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SYSTEM OF GENERALISED SET-VALUED
QUASI-VARIATIONAL-LIKE INEQUALITIES

JIANWEN P E N G

In this paper, we shall introduce a system of generalised set-valued quasi-variational-
like inequalities, which generalises and unifies systems of generalised vector variational
inequalities, systems of variational inequalities, generalised vector quasi-variational-
like inequalities as well as various extensions of the classic variational inequalities
in the literature. Some existence results for a solution of a system of generalised
set-valued quasi-variational-like inequalities without any monotonity are obtained.

1. INTRODUCTION

The Vector Variational Inequality in a finite dimensional Euclidean space was in-
troduced in [24] and applications were given. Chen and Cheng [10] studied the vector
variational inequality in infinite dimensional space and applied it to vector optimisa-
tion problems. Since then, many authors [9, 14, 11, 12, 37, 40, 41 , 42, 44] have
intensively studied vector variational inequalities under different assumptions in infinite-
dimensional spaces. Lee, Kim and Cho [27], Lee, Kim and Lee [28], Lin, Yang and Yao
[30], Konnov and Yao [26], Daniilidis and Hadiisavvas [16], Yang and Yao [43], and Oet-
tli and Schlager [33] studied the generalised vector variational inequality and obtained
some existence results. Chen and Li [13] and Lee, Lee and Chang [29] introduced and
studied generalised vector quasi-variational inequalities and established some existence
theorems. Ansari [2, 3], Ding and Tarafdar [21, 22] and Luo [31] studied generalised
vector variational-like inequalities. Ding [19] introduced and studied a class of gener-
alised vector quasi-variational-like inequality problems. Pang [34], Cohen and Chaplais
[15], Bianchi [7], and Ansari and Yao [5] considered a system of scalar variational in-
equalities and Pang showed that the traffic equilibrium problem, the spatial equilibrium
problem, the Nash equilibrium, and the general equilibrium programming problem can
be modeled as a system of variational inequalities. Ansari, Schaible and Yao [4] consid-
ered a system of vector variational inequalities and obtained its existence results. Allevi,
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Gnudi and Konnov [1] considered a system of generalised vector variational inequalities
and established some existence results with relative pseudomonoyonicity.

This paper introduces, a system of generalised set-valued quasi-variational-like in-
equalities, which generalises and unifies systems of generalised vector variational inequal-
ities, systems of variational inequalities, generalised vector quasi-variational-like inequal-
ity as well as various extensions of the classic variational inequalities in the literature.
Further some existence results of a solution for system of generalised set-valued quasi-
variational-like inequalities without any monotonity are proved.

2. P R O B L E M STATEMENT AND PRELIMINARIES

Let intA denote the interior of a set A and / be an index set, for each i E I, let
Y{ be a Hausdorff topological vector space, Et be a locally convex Hausdorff topological
vector space. Consider a family of nonempty convex subsets {Xi}iej with Xt C Ei. Let

X - Y[Xt, and E = \[Ei. An element of the set X{ = J ] x> w i l 1 b e denoted by
te/ iei jei\i

xl, therefore, x € X will be written as x - (xl,Xi) € X1 x Xt. For each i e / , let
Tfi : Xi x Xi —¥ Ei be a single-valued mapping and C{ : X —> 2Yi be a set-valued mapping
such that Ci(x) is a closed pointed and convex cone with intQ(x) ^ 0 for each x € X. Let
Di : X —• 2Xi and Tj : X ->• 2L(Ei'y;) be two set-valued mappings, where L(E{, Yi) denotes
the space of all continuous linear operators from Et into Y{. Then, we consider a system
of generalised set-valued quasi-variational-like inequalities, which is to find x = {xi,x~i)
in X such that for each i € / , ~xl 6 Di(x),

Vj/i 6 Di(x), 3v-i€Ti(x) : (Wi,m{yi,xt)) £ -intC^S).

