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§ 2. In this section we extend the definition of an E-set, so that it
includes sets of the type

(19) EiE^uEjEt; i<j; i, j = 1, 2, . . . . , q,

where the only restriction on the E( is that they be non-singular. We
now consider matrices of the type

(20) i = S» (ef) E(e*), a (et) = a (e1; e2, . . . . , eq),

E (ej) = E\' E% . . . . E ,t",
where each et takes independently the values 0 , 1 , . . . . , » — 1, while
the a (ei) are either complex numbers or else matrices of order r, the
product a (e,) E (ej, in the latter case, being interpreted as the direct
product of the two matrices a (ej and E (e^). We shall call the
n9 matrices a (e,) 2? (e,) the terms of A, a(et) the coefficient of E(ei),
and the set of integers eu e2, ...., eq the exponents of E(et). We
first prove

THEOREM 3. / / the matrices Eu E2 ,Eg = E2p form a set of
matrices, of order np, satisfying (19), then a matrix A of the form (20)
is zero if, and only if, each a (e,) is zero.

If each a (et) is zero, A must be zero, so we have only to show
that, if A is zero, every coefficient a (et) is zero. Now, corre-
sponding to each term a (e^) E (et) there exists a set of q equations

(21) Ei E (e,) Ef1 = ufi E (e,), j = 1, 2, q,

where

(22) . dj = — ex — e2 — e^_x + ej+1 + + eq, (mod n).

1 This is the continuation of a paper by the same author, pp. 179-188 of this
volume. The numbering of sections, equations, and theorems follows on after that
of the previous paper.
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But, since q is even, the congruences (22) possess a unique
solution; in fact

e/ = d / _ 1 - d / _ 2 + + ( — 1)'d1 - df+1 + df+2 + ( - \)f dq,
where

0^ef^n — l,

and the solutions of (22), for two sets of q integers dj, incongruent
modulo n, are distinct. Moreover, corresponding to each term
a (ef) E (e,i), we can define a set of q matrices by means of the recursion
formula1

(23) Aj = "s1«-«,- E) A^ EJ\ j = 1, 2, . . . . . q,

where AQ = A. We notice that, if

Aj_1=J:b(ei)E(ei),
then

where the accent means that the summation extends only over those
terms of Aj_Y whose exponents satisfy the /* of the congruences (22).
Accordingly

Aq=n"X"a(ei)E(ei),

where the summation now extends only over those terms of A whose
exponents satisfy all of the congruences (22), and, as there is only
one such term,

Aq = n"a(ei)E(ei).

Now if A is zero, Aq must be zero, and as E (et) is non-singular, a (et)
must be zero. Thus the theorem is proved.

COROLLARY. Under the hypotheses of Theorem 3, the n2p matrices
E (ei) form a basis for the algebra of matrices of order np. and. in the
more general case, every matrix of order npr can be written uniquely in
the form (20).

For, by Theorem 3, the n~p matrices E (et) are linearly inde-
pendent with respect to the field of complex numbers, and so form a
basis for the algebra of matrices of order np. The second part of the
corollary is now an immediate consequence.

1 In this formula Ej is written for the matrix eEj where e is the unit matrix of
order r.
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Before proceeding to determine the coefficients a (e,) of the terms
of A in (20), we consider the matrices of the type (20) which satisfy
the equations
(24) AEi = uiEiA, i = l, 2, q,

and also those which satisfy the equations

(25) AEi=E,A, i =1,2, .... q.

If a matrix A satisfies (24), then A must consist solely of terms
whose exponents e,- satisfy the congruences (22) where each dj has
the value unity. Accordingly, by (23), A reduces to the single term
a Eq+1, where

El 77T — 1 ET E T — 1 E 1 ET — 1 ET

Hence, if alt a2, ...., as form a maximal set of matrices of order r
satisfying (19), the matrices

(26) eE1,aiEg+1, (* = 1, 2, . . . . , 2p; j = 1, 2 , s;)

where e is the unit matrix of order r, form a maximal E-set of matrices
of order npr. In particular, if r=(=0 (mod n), then 5 = 1 and
consequently a maximal E-set of matrices of order npr, r =̂= 0 mod n,
contains exactly 2p + 1 matrices.

Similarly, if A satisfies the equations (25), A must consist of the
single term aE. But the matrices (eEj)n, where j = 1, 2, . . . . , q, all
satisfy (25) and therefore (eE^n = ai E.

In particular, if r = 1, we see that the nth power, but no lower power,
of every matrix of a maximal E-set of matrices, of order np, is a scalar
matrix. Thus, if r = 1, by multiplication with suitably chosen scalar
matrices, we can always take the members of a maximal E-set to be
nth roots of the unit matrix. When this is done we shall say that
the set is normalised.

