Sets of Semi-Commutative Matrices: Part II ${ }^{1}$

By J. Williamson, Johns Hopkins University.

(Received 7th July, 1932. Received in revised form 8th November, 1932. Read 4th November, 1932.)
§ 2. In this section we extend the definition of an E-set, so that it includes sets of the type

$$
\begin{equation*}
E_{i} E_{j}=\omega E_{j} E_{i} ; \quad i<j ; \quad i, j=1,2, \ldots, q \tag{19}
\end{equation*}
$$

where the only restriction on the E_{i} is that they be non-singular. We now consider matrices of the type

$$
\begin{align*}
A=\Sigma a\left(e_{i}\right) E\left(e_{i}\right), & a\left(e_{i}\right)=a\left(e_{1}, e_{2}, \ldots, e_{q}\right), \tag{20}\\
& E\left(e_{i}\right)=E_{1}^{e_{1}} E_{2}^{e_{2}} \ldots E_{q^{q}}^{e_{q}}
\end{align*}
$$

where each e_{i} takes independently the values $0,1, \ldots, n-1$, while the $a\left(e_{i}\right)$ are either complex numbers or else matrices of order r, the product $a\left(e_{i}\right) E\left(e_{i}\right)$, in the latter case, being interpreted as the direct product of the two matrices $a\left(e_{i}\right)$ and $E\left(e_{i}\right)$. We shall call the n^{q} matrices $a\left(e_{i}\right) E\left(e_{i}\right)$ the terms of $A, a\left(e_{i}\right)$ the coefficient of $E\left(e_{i}\right)$, and the set of integers $e_{1}, e_{2}, \ldots, e_{q}$ the exponents of $E\left(e_{i}\right)$. We first prove

Theorem 3. If the matrices $E_{1}, E_{2}, \ldots, E_{q}=E_{2 p}$ form a set of matrices, of order n^{p}, satisfying (19), then a matrix A of the form (20) is zero if, and only if, each a (e_{i}) is zero.

If each $a\left(e_{i}\right)$ is zero, A must be zero, so we have only to show that, if A is zero, every coefficient $a\left(e_{i}\right)$ is zero. Now, corresponding to each term $a\left(e_{i}\right) E\left(e_{i}\right)$ there exists a set of q equations

$$
\begin{equation*}
E_{j} E\left(e_{i}\right) E_{j}^{-1}=\omega^{d_{j}} E\left(e_{i}\right), \quad j=1,2, \ldots, q \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{j} \equiv-e_{1}-e_{2}-\ldots-e_{j-1}+e_{j+1}+\ldots+e_{q}, \quad(\bmod n) \tag{22}
\end{equation*}
$$

[^0]But, since q is even, the congruences (22) possess a unique solution; in fact

$$
e_{f} \equiv d_{f-1}-d_{f-2}+\ldots .+(-1)^{f} d_{1}-d_{f+1}+d_{f+2}-\ldots+(-1)^{f} d_{q}
$$

where

$$
0 \leqq e_{f} \leqq n-1,
$$

and the solutions of (22), for two sets of q integers d_{j}, incongruent modulo n, are distinct. Moreover, corresponding to each term $a\left(e_{i}\right) E\left(e_{i}\right)$, we can define a set of q matrices by means of the recursion formula ${ }^{1}$

$$
\begin{equation*}
A_{j}=\sum_{k=0}^{n-1} \omega^{-k d_{j}} E_{j}^{k} A_{j-1} E_{j}^{-k}, \quad j=1,2, \ldots, q, \tag{23}
\end{equation*}
$$

where $A_{0}=A$. We notice that, if

$$
A_{j-1}=\Sigma b\left(e_{i}\right) E\left(e_{i}\right),
$$

then

$$
A_{j}=n \Sigma^{\prime} b\left(e_{i}\right) E\left(e_{i}\right),
$$

where the accent means that the summation extends only over those terms of A_{j-1} whose exponents satisfy the $j^{\text {th }}$ of the congruences (22). Accordingly

$$
A_{q}=n^{q} \Sigma^{\prime \prime} a\left(e_{i}\right) E\left(e_{i}\right)
$$

where the summation now extends only over those terms of A whose exponents satisfy all of the congruences (22), and, as there is only one such term,

$$
A_{q}=n^{q} a\left(e_{i}\right) E\left(e_{i}\right)
$$

Now if A is zero, A_{q} must be zero, and as $E\left(e_{i}\right)$ is non-singular, $a\left(e_{i}\right)$ must be zero. Thus the theorem is proved.