Then the point x is said to be a solution of the system of generalised set-valued quasi-
variational-like inequalities.

It is easy to see that x is a solution of the system of generalised set-valued quasi-
variational-like inequalities is equivalent to for each i 6 / ,

xl e Di(x), Vyt e Di{x) : ( >

Where
i{x),ru(yi,x-)) = ( J (wi.ifcdfc.i?)).

The following problems are the special cases of the system of generalised set-valued

quasi-variational-like inequalities.

(i) For each i € / , r]i(yi,Xi) — yt - x{ for all x{,yi 6 Xit then the system of gen-

eralised set-valued quasi-variational-like inequalities reduces to the system of generalised

set-valued quasi-variational inequalities which is to find x = {x',xl) in X such that for

each i e I,x~i £ Di(x),

Vy< e Di(x), 3vl e Ti{x) : (W, Vi-xt)i- in tQ( i ) .
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(ii) For each i G / , if A ( z ) = X{ for all x G X, then the system of generalised set-

valued quasi-variational-like inequalities reduces to the system of generalised set-valued

variational-like inequalities which is to find x = (x',xi) in X such tha t for each i € / ,

Vt/i G Xu 3% G 71(35) : (tfciftfa.arO) i ~ intQ(35).

(iii) For each i € / , if A 0*0 = ^« for all x G X, and rjiiVi, ^i) — Vi — x{ for all

ii,2/i G Xj, then the system of generalised set-valued quasi-variational-like inequalities

reduces to the system of generalised set-valued variational inequalities which is to find

x = (xi,x~i) in X such that

% eXu 3vie 71(55) : fa, Vi-xt)i- intQ(x).

It is worth noting tha t the system of generalised set-valued quasi-variational-like

inequalities, the system of generalised set-valued quasi-variational inequalities, the system

of generalised set-valued variational-like inequalities and the system of generalised set-

valued variational inequalities are new models of mathematics.

For each i e I, for all x G X, if Yt ~ Y and Ct(x) = C, where C is a convex

closed and pointed cone in Y with intC ^ 0, then the system of generalised set-valued

variational inequalities reduces to a system of set-valued variational inequalities which is

to find x = (x',x~i) in X such tha t

Vj/i €Xh 3D7 G Tt(x) : (W, Vi-xi)i- intC.

This was studied by Allevi, Gnudi and Konnov [1].

If Tj is single-valued function, then the system of set-valued variational inequalities

reduces to the system of vector variational inequalities, which is to find x = (x', x7) in X

such that

(71(35),yi - x l ) i - intC, Vy, G X{.

This was considered by Ansari, Schaible and Yao [4].

(iv) For each i G / , for all z G X C W1, let Y{ = R and d(x) = R+

= {r G R : r ^ 0} , let Tt be replaced by ft : X ->• R, then the system of vector

variational inequalities reduces to the system of scalar variational inequalities which is to

find x — (z'.Xi) in X such tha t

This was considered in [34] and [15, 7, 5].

(v) If / = {1}, then the system of generalised set-valued quasi-variational-like in-

equalities reduces to the generalised set-valued quasi-variational-like inequality as finding

x in X such that x G D(x), and

My € D(x), 3v € T(x) : (v, f](y,x)) 4 - intC(x).
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This was introduced and studied by Ding [19] with C+-77-monotone and weakly C+-TJ-

monotone condions.

For all x G X, if D(x) = X, then the generalised set-valued quasi-variational-like
inequality reduces to the generalised set-valued variational-like inequality problem (in
short, GSVLI) which is to find x in X such that

Vy G X, 3v G T(x) : (vMv,*)) £ - intC(x).

This was studied in [2, 3, 2 1 , 22, 31].

If T is a single-valued mapping and r](y,x) — y — g(x), Vx, y £ X, and £>(x) = X
for all x G X, where g : X —> E is a single-valued mapping, then the generalised set-
valued quasi-variational-like inequality reduces to find x in X such that

(T(x),y - g(x)) £ - intC(x) , Vy G X.