In determining the coefficients a(e,) of A in (20) we first show
that, if E(et)=^E, the trace of E (et) is zero. For by (21), we have,
denoting w~di E (et) Ef1 by Qjt

where j = 1, 2, ...., q. But since the trace of a product of two
matrices is the same as the trace of the product of the matrices in
reverse order, we obtain

trace [E (e^] = trace [E, Qj] = a/*,- trace [^ Ej] = trace \Q§ Eft.
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Accordingly the trace of E (ej) is zero, unless dj = 0 (mod n), for
j = 1, 2, . . . . q, that is, unless E (et) = E. Now the matrix A E (e,)"1

has a (et) as coefficient of E, so that, if a (et) is a complex number,

trace [A E (e*)-1] = trace [a (eJE] = mPa (et),
or
(27) a{et) = n-P .txa,ce[AE{ei)-

1].

Formula (27) must be somewhat modified when a (et) is a matrix
of order r. Thus, if the direct product a (e£) E (ê ) is written as a
matrix whose elements are matrices of order np, it takes the form
(ajk E (ei)), where aik is the element in the j t b row and ka> column
of a(e,). Accordingly the matrix AE(ei)~

1 has the form (bjk) where
each matrix bjk is a matrix of order np. Then by a proof similar
to that of the simpler case, it follows that formula (26) must be
replaced by

ajk == n~p . t race [bjk],

where j and k take the values 1, 2, . . . . r.

If the matrices Et form an iJ-set, so do the matrices Oi=B~1 EtB,
where B is any non-singular matrix, and the two sets are said to be
similar. Conversely we shall now prove

THEOKEM 4. / / J?j and Oi, i = 1, 2, . . . . , 2m, are any two normalised
E-sets of matrices of order npr, then the two E-sets Et and Gt are
similar.

We shall prove this theorem by showing that the set E{ and the
set G{ are both similar to the same i?-set. We know that there exists
a non-singular matrix A, such that A~1EiA = Ft, where F8 is
defined by (3) when s = 1 and by (9) when s > 1. Let D denote the
diagonal block matrix

diag(-f7
12, F22F12, F32F22F12, ...., Fn_lt2 Fn_2t2 . . . . F12, e);

this means that, when D is written as a matrix of matrices, all the
component matrices are zero, except those in the principal diagonal,
which are the matrices F12, F22F12, etc. Then it is easily verified
that

D~1F1D = F1 = e-Q1, D"1 F2D = e • Q2,

where Qi and Q2 are defined by (7). It now follows from (26) that

Z>-1^sZ) = ^ s _ 2 -Qr 1 Q 2 , s = 3 , 4, ....,2m,

where the 2m matrices As form an E-set of matrices of order t/n. If
m = 1, we need proceed no further, since Ex and E2 have been shown
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to be similar to e • Q1 and e • Q2 respectively. If m > 1, we apply the
same process to the matrices As and show that the set Aa is similar
to the set

e'- Qu e'- Q2, B,_2. Of1 O2, s = 3, 4, . . . . . 2 (m - 1),

where e' is the unit matrix of order tjn- and the matrices Bs form an
2?-set of matrices of order tin2. Thus, if m = 2, the set Ex, E2, Es, Et

is similar to the set e • Qu e • Q2, (e' • Ox) • Qf1 O>> (e' • Q2)' Qf1 ^2- H.
however, m > 2, we proceed as before with the matrices Bg and
finally, in m steps, arrive at a standard .S-set, expressed in terms of
the matrices Qi and D2, similar to the set Et. In the same manner
it can be shown that the set Gt is similar to the same standard i?-set.
so that the two sets Et and G( are similar. As an immediate conse-
quence we have the following corollary:

Two maximal normalised E-sets of matrices of order t, where t is divisible
by n, are similar.

§ 3. Groups of periodic collineations. The matrices in any Eset
consisting of 2m members generate, under multiplication, a group of
order n2m, if two matrices, which differ from each other only by a
scalar factor, are considered to represent the same element of the
group. Such a group is simply isomorphic with a group of collinea-
tions in a space of one dimension less than the order of the matrices
in the E-set. Since the nth power of each matrix is a scalar matrix,
the corresponding collineations are periodic, of period a divisor of
n, while the fact that any two matrices of the group are semi-
commutative means that the two corresponding collineations are
commutative. A group of collineations will be said to be periodic of
period n, if at least one of its members has an actual period n. We
shall now determine the structure of all maximal groups of commu-
tative periodic collineations, of period n, in a space of t—1
dimensions1.

If T-L and T2 are two members of a group of commutative
collineations of period n in a space of t — 1 dimensions, Tx and T2

determine uniquely two matrices I?, and E2 of order t, satisfying the
two equations

(28) E'l = E'i = E,

(29) E1E2 = kE2Ei.

1 This problem was solved for n = 2 by E. Study, