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Pointed Torsors

J. F. Jardine

Abstract. This paper gives a characterization of homotopy fibres of inverse image maps on groupoids

of torsors that are induced by geometric morphisms, in terms of both pointed torsors and pointed

cocycles, suitably defined. Cocycle techniques are used to give a complete description of such fibres,

when the underlying geometric morphism is the canonical stalk on the classifying topos of a profinite

group G. If the torsors in question are defined with respect to a constant group H, then the path

components of the fibre can be identified with the set of continuous maps from the profinite group

G to the group H. More generally, when H is not constant, this set of path components is the set of

continuous maps from a pro-object in sheaves of groupoids to H, which pro-object can be viewed as a

“Grothendieck fundamental groupoid”.

Introduction

This paper gives a characterization of homotopy fibres of the functors

p : B(H-tors)→ B(p(H)-tors)

of torsor categories that are induced by exact functors p : Shv(C) → Shv(D) be-

tween Grothendieck toposes. In this generality, H is a sheaf of groupoids, and H-tors

stands for its associated category of torsors, which is the groupoid of global sections

of the associated stack [8]. The inverse image part of a geometric morphism has the

required exactness properties, and inverse image functors are common in examples.

These homotopy fibres are characterized as nerves of, equivalently, suitably de-

fined categories of pointed torsors or pointed cocycles. The equivalence between

pointed torsors and pointed cocycles (Lemma 1.3) is a refinement of the equivalence

between categories of torsors and cocycles given in [8].

The first section of this paper consists of general results, culminating in Proposi-

tion 1.4, which identifies the homotopy fibres of the simplicial set map p with nerves

of pointed cocycle categories.

Section 2 contains some first applications of this theory for simplicial sheaves on

étale sites. Suppose that f : T → S is a scheme homomorphism, and that H is a sheaf

of groupoids on the small étale site for S. Pick an object x of the groupoid H(T). It is

shown (Proposition 2.4) that the homotopy fibre of the map

f ∗ : B(H-tors)→ B( f ∗(H)-tors)

over x can be computed with pointed torsors on either the small or big étale sites for

S and T. It is a consequence of a general result (Proposition 2.1) that the homotopy
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fibre of f ∗ (on the big site level) is the nerve of a category of cocycles in the slice cat-

egory of simplicial sheaves under T (Proposition 2.1). The arguments for the results

of this section are cocycle theoretic, and the interpretation for pointed torsors comes

from Proposition 1.4.

In Section 3 we specialize to a discussion of the classifying topos BG of a profi-

nite group G = {Gi} (and thus sheaves on finite étale sites) and the canonical stalk

π∗ : BG → Set. If H is a groupoid in BG, then π∗(H) is just a groupoid and the

inverse image map has the form

π∗ : B(H-tors)→ Bπ∗(H).

A precise calculation of the homotopy fibre Fx of π∗ over an object x of the groupoid

π∗(H) can be achieved in this case, in that Fx is a union of contractible spaces, in-

dexed on morphisms C(Gi)→ BH defined on the Čech resolutions C(Gi) associated

with the component groups Gi of G, up to refinement (Lemma 3.5 and Corollary 3.4,

respectively).

In particular, if S is a connected Noetherian scheme, π1(S, y) is the Grothendieck

fundamental group of S at some geometric point y, and A is a constant group, then

set of path components π0(F) of the fibre F over the base point of the classifying space

BA is the set of pro-group homomorphisms π1(S, y)→ A.

More generally, if H is a sheaf of groupoids on the finite étale site of S and x is an

object of the groupoid y∗(H), then the corresponding set π0(Fx) for the homotopy

fibre Fx of π∗ over x is pro-represented in sheaves of groupoids by a Grothendieck

fundamental groupoid, suitably defined as a pro-object in sheaves of groupoids. This

object specializes to an absolute Galois groupoid if S is the spectrum Sp(k) of a field k.

These pro-objects are readily seen in practice. For example, the absolute Galois

groupoid of a field k is the pro-object

L 7→ EG(L/k) Sp(L),

which is indexed on finite Galois extensions L/k, where EG(L/k) Sp(L) is the translation

groupoid for the action of the Galois group G(L/k) on Sp(L). Its associated pro-

object of connected components is the absolute Galois group for the field k. For each

Galois extension L/k, the nerve B(E(G(L/k) Sp(L)) of the groupoid EG(L/k) Sp(L) is the

Borel construction EG(L/k) ×G(L/k) Sp(L) as well as the Čech resolution associated

with the étale cover Sp(L)→ Sp(k).