This was considered by Siddiqi, Ansari and Khaliq in [37].

If 77(2/, x) = y - x, for all x, y G X, then the generalised set-valued quasi-variational-
like inequality reduces to finding x in X such that x G .D(x), and

Vy G £>(x), 3£ G T(x) : (u, y - x) £ - intC(x).

This problem was called the generalised set-valued quasi-variational inequality problem,
which is new. When C(x) = C, for all x € X is a constant cone, the generalised set-
valued quasi-variational problems reduces to the set-valued quasi-variational inequality
problem which was studied by Chen and Li [13] and Lee, Lee and Chang [29].

If D(x) = X, for all x G X and T](y, x) = y — x, for all x, y G X, then the generalised

set-valued quasi-variational-like inequality reduces to find x in X such that

Vy G X, 3v£ T(x) : <?,7?(y,x)> £ - in tC(x) .

This Problem and its special cases are called the generalised vector variational inequality

which was introduced and studied in [27, 28, 30, 26, 16, 43, 33].

If T is single-valued function and D(x) = X, for all x G X, then the generalised

set-valued quasi-variational-like inequality reduces to find x in X such that

( T ^ r r t y . x ) ) £-intC(x"), Vy € X.

This problem and its special cases were studied by many authors, see [27, 9, 14, 11,
12, 37, 40, 41, 42, 44].

If Y = R and C(x) = [0,oo), for all x £ X, then L{E,Y) = E\ where E* is the
dual space of E, and the generalised set-valued quasi-variational-like inequality reduces
to find x in X such that x G D(x), and

Vy G D{x), 3v G T(5) : (v,f]{y,x)) > 0.
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This problem includes many classes of scalar type generalised quasi-variational inequality
and generalised quasi-variational-like inequality problems as special cases, see [36, 46,
8, 20, 17, 18, 45].

In order to prove the main results, we need the following definitions and lemmas.

DEFINITION 2.1: For each i e / , let E{, Y{ be two real topological vector space, X{

be a nonempty and convex subset of Ei, C,- : X —» 2Yt be a set-valued mapping such
that Ci(x) is a closed pointed and convex cone for each x € X. Let rji : Xt x Xt -¥ Ei
be a single-valued mapping. Tj : X -+ 2L(-EiXi'> is said to satisfy the generalised partial
/^ -condi t ion if and only if for any finite set {yti, yi2,..., yin } in Xu for all x = (x\ 57)

n n
with x~i = J2 ajUij, where a ; ^ 0 and J2 aj = 1> t n e r e exists v[ G Tj(x) such that

> = 1

REMARK 2.1. If / = {1}, then Definition 2.1 reduces to the generalised L-77-condition
in [21].

REMARK 2.2. If ^(j/i.Xj) is affine in the first argument and for all x = {xi,xi) € X,

3vl £ Ti(x), such that
\Wi Vi{xi,Xi)j <£ — intCj(a:).

Then 7} satisfy the generalised partial L-7?i-condition.

REMARK 2.3. If r]i(yi,Xi) = yi — xit for all Xi,yt £ Xt, then for any finite set
n n

{ytii2/t2> • • • i2/«n} m Xi, for allx = (x',57) with "xl — ^oijy^, where aj ^ 0 and Ylaj ~ 1>

we have that

i(Vii -x-)\ = (v,x-i-x-)) = 0<£- intCi(i), W e 71 (x).

And hence Tj satisfy the generalised partial L-^-condition trivially.

DEFINITION 2.2: ([6].) Let X and Y be two topological spaces and T : X -> 2K be
a set-valued mapping. Then

(1) T is said to be upper semicontinuous if, for any x0 € X and for each open
set U in Y containing T(x0), there is a nerghborhood V of XQ in X such
that T(x) C U, for all i £ F .

(2) T is said to have open lower sections if the set T~1(y) — {x € X : y E T(x)}

is open in X for each y 6 K.

