A REMARK ON PREINVEX FUNCTIONS

JIANWEN PENG AND XIANJUN LONG

In this paper, we show that the ratio of preinvex functions is invex. Hence, we give a positive answer to the open question which was proposed in a paper of Yang, Yang and Teo in (2003).

1. INTRODUCTION

Let \mathbb{R}^n denotes n-dimension Euclidean space. In [2], Hanson considered the real differentiable function $f(x)$ on \mathbb{R}^n whose gradient $\nabla f(x)$ satisfies the condition: for any $x, y \in \mathbb{R}^n$, there exists a vector $\eta(x, y) \in \mathbb{R}^n$ such that

$$f(x) \geq f(y) + \nabla f(y) \eta(x, y).$$

Let $K \subset \mathbb{R}^n$ and $f : K \rightarrow \mathbb{R}$. Then f is preinvex if for any $x, y \in K$, there exists a vector $\eta(x, y) \in \mathbb{R}^n$, for all $\alpha \in [0,1)$, $y + \alpha \eta(x, y) \in K$

$$f(y + \alpha \eta(x, y)) \leq \alpha f(x) + (1 - \alpha) f(y).$$

It is easy to show that preinvexity is a generalisation of invexity for nondifferentiable function.

In [6], Yang and Chen presented a wider class of generalised convex functions, called semipreinvex functions as follows.

A set K in \mathbb{R}^n is said to satisfy the “semi-connected” property, if for any $x, y \in K$ and $\alpha \in [0,1]$, there exists a vector $\eta(x, y, \alpha) \in \mathbb{R}^n$, such that $y + \alpha \eta(x, y, \alpha) \in K$. Let K be a set in \mathbb{R}^n having the “semi-connected” property with $\eta(x, y, \alpha) : K \times K \times [0,1] \rightarrow \mathbb{R}^n$ and $f(x)$ be a real function on K. Then f is called semi-preinvex with respect to $\eta(x, y, \alpha)$ if for $x, y \in K$ and $\alpha \in [0,1]$,

$$f(y + \alpha \eta(x, y, \alpha)) \leq \alpha f(x) + (1 - \alpha) f(y).$$
holds and \(\lim_{\alpha \to 0} \alpha \eta(x, y, \alpha) = 0 \).

The following result is due to Khan and Hanson [7] and Craven and Mond [8].

Theorem 1.1. Let \(X_0 \subseteq \mathbb{R}^n \) and let \(f \) and \(g \) be real-valued functions defined on \(X_0 \). If \(f(x) \geq 0, g(x) > 0, f(x) \) and \(-g(x)\) are invex with respect to a same \(\eta(x, y) \) on \(X_0 \), then \(f(x)/g(x) \) is an invex function with respect to \(\bar{\eta}(x, y) = (g(y)/g(x))\eta(x, y) \).

Yang, Yang and Teo [1] generalise Theorem 1.1 as follows.

Theorem 1.2. (See [1, Theorem 2.9]) Let \(X_0 \subseteq \mathbb{R}^n \) and let \(f \) and \(g \) be real-valued differential functions defined on \(X_0 \). If \(f(x) \geq 0, g(x) > 0, f(x) \) and \(-g(x)\) are semipreinvex with respect to a same \(\eta(x, y, \alpha) \) on \(X_0 \), and \(\lim_{\alpha \to 0} \eta(x, y, \alpha) = \eta(x, y) \), then \(f(x)/g(x) \) is an invex function with respect to \(\bar{\eta}(x, y) = (g(y)/g(x))\eta(x, y) \).

Then, Yang, Yang and Teo [1] proposed an open question as follows:

Is there a similar result as that of Theorem 1.2 for preinvex functions?

In this paper, we show that the ratio of preinvex functions is invex. Hence, we give a positive answer to the open question in [1].

2. **Main Results**

First of all, we prove the following result which is a generalisation of Theorem 1.1 and a similar result with [1, Theorem 2.8].