Historically, there has been some difficulty in finding a completely satisfying re-

lation between étale homotopy theory [2] and the homotopy theory of simplicial

sheaves [6]. In particular, the Grothendieck fundamental group is “the” fundamen-

tal group functor for étale homotopy theory, but it has been an interesting problem to

interpret this object directly in simplicial sheaves. The results of this paper give a first

representation of the Grothendieck fundamental group as an explicit invariant of the

homotopy theory of simplicial sheaves, in the theory of pointed torsors. The gen-

eralization of the Grothendieck fundamental group construction to a pro-object in

sheaves of groupoids is a further interesting outcome of the pointed torsor approach.
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1 Pointed Torsors

Suppose that C is a small Grothendieck site.

We shall use Joyal’s injective model structure [6] on the category s Shv(C) of sim-

plicial sheaves on C throughout this paper. The cofibrations for this structure are the

monomorphisms, the weak equivalences are the local weak equivalences, and the fi-

brations are the injective fibrations. The local weak equivalences are those simplicial

sheaf maps f : X → Y that induce weak equivalences Xx → Yx of simplicial sets in

all stalks if stalks are available, but more generally are those maps that induce iso-

morphisms in all possible sheaves of homotopy groups. The injective fibrations are

defined by a right lifting property with respect to all trivial cofibrations. Injective

fibrations are also called global fibrations in the literature.

The injective model structure has a list of attributes: it is a cofibrantly generated,

proper, closed, simplicial model structure such that weak equivalences are closed un-

der finite products. The associated homotopy category Ho(s Shv(C)) is a non-abelian

derived category for the sheaf category on the site C.

For simplicial sheaves X and Y , the cocycle category h(X,Y ) has objects consisting

of simplicial sheaf maps

(1.1) X
g

←−
≃

Z
f

−→ Y

and morphisms consisting of commutative diagrams

Zg

≃yyrrr
rr
r

��

f

&&LL
LL

LL

X Y.

Z ′g ′

≃eeLLLLLL
f ′

99rrrrrr

It is a basic property of cocycle categories [8] (since the injective model structure is

proper and has the property that weak equivalences are closed under finite products)

that the assignment that takes a cocycle (1.1) to the morphism f g−1 in the homotopy

category of simplicial sheaves induces a bijection π0h(X,Y ) ∼= [X,Y ] between the set

of path components of the category h(X,Y ) (equivalently the path component set

π0Bh(X,Y ) of the nerve Bh(X,Y )) and the set [X,Y ] of morphisms in the homotopy

category Ho(s Shv(C)).

Suppose that H is a sheaf of groupoids on the site C. Recall [8] that an H-torsor is

an H-diagram π : F → Ob(H) in sheaves such that the induced map holim−−−→ H F → ∗
is a weak equivalence.

This definition of torsor involves a partial description of an internally de-

fined functor. In more prosaic terms, the functor F consists of ordinary functors

F(U ) : H(U )→ Set such that the collections

⊔

x∈Ob(H(U )

F(U )(x)→ Ob(H(U )), U ∈ C
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form a sheaf map π : F → Ob(H), and such that the diagrams

F(U )(x)
α∗

//

φ∗

��

F(U )(y)

φ∗

��
F(V )(φ∗(x))

φ∗(α)∗

// F(V )(φ∗(y))

commute for all morphisms α : x → y of the groupoid H(U ) and all morphisms

φ : V → U of the underlying site C.

All constituent functors F(U ) : H(U )→ Set have translation groupoids EH(U )F(U )

whose objects are pairs (x, y) with x ∈ Ob(H(U )) and y ∈ F(U )(x), and then

a morphism α : (x, y) → (x ′, y ′) is a morphism α : x → x ′ of H(U ) such that

α∗(y) = y ′. The homotopy colimit holim−−−→ H(U )F(U ) for the functor F(U ) is the

nerve B(EH(U )F(U )); this is the usual construction [4, IV.1.8]. The homotopy colimit

sheaf holim
−−−→

HF is the simplicial sheaf, which is defined by

U 7→ holim
−−−→

H(U )F(U ).

The canonical functors EH(U )F(U ) → H(U ) defined by (x, y) 7→ x assemble to

define the simplicial sheaf map

π : holim
−−−→

HF → BH.

The diagram of simplicial sheaves

(1.2) F //

��

holim
−−−→

HF

π

��
Ob(H) // BH

is homotopy cartesian, since H is a sheaf of groupoids. In effect, the diagram is homo-

topy cartesian in each section by a standard result of Quillen [4, IV.5.7] concerning

diagrams of weak equivalences.