(3) T is said to be closed, if the set {(x, y) € X x Y : y € T(x)} is closed in
XxY.
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LEMMA 2 . 1 . ([39].) Let X be a paracompact Hausdorff space and Y be a linear

topological space. Suppose T : X -4 2Y is a set-valued mapping such that

(i) for each x G X, T(x) is nonempty,

(ii) for each x G X, T(x) is convex, and

(iii) T has open lower sections. Then there exists a continuous function f :

X - + y such that f{x) G T(x) for all x G X.

LEMMA 2 . 2 . ([6].) Let X and Y be topological spaces. IfT:X->2Y is an

upper semicontinuous set-valued mapping with closed values, then T is closed.

LEMMA 2 . 3 . ([38].) Let X and Y be topological spaces and T : X -4 2Y is an

upper semicontinuous set-valued mapping with compact values. Suppose {xa} is a net in

X such that xa -4 x0. Ifya G T{xa) for each a, then there is a y0 G T(x0) and a subset

{y$} of{ya} such that yp -4 y0.

LEMMA 2 . 4 . ([39].) Let X and Y be two topological spaces. Suppose T : X
-4 2Y and K : X -4 2Y are set-valued mappings having open lower sections, then

(i) The set-vaiued mapping F : X -4 2Y defined by, for each x G X, F(x)

— Co(T(x)) has open lower sections.

(ii) The set-vaiued mapping 6 : X -4 2Y defined by, for each x G X, 6(x)

= T(x) n K(x) has open lower sections.

LEMMA 2 . 5 . ([23].) Let E be a locally convex topological linear space and X be

a compact convex subset in E. Suppose T : X -4 2X is a set-valued mapping such that

(i) for each x G X, T(x) is nonempty,

(ii) for each x G X, T(x) is convex and closed,

(iii) T is upper semicontinuous.

Then there exists ax £ X such that x € T(x).

Let Y be a real Hausdorff topological vector space and X be a nonempty convex
subsets in a real locally convex Hausdorff topological vector space E. We denote by
L(E, Y) the space of all continuous linear operators from E into Y and by (u, y) the
evaluation of u G L(E, Y) at y G E. Let a be the family of all bounded subsets of X

whose union is total in E, that is, the linear hull of U{5 : S G a} is dense in X. Let /?
be a neighbourhood base of 0 in Y. When S runs through a, V through /?, the family

M(S, V) = {/ G L{E, Y) : [j (I, x) C V
xes

is a neighbourhood base of 0 in L(E, Y) at x G E (see [35, pp. 79-80]). By the Corollary
of Schaefer [35, pp. 80], L(E, Y) becomes a locally convex topological vector space under
the a-topology, where Y is assumed a locally convex topological space.
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LEMMA 2 . 6 . ([21, 19].) Let E and Y be real Hausdorff topological vector spaces
and L(E, Y) be the topological vector space under the a-topology. Then, the bilinear
mapping

is continuous on L(E,Y), where {l,x) denotes the evaluation of the linear operator I
€L(X,Y) atxeX.

3. EXISTENCE RESULTS

In this section, we shall present some existence results for a solution to the sys-
tem of generalised set-valued quasi-variational-like inequalities without any monotone
conditions.

THEOREM 3 . 1 . Let I be an index set and I be countable. For each i e I, let
Yi be a real Hausdorff topological vector space, Xi be a nonempty, compact, convex
and metrisable set in a real locally convex Hausdorff topological vector space Eit let
Di : X —> 2Xi be an upper semicontinuous set-valued mapping with nonempty convex
closed values and open lower sections, and let L(Ei, Yi) be equipped with the a-topology.
Suppose that

(i) for each i G I, Ci : X —> 2Yi is a set-valued mapping such that Ci(x) is a

closed pointed and convex cone with intCi(a;) ^ 0 for each x G X, and the

set-valued mapping Mi = Yi\(— intQ) : X —> 2Yi be upper semicontinuous;

(ii) for eaci i G / , Tt : X -4 2L(Ei>yi' is an upper semicontinous set-valued

mapping with nonempty compact values, rji : Xi x Xi —> E{ be continuous

with respect to the second argument, such that Tt satisfies the generalised

partial L-rji-condition.

