 4 5
uy (k) 0 - 0.0 2.00 0.000 2.0000 0.00000
uy (k) 3 - 3.0 2.00 3.000 2.0000 3.00000

grad y(v)

FIGURE 2. V* = QP,y* = 3.

Rounding of irrational numbers V5, V20, V180 up to k significant digits in the
fractional part one can interpret as a perturbation in the construction (4.1). Slightly
different perturbations for various k lead to LP problems that either do not have
solutions for k = 0 (also for k =9, 18, 19 if you continue to calculate) or for k =
1,2,3,4,5 those problems may be unstable, as evident from Table 1.

The dual to the problem (4.1) has the form: find vectors v = [v{, v»]” such that

Y(v) = —6v; + VI80v, — sup, veV, “4.3)
where V is determined by the inequalities
V| — \/§V2 > —1,

2vy — m\Q > -1,
vi >0, v, >0.

Figure 2 shows that the positive axis V* = QP ={v|v =[-0.5+ \/ga, al”, a e
[1/ V20; 00)} is a solution set of the dual problem (4.3).

According to Vasilyev and Ivanitskiy [21, Theorem 4.2.3], the direct problem (4.1)
does not have a stable solution as the solution set V* of the dual LP is not bounded.
This is confirmed by Table 1.

Note that normal solutions for the problem (4.3)

Ivlli =vi+vy > inf, veV' ={v||vl} =y}

have the form

1 T
V= [o; —] — [0:0.2236066797 .. .
V20
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TABLE 2. Solution of problem (4.4) by the method of pointwise discrepancy.

k Ay, 6; wi(k) wa(k) w3 (k) w4 (k)

0 0.5 0.000000 2777778 0.000000 0.230771

1 0.05 0.000000 2.934077 0.000000 0.207243

2 0.005 0.000000 2997777 0.000000 0.222182

3 0.0005 0.000000 2.999555 0.000000 0.223432

4 0.00005 0.000000 2.999988 0.000000 0.223599

5 0.000005 0.000000 2.999999 0.00000 0.223611
TABLE 3. The order of approximation.

k 0 1 2 3 4 5

u.1 —wi(k)]  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
[ —wo(k)]  0.222222  0.065923 0.002223  0.000445 0.000012  0.000001
vi —ws(k)[  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
[v; —wa(k)]  0.000000 0.016364 0.001425 0.000175  0.000008 0.000005

Instead of the primal problems (4.1) and (4.3) (dual to (4.1)), consider the analogue
of the problem (2.4): find vectors w = [wy, wa, w3, w4]” from the conditions

fW) = [[wll; =wi +wy + w3 +wy > inf, weW, 4.4)
where W is determined by the inequalities
wi + 2w, <6,
—\/§W1 - @Wz < - V180,
—ws + Vowy < 1,
—2w3 + V20w, < 1,
w1+ wy + 6wz — \/@W4 <0,
w; >0, 0= 1,_4

The exact solution of this problem is

17 1
w' =10;3;0;, —| =1[0;3;0;0.22 797..1", f.=3+—.
[030 \/Z)] 10:3:0:02236066797 .7, f, =3+
Let us now solve it by means of the pointwise residual method (2.6) for various k
by Maple 2015. Computational results are recorded in Table 2 with the precision
of six digits in the fractional part. The order of approximation of the exact solution
u, = [0;3]” of the primal problem (4.1) and the normal solution v* = [0; 1/ V201" =
[0; 2236066797 ...]" of the dual problem (4.2)) is listed in Table 3. One can see from
Tables 2 and 3 that wy(k) = u.1, wa(k) = w., wi(k) — vi, wy(k) — v} for increasing
values of k.
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S

0 u(s)

FIGURE 3. u(s) = 1 — 2.

On a simple example in model problem 1 we demonstrate the problem of instability
and how the pointwise residual method allows us to attain stable approximation. In our
example the approximation error for the normal solution of the primal problem (4.1)
and the dual problem (4.3) by their approximate solutions has the same order as the
order of approximation of the initial data.

Next, we consider model problem 2 that corresponds to the strongly unstable
problem [11] in the sense that the condition number of the matrix of a system of
equations that approximate an integral equation is high.

5. Model problem 2

Find the solution u(s) of the integral Fredholm equation of the first kind
b

fK(x, Su(s)ds = f(x), c<x<d, 5.1

a

where
K@, s)=[1+x=-5", [c:dl =[-2;2], [a;b]=[-1;1],
1+(1—x)2

— _ 42 — - & T .1 L0
f(x) = (2 = x")[arctan(l — x) + arctan(l + x)] — 2 — xIn Tt

In Figure 3, the exact solution of (5.1) is u(s) = 1 — s>. Approximate (5.1) on uni-
form lattices x;1 = x; + by, x; = =2,1=0,...,40,h; = 0.1 and sj41 = s5; + hj, s1= — 1,
j=0,...,40, h; = 0.05, using the Simpson formula [1] for the evaluation of definite
integrals. In the end, we obtain a system of linear algebraic equations

Au=Tf, (5.2)
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where A = K- N, K = {k;} = K(x;, 5/) € R*"** N € R*"**! is a diagonal matrix corre-
sponding to the integral formula with the diagonal elements N; or, in detail,

— N;h;
A = e R41X41, ~i' — J' ,
{H,/} a] 1+ (xi _ Sj)2

= [f(x0), f(2)s ..o f )], (5.3)

where N; are the integral coefficients of the Simpson formula.