A morphism of H-diagrams is a map of sheaves

F
f

//

��:
::

::
::

F ′

����
��
��
�

Ob(H)
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over Ob(H) that defines a natural transformation in each section. The sheaf map

f : F → F ′ is necessarily a local weak equivalence of simplicial sheaves, and hence

a sheaf isomorphism: this is proved by comparing homotopy cartesian diagrams of

the form (1.2). It follows that the category of H-torsors and the H-equivariant maps

between them form a groupoid, which will be denoted by H-tors.

This groupoid H-tors is the groupoid of global sections of a presheaf of groupoids

H-Tors, which is a model for the stack associated to H; see [8].

Example 1.1 Standard examples of torsors include the representable functors

H(x, · ) and H( · , x) associated with a global section x of the object sheaf Ob(H).

There is an isomorphism

H(x, · )
∼=

−→ H( · , x)

of H-torsors that is defined in sections by taking the morphism x
α
−→ y to y

α−1

−−→ x.

These are the trivial torsors. In general, an H-torsor morphism (i.e., a trivialization

over x) f : H(x, · ) → F is completely determined by the global section f (1x) of F,

which section maps to x under the structure map F → Ob(H). Observe that the

structure map H(x, · ) → Ob(H) is defined in sections by sending the morphism

x
α
−→y to the target object y.

Every H-torsor F → Ob(H) has a functorially assigned cocycle

∗
≃

←− holim
−−−→

H F → BH.

It follows that there is a functor

holim
−−−→

H : H-tors→ h(∗,BH).

The homotopy colimit functor holim
−−−→

H has a left adjoint

pb : h(∗,BH)→ H-tors

that is defined by sheafifying a presheaf, which presheaf is defined in sections by

taking path components π0(pbx) of spaces pbx. These spaces pbx are defined for a

cocycle ∗
≃

←− Z → BH by the pullback diagrams

pbx
//

��

Z(U )

��
B(H(U )/x) // BH(U ),

where x ranges through the set Ob(H(U )) of objects of H(U ) and U ∈ C.
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Suppose that C and D are Grothendieck sites, and that the functor

p : Shv(C)→ Shv(D)

between sheaf categories is exact in the sense that it preserves finite limits and all

colimits.

Examples of such functors p include

(i) inverse image functors f ∗ associated with geometric morphisms

f : Shv(D)→ Shv(C),

(ii) restriction functors q∗ : Shv(C)→ Shv(C/U ), defined by composition with the

canonical functors q : C/U → C. Such a functor q takes an object V → U to V ,

and one variously writes F|U = q∗F = F · q for sheaves F.

The restriction functors q are often inverse images in practice. For example, sup-

pose that f : T → S is an object of the big étale site (Sch|S)et . Then there is an

isomorphism of categories

(Sch|S)/ f ∼= Sch|T ,

and the standard inverse image functor

f ∗ : Shv((Sch|S)et )→ Shv((Sch|T)et )

is defined by precomposition with the scheme homomorphism f .

All functors

p : Shv(C)→ Shv(D),

which satisfy the indicated exactness conditions above, preserve local weak equiva-

lences. This is a standard fact in the case where p is the inverse image functor for

some geometric morphism; see for example [3, 2.6]. The quickest proof of this result

(which is a straightforward generalization of the proof for inverse images) follows

from the observations that such a functor p commutes with the formation of the

sheaf-level Ex∞-functor and preserves local trivial fibrations.

The functor p also preserves homotopy colimits, and it follows that if F → Ob(H)

is an H-torsor, then the induced object p(F) → Ob(p(H)) is a p(H)-torsor. The

functor p therefore induces a functor

p : H-tors→ p(H)-tors.

Suppose that x : ∗ → Ob(p(H)) is a global section of the sheaf of groupoids p(H).

A pointed H-torsor over x is an H-torsor F → Ob(H) together with a fixed lifting

p(F)

��
∗

z
;;wwwwwwwwww

x

// Ob(p(H)).

A morphism of pointed H-torsors over x is a morphism of H-torsors that respects

the liftings. Write H-torsx for the corresponding groupoid.
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Lemma 1.2 The groupoid H-torsx of pointed H-torsors over x is the homotopy fibre

of the map

p : H-tors→ p(H)-tors.

Proof In the category of groupoids, the homotopy fibre Fx of the functor

p : H-tors→ p(H)-tors

over the torsor p(H)(x, · ) has objects consisting of all p(H)-torsor morphisms

p(H)(x, · )→ p(F). The morphisms of this groupoid are the commutative diagrams

p(F)

θ∗

��

p(H)(x, · )

66lllllll

((RR
RRR

R

p(F ′),

where θ : F → F ′ is a morphism of H-torsors.