Then, there exists x = (a;',i7) in X such that for each i € / , xl G Di(x) and for all
yt e Di(x), 3vl E Ti(x): (vi,T}i(yi,x~l)) £ -intCj(i). that is, the system of generalised
set-valued quasi-variational-like inequalities has a solution x G X.

PROOF: For each i G / , define a set-valued mapping Pi: X -* 2Xi by

Pi(x) = {yi G X{ : (7i(s)f!fc(»«,!<)) C -intC<(x)}

= {j/i G Xi : (vu TkiVi,Xi)) G - intCj(x), Vu* G T<(x)}, Vi G X.

Thus, proving the theorem is equivalent to showing that there exists x G X such that,

for each i G / , x~ G Di{x) and Di(x) D Pi(x) = 0.

We first prove that Xi £ Co(Pi(x)) for all x = (xl,Xi) G X. To see this, suppose, by

way of contradiction, that there exists some i G / and some point x = (i*,57) G X such

that x~i G Co(Pi(x)). Then there exists a finite number of points yix, ytl,..., yin in Xi,
n n

and a , > 0 with £ Qj — 1 such that i = £ ot^y^ and yi} G P(x) for all j - 1 ,2, . . . , n.
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That is,

(vu ViiVij,xi))e- in tCi( i ) , Vi;* e Ti(x)

and j — 1 ,2 , . . . , n. Since intCj(x) is convex, we obtain

ajtiitoi,,27) ) e - intQ(x), V«j € T;(x),

which contradicts the fact that Tj satisfies the generalised partial L-Tfc-condition. There-
fore Xi $ Co(Pi{x)) for all x G X.

Now we prove that the set

eX: (Ti(x),TH(Vi,Xi)) Q - intQ(x)

= {x € X : (ui.iftdfc.Sj)) € - intCj(s), V^ e ^ (

is open for each i £ I and for each yi £ Xt. That is, P; has open lower sections in X. We
only need to prove that

StiVi) = {x £ X : (Ti(x),77i(yi,xi)> g -intQ(x)}

= X \ P r 1 ^ ) = {x € X : 3 «j 6 ^(i) such that (vunito,xt)) i - intQ(x)}.

is closed for all i/j e I ; .
In fact, consider a net xt e Si{yi) such that xt -> a; € X. Since xt € Si(yi), there

exists st 6 Tj(xt) such that

From the upper semicontinuous and compact values of Tt and Lemma 2.3, it suffices to
find a subset {stj.} which converges to some s € Tt(x). By Lemma 2.6, we know that (.)
is continuous, and hence

By Lemma 2.2 and upper semicontinuity of Mi, we have (s,t]i(yi,Xi)) £ -intCi(x),
and hence x G Si(yi), Si(yi) is closed. For each i £ I, also define another set-valued
mapping, G{ : X ->• 2Xi by Gj(x) = A(a:) n Co(Pi(a;)), for all x € X. Let the set
Wi = {x € X : Gj(x) ^ 0}. Since A and Pj has open lower sections in X, and by
Lemma 2.4, we know that Co(Pj) and d also has open lower sections in X. Hence,
Wi = U Gi~

1(yi) is an open set in X. Then, the set-valued mapping Gt \W{: W{ -> 2X>

has open lower sections in Wi, and for all x € Wi, Gi(x) is nonempty and convex. Also,
since X is a metrisable space [25, p. 50], Wi is paracompact [32, p .831]. Hence, by
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Lemma 2.1, there is a continuous function ft : Wi -* Xt such that fi(x) G Gi{x) C Di{x)

for all a: e W*. Define T{ : X -> 2 * by

Now, we prove that Tj is upper semicontinuous. In fact, for each open set Vi in X{, the
set

{xGX: Ti(x) C K} = {re € Wi : /i(x) 6 V f } u { i 6 X \ Wi : A W C V;}

C { i 6 ^ : /i(x) eVi}u{xeX: Di(x) C V$}.