Corollary. Under the hypotheses of Theorem 3, the $n^{2 p}$ matrices $E\left(e_{i}\right)$ form a basis for the algebra of matrices of order n^{p}, and, in the more general case, every matrix of order $n^{p r}$ can be written uniquely in the form (20).

For, by Theorem 3, the $n^{2 p}$ matrices $E\left(e_{i}\right)$ are linearly independent with respect to the field of complex numbers, and so form a basis for the algebra of matrices of order n^{p}. The second part of the corollary is now an immediate consequence.

[^1]Before proceeding to determine the coefficients $a\left(e_{i}\right)$ of the terms of A in (20), we consider the matrices of the type (20) which satisfy the equations

$$
\begin{equation*}
A E_{i}=\omega E_{i} A, \quad i=1,2, \ldots q \tag{24}
\end{equation*}
$$

and also those which satisfy the equations

$$
\begin{equation*}
A E_{i}=E_{i} A, \quad i=1,2, \ldots q \tag{25}
\end{equation*}
$$

If a matrix A satisfies (24), then A must consist solely of terms whose exponents e_{i} satisfy the congruences (22) where each d_{j} has the value unity. Accordingly, by (23), A reduces to the single term a E_{q+1}, where

$$
E_{q+1}=E_{1}^{-1} E_{2} E_{3}^{-1} E_{4} \ldots E_{q-1}^{-1} E_{q}
$$

Hence, if $a_{1}, a_{2}, \ldots, a_{s}$ form a maximal set of matrices of order r satisfying (19), the matrices

$$
\begin{equation*}
e E_{1}, a_{j} E_{q+1},(i=1,2, \ldots, 2 p ; j=1,2, \ldots, s ;) \tag{26}
\end{equation*}
$$

where e is the unit matrix of order r, form a maximal E-set of matrices of order $n^{p} r$. In particular, if $r \neq 0(\bmod n)$, then $s=1$ and consequently a maximal E-set of matrices of order $n^{p} r, r \neq 0 \bmod n$, contains exactly $2 p+1$ matrices.

Similarly, if A satisfies the equations (25), A must consist of the single term $a E$. But the matrices $\left(e E_{j}\right)^{n}$, where $j=1,2, \ldots, q$, all satisfy (25) and therefore ($\left.e E_{j}\right)^{n}=a_{j} E$.

In particular, if $r=1$, we see that the $n^{\text {th }}$ power, but no lower power, of every matrix of a maximal E-set of matrices, of order n^{p}, is a scalar matrix. Thus, if $r=1$, by multiplication with suitably chosen scalar matrices, we can always take the members of a maximal E-set to be $n^{\text {th }}$ roots of the unit matrix. When this is done we shall say that the set is normalised.

In determining the coefficients $a\left(e_{i}\right)$ of A in (20) we first show that, if $E\left(e_{i}\right) \neq E$, the trace of $E\left(e_{i}\right)$ is zero. For by (21), we have, denoting $w^{-d_{j}} E\left(e_{i}\right) E_{j}^{-1}$ by Q_{j},

$$
E\left(e_{i}\right)=E_{j} Q_{j}=\omega^{d_{j}} Q_{j} E_{j}
$$

where $j=1,2, \ldots ., q$. But since the trace of a product of two matrices is the same as the trace of the product of the matrices in reverse order, we obtain

$$
\operatorname{trace}\left[E\left(e_{i}\right)\right]=\operatorname{trace}\left[E_{j} Q_{j}\right]=\omega^{d}{ }_{j} \text { trace }\left[Q_{j} E_{j}\right]=\operatorname{trace}\left[Q_{j} E_{j}\right]
$$