A global section z : ∗ → p(F) of the torsor p(F) extends to a unique H-torsor

morphism

z∗ : p(H)(x, · )→ p(F).

It follows that the assignment which takes the pointed torsor ∗
z
−→ p(F) to the torsor

morphism p(H)(x, · )
z∗−→p(X) defines an isomorphism Fx

∼= H-torsx of groupoids.

A pointed H-cocycle over x is a cocycle ∗
g

←−
≃

Z
f

−→ BH together with a morphism

∗

v

��

x

##H
HH

HH
HH

HH

}}||
||
||
||
|

∗ p(Z)
≃

p(g)

oo
p( f )

// Bp(H)

of p(H)-cocycles. A morphism of pointed H-cocycles over x is a morphism of cocy-

cles that respects choices of sections. Write h(∗,BH)x for the corresponding category.

The unit of the adjunction

pb: h(∗,BH) ⇆ H-tors : holim
−−−→

H
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is a natural cocycle morphism

∗

Z

≃

DD






 η
//

f
��4

44
44

44
holim
−−−→

H pb(Z).

≃

ccFFFFFFFFFF

||xx
xx
xx
x

BH

If the object p(Z) is pointed by a morphism v : ∗ → p(Z) over x, then the composite

sheaf map

∗
v
−→ p(Z)0

p(η)

−−→ p(holim
−−−→

H pb(Z))0 = p(pb(Z))

gives p(pb(Z)) a point over x. It follows that the pullback functor restricts to a func-

tor

pb : h(∗,BH)x → H-torsx.

If the torsor F → Ob(H) is pointed by a map

∗
z
−→ p(F) = p(holim

−−−→
HF)0

over x, then the global section z defines a map ∗
z
−→ p(holim

−−−→
HF), which gives the

canonical cocycle

∗
≃

←− holim
−−−→

HF → BH

the structure of a pointed cocycle over x. Thus, the canonical cocycle construction

restricts to a functor

holim
−−−→

H : H-torsx → h(∗,BH)x.

We have proved the following lemma.

Lemma 1.3 The pullback and homotopy colimit functors induce an adjoint pair of

functors

pb: h(∗,BH)x ⇆ H-torsx : holim
−−−→

H .

Proposition 1.4 The nerve Bh(∗,BH)x is weakly equivalent to the homotopy fibre of

the simplicial set map

π : B(H-tors)→ B(p(H)-tors)

over the trivial torsor p(H)(x, · ).

Proof This result is a consequence of Lemma 1.2 and Lemma 1.3.

https://doi.org/10.4153/CJM-2011-058-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-058-x


Pointed Torsors 1353

2 Restriction Functors

Suppose that U is an object of a site C, and consider the corresponding restriction

functor

q∗ : Shv(C)→ Shv(C/U ).

In general, for any sheaf F on C, a global section of q∗F is a section of F(U ),

and there is a natural bijection hom(∗, q∗(F)) ∼= F(U ). It follows that the objects of

the category h(∗,BH)x of pointed cocycles over x Ob(H)(U ) can be identified with

commutative diagrams

U

����
��
��
��

v

��

x

!!B
BB

BB
BB

B

∗ Z
≃

oo
f

// BH,

where the bottom row forms a cocycle in simplicial sheaves on C. Here, we have nota-

tionally identified the object U with the sheaf associated with the functor represented

by U . From this point of view, a morphism of pointed cocycles is a cocycle morphism

in simplicial sheaves on C that respects choices of U -sections.

The slice category U/s Shv(C) has a model structure, for which a morphism

U

��









��4
44

44
4

X
f

// Y

is a weak equivalence (respectively cofibration, fibration) if the simplicial sheaf map

f : X → Y is a local weak equivalence (respectively cofibration, injective fibration) of

simplicial sheaves. Compare [5, 1.1.8], but the existence of such model structures for

slice categories is an easy exercise.

In this category, a cocycle t
≃

←− v
f

−→ x is a pointed cocycle

U

t

����
��
��
��

v

��

x

  B
BB

BB
BB

B

∗ Z
≃

oo
f

// BH

as described above, and the category h(∗,BH)x of pointed cocycles can be identified

with the cocycle category h(t, x) for the slice category.
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Weak equivalences are closed under finite products in the slice category

U/s Shv(C), and its model structure is right proper. Theorem 1 of [8] therefore says

that there is a canonical bijection

π0h(∗,BH)x = π0h(t, x) ∼= [t, x],

where [t, x] is the set of morphisms from t to x in the homotopy category

Ho(U/s Shv(C)). We have proved the following proposition.