On the other hand, when x G Wi, and fi(x) G Vit we have Tj(ar) = fi(x) G Vj. when
i £ X and A(x) C Vi, since fi(x) G A (a;) if x G Wi, we know that Tj(x) C Vi and so

{xewr. Mx) eV{}u{xeX: A(x) c Vi} c {x e x •. r<(i) c V5_}.

Therefore,

{z € X : Ti{x) C K} = { i £ i y i : /4(i) € V{} U {x G X : A( i ) C V̂ }

Since /* is continuous and D,- is upper semicontinuous, the sets {x 6 Wj : /i(x) e Vi}
and {x € X : D{(x) C Vi} are open. It follows that {x € X : Tj(x) C Vi} is open and
so the mapping Tj : X —> 2*' is upper semicontinuous. Now define T : X -4 2X by
T(x) = J^ Ti(a;), for each x € X. By Lemma 3 [23, p .124], T is upper semicontinuous.

Since for each x € X, T(x) is convex, closed, and nonempty, by Lemma 2.5, there is
x € X such that x € T'(x). Note that for each i 6 /, x 4- Wi- Otherwise, there is some
z G / such that x G Wi. then x~ = ft(x) G Co(Pi(x)), which contradicts xt G Co(Pj(x))
for all x = (arSii) G X. Thus x~ G A(x) and Gi{x) = 0 for each i G / . That is,
x~i G A(x) and Dt(x) n Co(Pj(x)) = 0 for each i G /, which implies x7 G A(z) and
A(x) Pi Pf(x) = 0 for each i G /. Consequently, there exists x = (x',x7) in X such that
for each i e I,

x- G A (x) and Vy4 G A (x), 3w" G T< (x) : (w, Vi (Vi, xt)) $ - intC< (x).

Hence, the solution set of system of generalised set-valued quasi-variational-like inequal-
ities is nonempty. Q

By Theorem 3.1 and Remark 2.2, we have

COROLLARY 3 . 2 . Let I be an index set and I be countable. For each i G / ,
let Yi be a real Hausdorff topological vector space, Xt be a nonempty, compact, convex

and metrisable set in a real locally convex Hausdorff topological vector space Ei, let

A : X -4 2Xi be an upper semicontinuous set-valued mapping with nonempty convex
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closed values and open lower sections, and L(Ei, Yj) be equipped with the a-topology.

Suppose that

(i) for each i G / , Ci : X —* 2Yi is a set-valued mapping such that Ci(x) is a

closed pointed and convex cone with intQ(x) ^ 0 for each x G X, and the

set-valued mapping Mi — yj\(-intCj) : X —¥ 2Yi be upper semicontinuous;

(ii) for each i G / , Tt : X —> 2Li-Ei'Yi^ is an upper semicontinuous set-valued

mapping with nonempty compact values, rji : Xtx Xt —> Ei be continuous

with respect to the second argument and affine with respect to the first

argument and for all x — (xl,xi) G X, 3vl G Ti(x), such that

Then, there exists x = (z \ z7) in X such that for each i G / ,

xl G Di(x) and Vy{ G A(3s), 3W e T{{x) : {vl, Vi{yi,xl)) i - intCj(i).

that is, the system of generalised set-valued quasi-variational-like inequalities has a solu-

tion x~ G X.

If ViiVii xi) = Vi — Xi, for all xit y, G Xj, by Remark 2.3 and Theorem 3.1, it is easy to
obtain the existence of a solution for the system of generalised set-valued quasi-variational
inequalities as follows.