Accordingly the trace of $E\left(e_{i}\right)$ is zero, unless $d_{j} \equiv 0(\bmod n)$, for $j=1,2, \ldots q$, that is, unless $E\left(e_{i}\right)=E$. Now the matrix $A E\left(e_{i}\right)^{-1}$ has $a\left(e_{i}\right)$ as coefficient of E, so that, if $a\left(e_{i}\right)$ is a complex number,

$$
\operatorname{trace}\left[A E\left(e_{i}\right)^{-1}\right]=\operatorname{trace}\left[a\left(e_{i}\right) E\right]=n^{p} a\left(e_{i}\right)
$$

or

$$
\begin{equation*}
a\left(e_{i}\right)=n^{-p} . \operatorname{trace}\left[A E\left(e_{i}\right)^{-1}\right] . \tag{27}
\end{equation*}
$$

Formula (27) must be somewhat modified when $a\left(e_{i}\right)$ is a matrix of order r. Thus, if the direct product $a\left(e_{i}\right) E\left(e_{i}\right)$ is written as a matrix whose elements are matrices of order n^{p}, it takes the form $\left(a_{j k} E\left(e_{i}\right)\right)$, where $a_{j k}$ is the element in the $j^{\text {th }}$ row and $k^{\text {th }}$ column of $a\left(e_{i}\right)$. Accordingly the matrix $A E\left(e_{i}\right)^{-1}$ has the form ($b_{j k}$) where each matrix $b_{j k}$ is a matrix of order n^{p}. Then by a proof similar to that of the simpler case, it follows that formula (26) must be replaced by

$$
a_{j k}=n^{-p} . \operatorname{trace}\left[b_{j k}\right]
$$

where j and k take the values $1,2, \ldots . r$.
If the matrices E_{i} form an E-set, so do the matrices $G_{i}=B^{-1} E_{i} B$, where B is any non-singular matrix, and the two sets are said to be similar. Conversely we shall now prove

Theorem 4. If E_{i} and $G_{i}, i=1,2, \ldots, 2 m$, are any two normalised E-sets of matrices of order $n^{p} r$, then the two E-sets E_{i} and G_{i} are similar.

We shall prove this theorem by showing that the set E_{i} and the set G_{i} are both similar to the same E-set. We know that there exists a non-singular matrix A, such that $A^{-1} E_{i} A=F_{i}$, where F_{s} is defined by (3) when $s=1$ and by (9) when $s>1$. Let D denote the diagonal block matrix

$$
\operatorname{diag}\left(F_{12}, F_{22} F_{12}, F_{32} F_{22} F_{12}, \ldots, F_{n-1,2} F_{n-2,2} \ldots F_{12}, e\right)
$$

this means that, when D is written as a matrix of matrices, all the component matrices are zero, except those in the principal diagonal, which are the matrices $F_{12}, F_{22} F_{12}$, etc. Then it is easily verified that

$$
D^{-1} F_{1} D=F_{1}=e \cdot \Omega_{1}, \quad D^{-1} F_{2} D=e \cdot \Omega_{2}
$$

where Ω_{1} and Ω_{2} are defined by (7). It now follows from (26) that

$$
D^{-1} F_{3} D=A_{8-2} \cdot \Omega_{1}^{-1} \Omega_{2}, \quad s=3,4, \ldots, 2 m
$$

where the $2 m$ matrices A_{s} form an E-set of matrices of order t / n. If $m=1$, we need proceed no further, since E_{1} and E_{2} have been shown
to be similar to $e \cdot \Omega_{1}$ and $e \cdot \Omega_{2}$ respectively. If $m>1$, we apply the same process to the matrices A_{8} and show that the set A_{8} is similar to the set