Proposition 2.1 Suppose that H is a sheaf of groupoids on site C, and let U be an

object of C. Suppose that x ∈ Ob(H)(U ) is a U -section of H. Then there is a canonical

bijection

π0h(∗,BH)x = π0h(t, x) ∼= [t, x],

where [t, x] denotes morphisms from t to x in the homotopy category Ho(U/s Shv(C)).

A pointed H-torsor over x can be identified with an H-torsor p : F → Ob(H),

together with a commutative diagram

F

p

��
U

z

<<xxxxxxxxxx

x

// Ob(H).

A morphism of pointed torsors over x is then an H-torsor morphism that respects

U -sections.

We have the following corollary of Proposition 2.1 and Lemma 1.3.

Corollary 2.2 In the presence of the assumptions and notation of Proposition 2.1,

there is an isomorphism

π0B(H-torsx) ∼= [t, x]

of isomorphism classes of pointed torsors with morphisms in the homotopy category for

the category U/s Shv(C).

Suppose that S is scheme and let (Sch|S)et be the big site of S-schemes X → S,

equipped with the étale topology. The inclusion i : et|S ⊂ (Sch|S)et of the standard

étale site in the big site is a site morphism, and induces a geometric morphism

i : Shv(Sch|S)et → Shv(et|S).

The corresponding direct image functor

i∗ : Shv(Sch|S)et → Shv(et|S)

is defined by composition with, or restriction along, the inclusion functor i. The

inverse image functor i∗ and restriction functors i∗ are both exact (this is uncom-

mon for direct images), and therefore preserve local weak equivalences of simplicial

sheaves. The canonical map η : F → i∗i∗F is an isomorphism for all sheaves F on the

étale site et|S.
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Lemma 2.3 (i) The restriction functor i∗ induces a weak equivalence

i∗ : Bh(∗,X)
≃

−→ Bh(∗, i∗X).

for all simplicial sheaves X on the big étale site (Sch|S)et .

(ii) The inverse image functor i∗ induces a weak equivalence

i∗ : Bh(∗,Y )
≃

−→ Bh(∗, i∗Y )

for all simplicial sheaves Y on the étale site et|Y .

Proof To prove statement (i), suppose that X is a simplicial sheaf on the big site

(Sch|S)et . Then restriction along i preserves weak equivalences and therefore defines

a functor

i∗ : h(∗,X)→ h(∗, i∗X)

that sends the cocycle ∗
≃

←− U
f

−→ X to the cocycle ∗
≃

←− i∗U
i∗ f

−−→ i∗X. There is a

functor

ĩ : h(∗, i∗X)→ h(∗,X)

that sends the cocycle ∗
≃

←− Z
f

−→ i∗X to the cocycle ∗
≃

←− i∗Z
f∗
−→ X, where f∗ is the

adjoint of f . The functor ĩ is left adjoint to the functor i∗, so that the simplicial set

map

i∗ : Bh(∗,X)→ Bh(∗, i∗X)

is a homotopy equivalence.

For statement (ii), the inverse image induces a functor

i∗ : h(∗,Y )→ h(∗, i∗Y )

for simplicial sheaves Y on the étale site et|S. The composite functor i∗i∗ sends the

cocycle

∗
≃

←− Z
f

−→ Y to the cocycle ∗
≃

←− i∗i∗Z
i∗i∗ f

−−−→ i∗i∗Y,

and there is a commutative diagram

Z

wwppp
ppp

pp

η∼=

��

f
// Y

η∼=

��

∗

i∗i∗Z

ffNNNNNN

i∗i∗ f

// i∗i∗Y.

It follows that the composite i∗i∗ : Bh(∗,Y ) → Bh(∗, i∗i∗Y ) is homotopic to the

isomorphism η∗ : Bh(∗,Y )
∼=
−→Bh(∗, i∗i∗Y ), which is defined by composition with η.

The composite map i∗i∗ is therefore a weak equivalence, and the map i∗ is a weak

equivalence by statement (i).
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Suppose that the scheme homomorphism φ : T → S is an object of the big site

(Sch|S)et . The map φ induces a geometric morphism

φ : Shv(Sch|T)et → Shv(Sch|S)et ,

in the standard way, for which the direct image functor φ∗ is defined by composition

with pullback along the scheme homomorphism φ. The diagram of direct image

functors

Shv(Sch|T)et

i∗
//

φ∗

��

Shv(et|T)

φ∗

��

Shv(Sch|S)et
i∗

// Shv(et|S)

commutes, so that there is a canonical isomorphism γ : i∗φ∗

∼=

−→ φ∗i∗. It follows that

there is a homotopy commutative diagram

(2.1) Bh(∗,X)
i∗

≃

//

φ∗

��

Bh(∗, i∗X)

φ∗

��

Bh(∗, φ∗X)

i∗

≃

''NN
NNN

NNN
NNN

Bh(∗, φ∗i∗X)
∼=

γ∗wwooo
ooo

ooo
oo

Bh(∗, i∗φ∗X)

for each simplicial sheaf X on the étale site et|S, in which the instances of i∗ are weak

equivalences by Lemma 2.3.

Recall that the inverse image functor

φ∗ : Shv(Sch|S)et → Shv(Sch|T)et

on the big site level is given by precomposition with the functor

Shv(Sch|T)et → Shv(Sch|S)et ,

which is defined by composition with φ.

The existence of diagram (2.1) means that the small and big site versions of φ∗

(the vertical maps in diagram (2.1)) have weakly equivalent homotopy fibres.

Proposition 2.4 Suppose that H is a sheaf of groupoids on the étale site et|S and that

x ∈ Ob(H)(T) is a global section of φ∗H. Then there is a weak equivalence

B(H-torsx) ≃ B(i∗H-torsx)

relating the respective groupoids of pointed torsors for the small and big étale sites.
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Proof The weak equivalences of diagram (2.1) (with X = BH) imply that the maps

φ∗ : Bh(∗,BH)→ Bh(∗, f ∗BH) and φ∗ : Bh(∗, i∗BH)→ Bh(∗, f ∗i∗BH) have weakly

equivalent homotopy fibres over x. These homotopy fibres can be identified with

B(H-torsx) and B(i∗H-torsx), respectively, by Lemma 1.2 and Lemma 1.3.

3 Profinite Groups

Suppose that the group-valued functor G : I → Grp is a profinite group. Then in

particular the category I is left filtered (any two objects i, i ′ have a common lower

bound, and any two morphisms i ⇉ j have a weak equalizer), and all constituent

groups Gi , i ∈ I, are finite. We shall also assume that all transition homomorphisms

Gi → G j in the diagram are surjective.

Example 3.1 The standard example is the absolute Galois group G(k) of a field k.

One takes all finite Galois extensions L/k inside an algebraically closed field Ω con-

taining k in the sense that one has a fixed imbedding i : k → Ω, and the Galois

extensions are commutative diagrams of field homomorphisms

k
i

//

��=
==

Ω

L,

??���

where L is a finite Galois extension of k. These are the objects of a right filtered

category, for which the morphisms L → L ′ respect structure, and the contravariant

functor G(k) that associates the Galois group G(L/k) with each of these pictures is

the absolute Galois group.

More generally, suppose that S is a connected Noetherian scheme, and let

y : Sp(Ω) → S be a geometric point of S. The Grothendieck fundamental group

π1(S, y) is the pro-group defined on finite Galois extensions

T

��
Sp(Ω)

y

//

<<yyyyy
S

of S in y by the assignment T 7→ G(T/S) where the Galois group G(T/S) = AutS(T)

is the group of S-scheme automorphisms of T that respect the geometric point y.

Suppose that G is a profinite group, and let G-Setd f be the category of finite dis-

crete G-sets, as in [7].

Recall that a discrete G-set is a set F equipped with an action

G× F → Gi × F → F,
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where G = lim
←−i

Gi (note the abuse of notation), and a morphism of discrete G-sets

is a G-equivariant map.

The category G-Setd f has a topology for which the covering families are the

G-equivariant surjections V → U . A presheaf F on G-Setd f is a sheaf for this topol-

ogy if and only if

(i) F takes disjoint unions to products, and

(ii) each canonical map Gi → Gi/H defined by a subgroup H of G induces a bijec-

tion

F(Gi/H)
∼=

−→ F(Gi)
H .

It follows in particular that the topology is subcanonical: every finite discrete G-set

X represents a sheaf hom( · ,X). The resulting sheaf category BG := Shv(G-Setd f ) is

the classifying topos for the profinite group G.

Suppose that the functor π̃ : G-Setd f → Set takes a finite discrete G-set to its

underlying set. Every set X represents a sheaf π∗(X) on G-Setd f with

π∗(X)(U ) = hom(π̃(U ),X).

The left adjoint π∗ of the corresponding functor π∗ has the form π∗(F) = lim
−→

F(Gi),
by a cofinality argument, and the functors π∗ and π∗ form a geometric morphism

π : Set→ BG.
The list of points consisting of the geometric morphism π alone is an “adequate”

collection of points for the classifying topos BG in the sense that the inverse image

functor π∗ is faithful. It follows that a simplicial sheaf morphism f : X → Y on

G-Setd f is a local weak equivalence if and only if the induced map π∗(X)→ π∗(Y ) is

a weak equivalence of simplicial sets.