COROLLARY 3 . 3 . Let I be an index set and I be countable. For each i € I,

let Yi be a real Hausdorff topological vector space, Xi be a nonempty, compact, convex

and metrisable set in a real locally convex Hausdorff topological vector space Ei, let

Di : X —>• 2Xi be an upper semicontinuous set-valued mapping with nonempty convex

closed values and open lower sections, and L{Ei,Yi) be equipped with the a-topology.

Suppose that

(i) for each i € I, d : X -¥ 2Yi is a set-valued mapping such that C{(x) is a

closed pointed and convex cone with intCi(z) ^ 0 for each x G X, and the

set-valued mapping Mt = yj\(-intCj) : X —> 2Yi be upper semicontinuous;

(ii) for each i G / , TJ : X -> 2L^Ei'Y^ is an upper semicontinuous set-valued

mapping with nonempty compact values.

Then, there exists x = (x',x7) in X such that for each i G / ,

x" G Di(x) and Vyf G Di{x), 3 ^ € T^x) : (vl, y{-xl)^

that is, the system of generalised set-valued quasi-variational inequalities has a solution

x€X.

REMARK 3.1. If Di(x) = Xi and Ci(x) = C for each i G / and for all x G X, where C is
a pointed convex cone with intC ^ 0, then by Corollary 3.3, we can obtain the existence
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of a solution for a system of set-valued variational inequalities which is different from
those results in [1]. Moreover, let T< be a single-valued mapping, then by Corollary 3.3,
we can recover Theorem 3.1 in [4] with the additional condition of metrisablity of Xi.

Hence, Theorem 3.1, Corollary 3.2 and Corollary 3.3 are generalisations of [4, Theorem
3.1].

THEOREM 3 . 4 . Let I be an index set and I be countable. For each i £ I, let
Y{ be a real Hausdorff topological vector space, Xt be a nonempty, compact, convex
and methsable set in a real locally convex Hausdorff topological vector space Eit let
Di : X -¥ 2Xi be an upper semicontinuous set-valued mapping with nonempty convex
closed values and open lower sections, and let L(Et, Yt) be equipped with the a-topology.
Suppose that

(i) for each i € / , C, : X —> 2Yi is a set-valued mapping such that Cj(x) is a
closed pointed and convex cone with intCj(x) ^ 0 for each x G X, and the
set-valued mapping Mi = Yi\(— intQ) : X —> 2Yi be upper semicontinuous;

(ii) for each i G I, Tt : X —> 2L^Bi'Yi"> is an upper semicontinuous set-valued
mapping with nonempty compact values, T/J : Xt x X, —>• E{ be continuous
with respect to the second argument;

(iii) for each i € I, there exists a mapping hi : X{ x Xi —> Yi, such that:

(a) For all x = (x\Xi) e X, \fyt € Xit 3vi € Ti(x), such that

hi{xi,yi) - (vi,rii(yi,Xi)) G -intCj(x);

(b) For any finite set {y^, yt2,..., yin} C Xi and for all x = {xl,Xi)
n n

£ X with Xi = Y2 ajViji wiiere a^ ^ 0 and J2 aj ~ 1» there is a j
>=i i=i

€ {1,2, . . . , n } , such that ^ (x j .y . J ^ - in tC i ( i ) .
Then, there exists x — {xi,x~l) in X such that for each i € / ,

xi e Di(x) and Vyi G Di(x), Bvl € Ii(3c) : <^,»fc(tt,xj)> $ - intCi(x).

that is, the system of generalised set-valued quasi-variational-like inequalities has a solu-
tion x e X.

PROOF: For each i € / , define two set-valued mappings Pi : X —• 2Xi, Qt : X -* 2Xi

by

Pi(x) = {yi G Xi : (viMVi'Xi)) e - intCi(i), Vvt G T^x)} , Vx G X

Qi{x) = {Vi € Xi : hi(xi,yi) G - intC<(x)}, Vx G X.