$$
e^{\prime} \cdot \Omega_{1}, e^{\prime} \cdot \Omega_{2}, B_{s-2} \cdot \Omega_{1}^{-1} \Omega_{2}, \quad s=3,4, \ldots, 2(m-1)
$$

where e^{\prime} is the unit matrix of order t / n^{2} and the matrices B_{8} form an E-set of matrices of order t / n^{2}. Thus, if $m=2$, the set $E_{1}, E_{2}, E_{3}, E_{4}$ is similar to the set $e \cdot \Omega_{1}, e \cdot \Omega_{2},\left(e^{\prime} \cdot \Omega_{1}\right) \cdot \Omega_{1}^{-1} \Omega_{2},\left(e^{\prime} \cdot \Omega_{2}\right) \cdot \Omega_{1}^{-1} \Omega_{2}$. If, however, $m>2$, we proceed as before with the matrices B_{s} and finally, in m steps, arrive at a standard E-set, expressed in terms of the matrices Ω_{1} and Ω_{2}, similar to the set E_{i}. In the same manner it can be shown that the set G_{i} is similar to the same standard E-set, so that the two sets E_{i} and G_{i} are similar. As an immediate consequence we have the following corollary:
Two maximal normalised E-sets of matrices of order t, where t is divisible by n, are similar.
§3. Groups of periodic collineations. The matrices in any E-set consisting of $2 m$ members generate, under multiplication, a group of order $n^{2 m}$, if two matrices, which differ from each other only by a scalar factor, are considered to represent the same element of the group. Such a group is simply isomorphic with a group of collineations in a space of one dimension less than the order of the matrices in the E-set. Since the $n^{\text {th }}$ power of each matrix is a scalar matrix, the corresponding collineations are periodic, of period a divisor of n, while the fact that any two matrices of the group are semi'commutative means that the two corresponding collineations are commutative. A group of collineations will be said to be periodic of period n, if at least one of its members has an actual period n. We shall now determine the structure of all maximal groups of commutative periodic collineations, of period n, in a space of $t-1$ dimensions ${ }^{1}$.

If T_{1} and T_{2} are two members of a group of commutative collineations of period n in a space of $t-1$ dimensions, T_{1} and T_{2} determine uniquely two matrices E_{1} and E_{2} of order t, satisfying the two equations

$$
\begin{align*}
E_{1}^{n} & =E_{2}^{n}=E \tag{28}\\
E_{1} E_{2} & =k E_{2} E_{1} \tag{29}
\end{align*}
$$

[^2]But it follows from (28) that $E_{1}^{n} E_{2}=E_{2} E_{1}^{n}$, and from (29) that $E_{1}^{n} E_{2}=k^{n} E_{2} E_{1}^{n}$. Hence k is an $n^{\text {th }}$ root of unity. Accordingly, if $T_{1}, T_{2}, \ldots, T_{f}$ are the members of a commutative group of periodic collineations of period n, the elements $E_{1}, E_{2}, \ldots, E_{f}$ of the corresponding group of matrices must satisfy the two conditions

$$
\begin{equation*}
E_{i}^{n}=\lambda_{i} E, \quad E_{i} E_{j}=\omega^{r_{i j}} E_{j} E_{i} \tag{30}
\end{equation*}
$$

where ω is a primitive $n^{\text {th }}$ root of unity and the $r_{i j}$ are positive integers. If $E_{1}, E_{2}, \ldots, E_{s}$ are generators of the group, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ may all have the value unity but then the values of λ_{j} for $j>s$, are determined. We shall call such a group an E-group and notice that to every E-group there corresponds a group of periodic commutative collineations and vice versa.

We shall require the following lemmas.
Lemma 1. In every E-group there exist two matrices E_{1} and E_{2}, such that $E_{1} E_{2}=\rho E_{2} E_{1}$, while $E_{1} E_{k}=\rho^{k_{1}} E_{k} E_{1}$ and $E_{2} E_{k}=\rho^{k_{2}} E_{k} E_{2}$ for every other matrix E_{k} in the group, where ρ is a primitive $m^{\text {th }}$ root of unity, m a divisor of n, and k_{1}, k_{2} are integers.