Suppose that H is a sheaf of groupoids on G-Setd f and that x is an object of the

groupoid π∗(H). As above, let H-torsx denote the category of H-torsors pointed by

x, and let h(∗,BH)x be the category of pointed H-cocycles over x. Recall from Lemma

1.3 that pullback and homotopy colimit define an adjunction

pb: h(∗,BH)x ⇆ H-torsx : holim
−−−→

H ,

and a corresponding homotopy equivalence

Bh(∗,BH)x ≃ B(H-torsx)

of the associated nerves.

A pointed Čech cocycle over x is a cocycle ∗
≃

←− C(E)
f

−→ BH together with a

morphism

∗

v

��

x

%%LL
LL

LL
LL

LL
L

{{ww
ww
ww
ww
ww
w

∗ π∗(C(E))
≃

oo
π f

// Bπ∗(H)
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of π∗(H)-cocycles, where C(E) is the Čech resolution associated with an epimor-

phism E→ ∗ in BG.

A morphism of pointed Čech cocycles over x is a sheaf morphism θ : E → E ′,

which induces a morphism of cocycles

C(E)
≃

xxqqq
qq
q

θ∗

��

f

''OO
OOO

O

∗ BH,

C(E ′)
≃

ffMMMMMM
f ′

77oooooo

which preserves base points in the sense that the diagram

π∗(E)

πθ

��

∗

v 77oooooo

v ′

''NN
NNN

N

π∗(E ′)

commutes. Write hCech(∗,BH)x for the category of Čech cocycles over x.

Lemma 3.2 The inclusion functor

i : hCech(∗,BH)x → h(∗,BH)x

is fully faithful, and induces a bijection π0hCech(∗,BH)x

∼=

−→ π0h(∗,BH)x.

Proof The inclusion functor i has a left adjoint. The unit of the adjunction is a

canonical cocycle morphism

Z
≃

xxppp
pp
pp
p f

''OO
OOO

OOO

��

∗ BH,

C(Z0)
≃

ffMMMMMM
f∗

77oooooo

which exists, since C(Z0) is the fundamental groupoid of the locally contractible sim-

plicial sheaf Z.

Write hG(∗,BH)x for the subcategory of hCech(∗,BH)x whose objects are the

pointed cocycles

∗
≃

←− C(Gi)
f

−→ BH
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such that π∗( f )(ei) = x in Ob(π∗(H)). Here,

ei ∈ π∗(Gi) = lim
−→

j

hom(G j ,Gi)

is the element represented by the identity homomorphism 1: Gi → Gi .

If φ : G j → Gi is a structure homomorphism of the profinite group G, then e j 7→
ei under the function π∗(φ) : π∗(G j) → π∗(Gi). A morphism of hG(∗,BH)x is a

structure homomorphism φ : G j → Gi for G, which respects cocycles.

Lemma 3.3 The inclusion functor

i : hG(∗,BH)x ⊂ hCech(∗,BH)x

induces a weak equivalence i∗ : BhG(∗,BH)x

≃

−→ BhCech(∗,BH)x.

Proof Suppose that ( f , v) is an object of hCech(∗,BH)x, where f : C(E) → BH is a

cocycle and v ∈ π∗(E). The element v corresponds to a map v∗ : Gi → E for some

Gi , and v∗(ei) = v. It follows that the category i/( f , v) is non-empty. The category

i/( f , v) is also left filtered since π∗(U ) is defined by the filtered colimit

π∗(E) = lim
−→

i

E(Gi).

The category i/( f , v) is therefore non-empty and left filtered for all objects ( f , v)

of the category hCech(∗,BH)x. The desired result follows from Quillen’s Theorem B

[4, IV.5.6].

Corollary 3.4 Suppose that G is a profinite group, H is a sheaf of groupoids on

G-Setd f , and that x is an object of the stalk groupoid π∗(H). Then there is an iso-

morphism

π0Bh(∗,BH)x
∼= lim
−→

i

hom(C(Gi),BH)x,

where hom(C(Gi),BH)x is the set of groupoid morphisms f : C(Gi) → H such that

π∗( f )(ei) = x.

The weak equivalence

pb : Bh(∗,BH)x

≃

−→ B(H-torsx)

is a fibrant model for the space Bh(∗,BH)x in simplicial sets, since the pointed torsor

category H-torsx is a groupoid. Every automorphism θ of a pointed torsor

π∗(X)

��
∗

z
;;vvvvvvvvvv

x

// Ob(π∗(H))
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induces a diagram of torsor morphisms

π∗(X)

π∗(θ)

��

π∗(H)(x, )

z∗

∼=

66llllll

z∗

∼=

((RR
RRR

R

π∗(X)

so that π∗(θ) is the identity. But the functor π∗ is faithful, so that θ is the identity as

well.