We first prove that x{ £ Co(Qi(x)) for each i G / and for all x = (x',x;) G X. To see

this, suppose, by way of contradiction, that there exists some point x = (x',x7) G X
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such that T{ G Co((3i(x)). Then there exists finite points yix,yi2,. •• ,y»n in Xit and

a, ^ 0 with J2 aj' — 1 s u c n t n a t ^7 = 13 Qiy»j a n d 2/»j e <2«(z) f°r a ^ 3 = 1,2,. . . ,n.

That is, hiixijijij) G — intCj(x), j = 1,2, . . . , n . This contradicts the condition (b) of
(iii). Therefore xt <£ Co(<2,(x)) for each % G / and for all x = {x{,Xi) G X. The
condition (a) of (iii) implies that Qi(x) D Pi(x) for all x G X. Hence, Xi £ Co(P*(x)),
for all x — (x',Xi) G X. The remainder of the proof is same as that in the proof of
Theorem 3.1. D

COROLLARY 3 . 5 . Let I be an index set and I be countable. For each i € / ,
let Y{ be a real Hausdorff topological vector space, Xi be a nonempty, compact, convex
and metrisable set in a real locally convex Hausdorff topological vector space Eit let
Di : X —¥ 2Xi be an upper semicontinuous set-valued mapping with nonempty convex
closed values and open lower sections, and let L(Et, Yi) be equipped with the a-topology.
Suppose that

(i) for each i 6 / , C{ : X —> 2Yi is a set-valued mapping such that Ci(x) is a

closed pointed and convex cone with intC,(x) / 0 for each x 6 X, and the

set-valued mapping M{ — ̂ ( - i n t C * ) : X —> 2Yi be upper semicontinuous;

(ii) for each i G / , 71 : X —> 2L^EuYi^ is an upper semicontinuous set-valued

mapping with nonempty compact values, r\i : Xi x Xi —> Ei be continuous

with respect to the second argument;

(iii) for each i G / , tiere exists a mapping hi : Xt x Xt -> Yit such that:

(a) For all x = (z',Zj) G X, Vy* G Xu 3vi G Ti{x), such that hi(xi,yi)

- (vi,ili(yi,Xi)) G -intCj(z);

(b) For all x - {x\Xi) G X, the set {y{ G X{ : hi(xi,yi) G - in tQ( : r )} is
convex;

(c) For all x = (x \ x{) G X, hi{xu x{) <£ - intQ(z).

PROOF: It is only needed to show that (b) of (iii) in Theorem 3.4 holds. If the condi-
tion (b) of (iii) in Theorem 3.4 does not hold, then there exists a finite set {y^ ,yi2,... ,yin}

n n
C Xi and some point x — (x',Xi) G X with xt — J2 ajUij> where a, ̂  0 and JZ aj — 1'

satisfying h^x^y^) G - i n t Q ( x ) for all j € {1,2, . . . , n } . that is, ytj G {yi G X{ :
hi(xi,yi) G — intQ(x)} for all j G {1 ,2 , . . . , n} . By the convexity of the set {y;

G Xi : hi(xi,yi) G - in tC j (x )} , we have x{ G {yi G X{ : /^(x^t/j) G - in tCi (x)} .
Hence, hi(xi,Xi) G — intCi(x), which contradicts to the condition (c) of (iii). Then, by
Theorem 3.4, we know that the conclusion holds. D

REMARK 3.2. By the results in section 3, it is easy to obtain the existence results
for all of the special models of the system of generalised set-valued quasi-variational-
like inequalities mentioned in the section 2. For example, let / = {1}, by Theorem
3.1, Corollary 3.2, Theorem 3.4 and Corollary 3.5, respectively, we obtain the existence
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results of a solution for generalised set-valued quasi-variational-like inequalities which
are generalisations of the main results in [21] and Theorem 1 in [31] from the cases of
generalised set-valued variational-like inequalities to the cases of generalised set-valued
quasi-variational-like inequalities.
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