If $r=r_{12}$ is a minimum value for the exponents $r_{i j}$ of ω in (30), then $r_{1 k}$ and $r_{2 k}$ are integral multiples of r. For, if $r_{1 j}=w r+t$, where $0 \leqq t<r$, then

$$
E_{1} E_{2}^{-w} E_{j}=\rho^{t} E_{2}^{-w} E_{j} E_{1}
$$

since $E_{2}^{-w} E_{j}$ belongs to the group, t must be zero, as otherwise r would not be a minimum value of $r_{i j}$. Similarly it can be shown that $r_{2 j}$ must be an integral multiple of r. But $\omega^{r}=\rho$ where ρ is a primitive $m^{\text {th }}$ root of unity and m is a divisor of n; accordingly the lemma is proved.

Lemma 2. In every maximal E-group, in which not every pair of matrices is commutative, there exist two matrices E_{i} and E_{j}, such that $E_{i} E_{j}=\rho E_{j} E_{i}, E_{i}^{m}=E_{j}^{m}=E$, where ρ is a primitive $m^{\text {th }}$ root of unity.

By lemma 1 there exist in the E-group two matrices E_{1} and E_{2} such that $E_{1} E_{2}=\rho E_{2} E_{1}$ and $E_{1}^{n}=E_{2}^{n}=E$. Accordingly $E_{1}=E_{2}^{-1} \rho E_{1} E_{2}$, so that the latent roots of E_{1} are the same as the latent roots of ρE_{1}. As each latent root of E_{1} is an $n^{\text {th }}$ root of unity, the latent roots of E_{1} can be arranged into sets $\omega_{i}, \omega_{i} \rho, \ldots, \omega_{i} \rho^{m-1}(i=1,2, \ldots, t / m)$ where ω_{i} is an $n^{\text {th }}$ root of unity. If $\omega_{i}=\rho^{8} \omega_{k}$ for any integral value of s, the $i^{\text {th }}$ of these sets coincides with the $k^{\text {th }}$, so that two sets either coincide or else have no member in common. Let the set $\omega_{i}, \omega_{i} \rho, \ldots, \omega_{i} \rho^{m-1}$ be repeated exactly t_{i} times; then, if R_{1} is the
diagonal matrix ($1, \rho, \rho^{2}, \ldots, \rho^{m-1}$) and $K_{i}=\omega_{i} e_{i} \cdot R_{1}$, where e_{i} is the unit matrix of order t_{i}, the latent roots of E_{1} are the same as the latent roots of the diagonal block matrix

$$
\begin{equation*}
F_{1}=\left(K_{1}, K_{2}, \ldots, K_{q}\right), \quad t_{1}+t_{2}+\ldots t_{q}=t^{\prime} m \tag{31}
\end{equation*}
$$

Moreover, if $i \neq j$, no latent root of K_{i} is the same as a latent root of K_{j}, or differs from a latent root of K_{j} by an integral power of ρ. Accordingly there exists a non-singular matrix D such that $D^{-1} E_{k} D=F_{k}$, where F_{1} is defined by (31). If, now, F_{k} is written as ($F_{i j}$), where i and j take the values $1,2, \ldots, q, F_{i j}$ being a matrix of $t_{i} m$ rows and $t_{j} m$ columns, then it follows from the equation $F_{1} F_{k i}=\rho^{d} F_{k} F_{1}$ that $K_{i} F_{i j}=\rho^{d} F_{i j} K_{j}$. But, if $i \neq j$, since K_{i} and $\rho^{d} K^{j}$ have no latent root in common, $F_{i j}$ is the zero matrix, so that F_{k} is a diagonal block matrix $\left(F_{11}, F_{22}, \ldots, F_{q q}\right)$. In particular F_{2} is the diagonal block matrix $\left(M_{1}, M_{2}, \ldots M_{q}\right)$, where $K_{i} M_{i}=\rho M_{i} K_{i}$, i taking the values $1,2, \ldots q$.