Let us seek the solution (5.1) in the class of nonnegative (u(s) > 0), monotonic
(W' (s) >0, se[-1;0] and u'(s) <0, s € [0;1]) and convex (u”(s) <0, se€[-1;1])
functions. For this, consider the set D of vertices determined by a discrete analogue of
monotonicity

U —u; >0, j=0,19, wujg—u; <0, j=20,39, (5.4
and convexity

Wjv) —Uj U~ Uj-1 =
- <0, j=T1,39. (5.5)
h; Iyt /

The problem of finding the normal solution for the system (5.2) is written in the
equivalent form

@) = |Jully = ug + uy + -+ ugo = (c,uy - inf, ueUp,
where
c=[11...11"eRr", Up=U,nD,
I~I+ = {ueRi1 |Ku SE—Ku < —f}

or in the form

o) = |lully = uo + us + - +ugo — inf, u e Up, (5.6)
where

A I

— — - - |3 - |
Up={ueR?|Bu<d), B-= e R4 d=|0|eR", (5.7)

L 0
1 -1 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0
F=|0 0 0 O ... 1 =1 0 ... 0 O0]}epri>4
0 0 0 0 0 -1 1 0 0
0 0 0 0 -1 1
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1 2 1 0 ... 0 0
L_]0 1 21 0 0|
0 0 0 ... 1 -2 1

The matrices F and L are matrices of the inequalities of monotonicity and convexity
conditions. It is natural to consider them to be known precisely. Thus, the error in
assigning elements of the matrices F and L equals 0 (zero). Let O, € R**># and 0, €
R¥*4! be matrices of errors with zero elements in assigning F and L, respectively.
Thus, we reduce our problem to an LP problem (2.1) with approximate matrix B and
vector d that has a special structure.

When we solve the LP problem (5.6) by the simplex method in Maple 2015 we
obtain its approximate solution u that strongly differs from the exact solution u(s) or
we do not have a solution. It depends on the accuracy of calculation A and f.

Now we describe the pointwise residual method of the type (2.6) for the
problem (5.6). Let

A )
—_|AT x4l = _ |03 161
A= 0\ €R , 0= 0. €ER™,

02 05

where elements A;; of the matrix A and components §; of the vector ¢ are determined by
Ay =gl 1075 6 = Inil - 107",

where &; and 7;, i = 0,40, j = 0,40, are uniformly distributed random numbers on
the segment [—1; 1], obtained by the RANDOMTOOLS package in MAPLE 2015,

k=1,...,6 and O3, Oy4, Os are zero vectors of sizes 41, 40, 39, respectively. Since
the matrices F and L are known exactly in (5.7), the set W(o) for the problem (5.6) is
defined as

~ — — — —T p —
W) ={w=[uv]eR?|Bu<Au+d -Blv-c<Av, (c,u)+(d,v) < {5,V)).

Thus, the pointwise residual method for solving primal and dual LP problems (5.6)
leads to the LP problem problem

f(w) =|wlly = wo+wy +---+wyy — inf, we W(0). (5.8)
Due to Theorem 2.2, the solution set of (5.8) is W.(0) # @. Let
W= [Wo, Wi, ..., Wa0, Wal, ..., wao1]" = [UV] € W (o),
u=[wo,wip...,wipl’ € Ril and
YV = [War, Wazs ..., waor )T € R%rm.

We note that in this particular case we are not concerned with [wa;, waa, . .., waor |7
because we analyse the pointwise residual method for solving primal and dual
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FIGURE 4. Solid red lines — exact solutions, dotted blue lines — approximate solutions, obtained by the
pointwise residual method for k = 1,2, 3, 4,5, 6. (Colour available online.)
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TABLE 4. Pointwise residual method for solving integral Fredholm equations in the class of nonnegative,
monotonic and convex functions.

k
1 2 3 4 5 6

-y 14.6 4.12 1.356 L1118 1.07908 0.534178

AT - fll; 5.7 1.52 0.214 0.0251 0.00223  4.84-107

LP problems for strongly unstable high-dimensional problems and obtain an
admissible approximate solution for the function u(s) = 1 — s> that solves the integral
equation (5.1).

Figure 4 displays graphs of exact solutions (solid red lines) of Fredholm type I
integral equations [2] and also their approximate solutions (dotted blue lines) in the
class of nonnegative, monotonic and convex functions.

Computational results are displayed in Table 4. As we observe from Figure 4
and Table 4, the approximate solutions obtained by the pointwise residual method
(2.6) and (2.7) for the problem (5.6) with increasing k converge to the exact solution
u(s) = 1 — s? of the integral equation (5.1).

6. Conclusion

In this paper we have considered the pointwise residual method for solving pri-
mal (2.1) and dual (2.3) linear programming problems where instead of exact input data
B.d, ¢ we only know their approximations, satisfying the pointwise conditions (2.5).
This method leads to the construction of the auxiliary problem (2.6) that is also a linear
programming problem. Here we have proved that solutions of the auxiliary problem
(2.6) converge (Theorem 3.2) to solutions of the primal (2.1) and dual (2.3) linear
programming problems. Also in Theorem 3.2 we obtained an estimate (3.7) for the rate
of convergence of the pointwise residual method. In terms of the order of convergence
our estimate is optimal and cannot be further improved. However, in the formula (3.7)
there is a constant M that depends only on the coefficients of the matrix B. The
aim of further research would be to obtain an accurate estimate for the size of the
constant M.
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