We have therefore shown the following lemma.

Lemma 3.5 The canonical simplicial set map

Bh(∗,BH)x → π0Bh(∗,BH)x

is a weak equivalence of simplicial sets for all x ∈ Ob(π∗(H)) and for all sheaves of

groupoids H on the site G-Setd f .

Example 3.6 Suppose that Γ∗A is the constant sheaf on a group A, and ∗ is the

unique object of the group A = π∗(Γ∗A) (thought of as a groupoid with one object).

Then there is an isomorphism

π0Bh(∗,BΓ∗A)∗ ∼= lim
−→

i

hom(Gi ,A),

where hom(Gi ,A) is the set of group homomorphisms Gi → A.

Suppose that H is a sheaf of groupoids on the finite étale site f et|S for a con-

nected Noetherian scheme S. Let y : Sp(Ω) → S be a geometric point of S, and

let π1(S, y) be the corresponding Grothendieck fundamental group. There is a well-

known equivalence of categories

Shv( f et|S) ≃ Bπ1(S, y)

[1, V.7], [9, I.5], under which the inverse image y∗ : Shv( f et|S) → Set maps to the

canonical stalk π∗ : Bπ1(S, y)→ Set.

Take an element x ∈ Ob(y∗(H)). It is a consequence of Proposition 1.4,

Lemma 3.2, and Lemma 3.3 that the homotopy fibre Bh(∗,BH)x of the canonical

stalk map

y∗ : B(H-tors)→ B(y∗(H))

over the object x has its path component set specified by

π0Bh(∗,BH)x
∼= lim
−→

T

hom(C(Sp(T)),BH)x,
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where the colimit is indexed over finite Galois extensions T/S in Ω, and the set

hom(C(Sp(T)),BH)x consists of simplicial sheaf maps (or morphisms of sheaves of

groupoids) f : C(Sp(T)) → BH such that the degree 0 part f : Sp(T) → Ob(H)

represents x ∈ Ob(y∗(H)) (this is the “section condition”). There are isomorphisms

EG(T/S)×G(T/S) T ∼= C(Sp(T)),

so that the maps f above can be rewritten as simplicial sheaf maps

f : EG(T/S)×G(T/S) T → BH

that satisfy the section condition in simplicial degree 0. The simplicial sheaf

EG(T/S) ×G(T/S) T is the nerve of the translation groupoid EG(T/S)T for the action

of the Galois group G(T/S) on the sheaf T, and the maps f can be further identi-

fied with homomorphisms f : EG(T/S)T → H of sheaves of groupoids that satisfy the

section condition in objects.

If A is a group (see Example 3.6), then the homotopy fibre Bh(∗,BΓ∗A)∗ of the

map

y∗ : B(Γ∗A-tors)→ BA

has

π0Bh(∗,BΓ∗A)∗ ∼= lim
−→

T

hom(G(T/S),A).

We have proved the following proposition.

Proposition 3.7 Suppose that S is a connected Noetherian scheme, and let

y : Sp(Ω) → S be a geometric point. Suppose that H is a sheaf of groupoids on the

finite étale site f et|S, and that A is a group.

(i) Suppose that x is an object of the groupoid y∗(H) = lim
−→T/S

H(T). Then there is

an isomorphism

π0Bh(∗,BH)x
∼= lim
−→

T

hom(EG(T/S)T,H)x.

(ii) There is an isomorphism

π0Bh(∗,BΓ∗A)∗ ∼= lim
−→

T

hom(G(T/S),A).

In all cases, the colimits are indexed over the finite Galois extensions T/S, and these

extensions have Galois groups G(T/S).

The pro-object in sheaves of groupoids that is defined on Galois extensions T/S by

the assignment T 7→ EG(T/S)T is the Grothendieck fundamental groupoid Eπ1(S, y) of

S at the geometric point y. Observe that applying the connected components functor

to all objects EG(T/S)T gives the Grothendieck fundamental group π1(T, y).
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Proposition 3.7 says that the Grothendieck fundamental groupoid Eπ1(S, y) pro-

represents all pointed torsors, while the Grothendieck fundamental group π1(S, y)

pro-represents pointed torsors with constant group coefficients.

In the special case that S = Sp(k) for a field k then the pro-object which is defined

on finite Galois extensions L/k (inside some fixed algebraically closed extension) by

L 7→ EG(L/k) Sp(L)

is the absolute Galois groupoid EG(k) of the field k. The associated pro-object of path

components is the absolute Galois group G(k) of k.
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