By methods similar to those used in the proof of theorem 4, we can find a non-singular matrix G such that

$$
G^{-1} K_{i} G=K_{i}, G^{-1} M_{i} G=N_{i}=B_{i} \cdot R_{2}, G^{-1} F_{i i} G=F_{i i}^{\prime}
$$

where B_{i} is a diagonal matrix whose elements are $n^{\text {th }}$ roots of unity, and R_{2} is the square matrix of order m,

$$
R_{2}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & . & . & . & 0 & 1 \\
1 & 0 & 0 & . & . & . & 0 & 0 \\
0 & 1 & 0 & . & . & . & 0 & 0 \\
. & . & . & . & . & . & . & . \\
0 & 0 & 0 & . & . & . & 0 & 0 \\
0 & 0 & 0 & . & . & . & 1 & 0
\end{array}\right]
$$

Moreover G can be chosen in such a manner that $B_{i} \cdot R_{2}$ becomes a diagonal block matrix ($S_{1}, S_{2}, \ldots, S_{w}$), where each matrix S_{j} is of the form $\omega_{j} e_{j}^{\prime} \cdot R_{2}$ and no latent root of S_{i} is the same as a latent root of S_{j} or differs from a latent root of S_{j} by a power of ρ. Accordingly, since $F_{i i}^{\prime} N_{i}=\rho^{p} N_{i} F_{i i}^{\prime}$, by a proof similar to the above, $F^{\prime}{ }_{i i}$ must also be a diagonal block matrix. We have thus shown that the matrices E_{i}, of the original E-group, can be reduced by the same similarity transformation to the diagonal block matrices $T_{i}=\left(T_{i 1}, T_{i 2}, \ldots, T_{i h}\right)$, where $T_{1 j}=\omega_{j} e_{j} \cdot R_{1}, T_{2 j}=e_{j} \omega_{j}^{\prime} \cdot R_{2}, e_{j}$ being a unit matrix of some order. But the matrices $T_{1}^{\prime}=\left(T_{11}^{\prime}, T_{12}^{\prime}, \ldots, T_{1 h}\right)$ and $T^{\prime}{ }_{2}=\left(T^{\prime}{ }_{21}, T^{\prime}{ }_{22}, \ldots, T^{\prime}{ }_{2 h}\right)$, where $T_{1 j}^{\prime}=e_{j} \cdot R_{1}$ and $T_{2 j}^{\prime}=e_{j} \cdot R_{2}$, are members of any maximal E-group, in which the matrices T_{1} and
T_{2} lie. For, from the equations $T_{k} T_{1}=\rho^{k_{1}} T_{1} T_{k}$ and $T_{k} T_{2}=\rho^{k} T_{2} T_{k}$ it follows immediately that $T_{k} T_{1}^{\prime}=\rho^{k_{1}} T_{1}^{\prime} T_{k}$ and $T_{k} T^{\prime}{ }_{2}=\rho^{k_{z}} T^{\prime}{ }_{2} T_{k}$. Since $\left(T^{\prime}{ }_{1}\right)^{m}=\left(T^{\prime}{ }_{2}\right)^{m}=E$ and $T_{1}{ }_{1} T^{\prime}{ }_{2}=\rho T^{\prime}{ }_{2} T_{1}{ }_{1}$, we may take, for the matrices E_{i} and E_{j}, the matrices in the original E-group, which are similar to T_{1} and T_{2} respectively. Thus the lemma is proved.

If all the matrices in an E-group of matrices of order t are commutative, the group must be simply isomorphic with a subgroup of the group of order n^{t-1}, whose component matrices are all diagonal matrices with $n^{\text {th }}$ roots of unity as their elements, the first element in each matrix being unity. Thus the only type of maximal E-group, in which all the matrices are commutative, is one of order n^{t-1}; in this case every matrix can be reduced simultaneously by a similarity transformation to diagonal form.