Theorem 2.1. Let \(X_0 \subseteq \mathbb{R}^n \) and let \(f \) and \(g \) be real-valued functions defined on \(X_0 \). If \(f(x) \geq 0, g(x) > 0, f(x) \) and \(-g(x)\) are preinvex with respect to a same \(\eta(x, y) \) on \(X_0 \), then \(f(x)/g(x) \) is a semipreinvex function with respect to \(\eta^*(x, y, \alpha) = [(\alpha g(y))/(\alpha g(y) + (1 - \alpha)g(x))]\eta(x, y) \).

Proof: Since \(f(x) \) and \(-g(x)\) are preinvex with respect to a same \(\eta(x, y) \) and \(f(x) \geq 0, g(x) > 0 \), we have, for all \(x, y \in X_0 \) and \(\alpha \in [0, 1] \), \(y + \alpha \eta^*(x, y, \alpha) \in X_0 \), and

\[
\left(\frac{f}{g} \right)(y + \alpha \eta^*(x, y, \alpha)) \leq \frac{f(y + \alpha \eta^*(x, y, \alpha))}{g(y + \alpha \eta^*(x, y, \alpha))} \leq \frac{f(y + [(\alpha g(y))/(\alpha g(y) + (1 - \alpha)g(x))]\eta(x, y))}{g(y + [(\alpha g(y))/(\alpha g(y) + (1 - \alpha)g(x))]\eta(x, y))} \leq \frac{(\alpha g(y))/(\alpha g(y) + (1 - \alpha)g(x))f(x) + ((1 - \alpha)g(x))/(\alpha g(y) + (1 - \alpha)g(x))f(y)}{(\alpha g(y))/(\alpha g(y) + (1 - \alpha)g(x))g(x) + ((1 - \alpha)g(x))/(\alpha g(y) + (1 - \alpha)g(x))g(y)} \leq \frac{\alpha g(y)f(x) + (1 - \alpha)g(x)f(y)}{\alpha g(y)g(x) + (1 - \alpha)g(x)g(y)} \leq \frac{\alpha f(x) + (1 - \alpha)f(y)}{g(x)} \leq \frac{\alpha f(x) + (1 - \alpha)f(y)}{g(x)} \leq \frac{\alpha f(x) + (1 - \alpha)f(y)}{g(y)} \leq \frac{\alpha f(x) + (1 - \alpha)f(y)}{g(y)}
\]
A remark on preinvex functions

That is, \(f(x)/g(x) \) is a semipreinvex function with respect to \(\eta^*(x, y, \alpha) \).

The following result gives a positive answer to the open question in [1].

Theorem 2.2. Let \(X_0 \subset \mathbb{R}^n \) and let \(f \) and \(g \) be real-valued differential functions defined on \(X_0 \). If \(f(x) \geq 0, g(x) > 0 \), \(f(x) \) and \(-g(x) \) are preinvex with respect to a same \(\eta(x, y) \) on \(X_0 \), then \(f(x)/g(x) \) is an invex function with respect to \(\eta(x, y) = [g(y)/g(x)]\eta(x, y) \).

Proof: By Theorem 2.1, we know that \(f(x)/g(x) \) is a semipreinvex function with respect to \(\eta^*(x, y, \alpha) = [(g(y))/(\alpha g(y) + (1 - \alpha)g(x))]\eta(x, y) \). That is, for all \(x, y \in X_0 \) and \(\alpha \in [0, 1] \),

\[
\left(\frac{f}{g} \right)(y + \alpha \eta^*(x, y, \alpha)) \leq \alpha \left(\frac{f}{g} \right)(x) + (1 - \alpha) \left(\frac{f}{g} \right)(y).
\]

Then,

\[
\frac{(f/g)(y + \alpha \eta^*(x, y, \alpha)) - (f/g)(y)}{\alpha} \leq \left(\frac{f}{g} \right)(x) - \left(\frac{f}{g} \right)(y).
\]

Let \(\alpha \to 0 \), and note that \(\lim_{\alpha \to 0} \eta^*(x, y, \alpha) = \eta(x, y) \), we have

\[
\bigtriangledown \left(\frac{f}{g} \right)(y) \eta(x, y) \leq \left(\frac{f}{g} \right)(x) - \left(\frac{f}{g} \right)(y).
\]

Hence, \(f(x)/g(x) \) is an invex function with respect to \(\eta(x, y) \).

References