If, however, all the matrices in a maximal E-group are not commutative, the minimum value r of $r_{i j}$ in (30) is less than n, so that, by lemmas 1 and 2, there exist in the E-group two matrices E_{1} and E_{2}, such that $E_{1} E_{2}=\rho E_{2} E_{1}$ and $E_{1}^{m}=E_{2}^{m}=E$, where ρ is a primitive $m^{\text {th }}$ root of unity. Then, by Theorem $4, E_{1}$ and E_{2} are similar to the matrices $e^{\prime} \cdot R_{1}$ and $e^{\prime} \cdot R_{2}$, where e^{\prime} is the unit matrix of order $t / m ; R_{1}$ and R_{2} are then obtained from Ω_{1} and Ω_{2} respectively by replacing ω by ρ and n by m. Moreover $R_{1} R_{2}=\rho R_{2} R_{1}$; if $E_{1} E_{k}=\rho^{d_{1}} E_{k} E_{1}$ and $E_{2} E_{k}=\rho^{d_{2}} E_{k} E_{2}$, then E_{k} is similar to the matrix $A_{k} \cdot R_{1}^{e_{1}} R_{2}^{e_{n}}$, where e_{1} and e_{2} are determined uniquely from d_{1} and d_{2} by congruences similar to (22). Accordingly the matrices A_{k} must form an E-group of matrices of order t / m, which must also be maximal since the original E-group is maximal. Thus the original E-group is the direct product of one maximal E-group of matrices of order t / m and another of matrices of order m. If we denote the group of order m^{2}, generated by R_{1} and R_{2}, by $G(m)$, we may say that the original E-group is of type $H \times G(m)$, where H is a maximal E-group of matrices of order t / m. Thus the problem of determining all E-groups of matrices of order t, is reduced to that of determining all E-groups of matrices of order t / m.

But the matrices in a maximal E-group are either all commutative, in which case H is of order $n^{t / m-1}$, or else H is the direct product of a group $G\left(m_{1}\right)$ and a group H_{1}, where H_{1} is a maximal E-group of matrices of order $t / m m_{1}$. Thus, by repeated applications of this process, we are led to the conclusion that if $m_{1}, m_{2}, \ldots, m_{k}$ are k divisors (not necessarily distinct) of n, and if

$$
\begin{equation*}
t=m_{1} m_{2} \ldots m_{k} s \tag{32}
\end{equation*}
$$

where s is a positive integer, then there exists a maximal E-group $G\left(m_{1}, m_{2} \ldots m_{k}\right)$ of matrices of order t, which is the direct product of a group $G\left(m_{1}\right)$ of order m_{1}^{2}, a group $G\left(m_{2}\right)$ of order m_{2}^{2}, \ldots, a group $G\left(m_{k}\right)$ of order m_{k}^{2} and a group H of order n^{s-1}, so that the order of $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ is $m_{1}^{2} m_{2}^{2} \ldots m_{k}^{2} n^{s-1}$. Moreover every maximal E-group of matrices of order t is simply isomorphic to a group $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ for some set m_{i} of divisors of n which satisfy (32).

In the group $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ the s^{n-1} matrices in the subgroup H are permutable with every matrix in the group, while no other matrix in $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ has this property. Moreover, since the matrices in H can all be reduced simultaneously to diagonal form, it follows that the matrices in any E-group, simply isomorphic to $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, can be reduced simultaneously by a similarity transformation to diagonal block matrices, whose blocks are matrices of order t / s.

We now proceed to show that two different sets m_{i} of divisors of n, both of which satisfy (32) with the same value for s, do not determine two groups $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ which are necessarily distinct.

To do this we consider a group G which is the direct product of two groups $G\left(m_{i}\right)$ and $G\left(m_{j}\right)$. If w is the greatest common divisor of m_{i} and m_{j}, so that $m_{i}=w g$ and $m_{j}=w f$, where g and f are relatively prime, the least common multiple of m_{i} and m_{j} is $w f g=m$. Then, if ρ is a primitive $m^{\text {th }}$ root of unity, ρ^{f} is a primitive $m_{i}^{\text {th }}$ root of unity, and ρ^{g} a primitive $m_{j}^{\text {th }}$ root. Accordingly in $G\left(m_{i}\right)$ there exist two matrices E_{1} and E_{2} and in $G\left(m_{j}\right)$ two matrices F_{1} and F_{2}, such that $E_{1} E_{2}=\rho^{f} E_{2} E_{1}, F_{1} F_{2}=\rho^{g} F_{2} F_{1}, E_{i} F_{j}=F_{j} E_{i}$, where i and j take the values 1, 2. Now, since f and g are relatively prime, there exist two integers a and β satisfying the equation $\alpha f+\beta g=1$. Hence the two matrices $E_{1} F_{1}$ and $E_{2}^{\alpha} F_{2}^{\beta}$, which both lie in G, satisfy the condition

$$
\left(E_{1} F_{1}\right)\left(E_{2}^{\alpha} F_{2}^{\beta}\right)=\rho\left(E_{2}^{\alpha} F_{2}^{\beta}\right)\left(E_{1} F_{1}\right)
$$

Accordingly, by our previous results, G must be the direct product of a group $G(m)$ and some other group, which must necessarily be $G(w)$. Thus the integers m_{i} in $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ can always be chosen in such a way that, if m_{i} and m_{j} are any two of them, then either m_{i} is a divisor of m_{j} or else m_{j} is a divisor of m_{i}. Moreover, if the group $G(r) \times G(s)$ is simply isomorphic with the group $G\left(r^{\prime}\right) \times G\left(s^{\prime}\right)$, where s is a divisor of r and s^{\prime} of r^{\prime}, then $r=r^{\prime}$ and $s=s^{\prime}$. For,
if not, we may suppose $r>r^{\prime}$; then in $G(r) \times G(s)$ there are at least two elements of order r, while in $G\left(r^{\prime}\right) \times G\left(s^{\prime}\right)$ every element is of order not exceeding r^{\prime}; and this is impossible. Hence we have the following result:
Every maximal E-group of matrices of order t is simply isomorphic to one and only one group $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, where m_{i} is a divisor of m_{i-1}, and $i=2,3, \ldots, k$.

It should be noted that m_{i} is a divisor of m_{i-1}, not a proper divisor, so that the case in which m_{i} coincides with m_{i-1} is not excluded.

As an alternative form of the last result we have the following: Every maximal E-group of matrices of order t is simply isomorphic to one and only one group $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, where each m_{i} is a power of a prime.

For, if a and b are two relatively prime integers whose product is m, it is easily shown that the group $G(m)$ is the direct product of two groups $G(a)$ and $G(b)$. Therefore, if $m=p_{1}^{q_{1}} p_{2}^{q_{2}} \ldots p_{h}^{g^{h}}$, where $p_{1}, p_{2}, \ldots, p_{h}$ are the distinct prime factors of $m, G(m)$ is the direct product of h groups $G\left(p_{i}^{q}\right)$.

In conclusion we state our results as a theorem on groups of commutative collineations of period n :

Theorem 5. Every maximal group of commutative periodic collineations of period n in a space of $t-1$ dimensions is simply isomorphic to an E-group of type $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, where the m_{i} form a set of divisors of n satisfying (32), and such that m_{i} is a divisor of m_{i-1}, $i=2,3, \ldots, k$. Corresponding to each group $G\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, satisfying the above conditions, there is one and only one projectively distinct collineation group.

[^0]: ${ }^{1}$ This is the continuation of a paper by the same author, pp. 179-188 of this volume. The numbering of sections, equations, and theorems follows on after that of the previous paper.

[^1]: ${ }^{1}$ In this formula E_{j} is written for the matrix $e E_{j}$ where e is the unit matrix of order r.

[^2]: ${ }^{1}$ This problem was solved for $n=2$ by E. Study, Göttinger Nachrichten (1912), 452-479.

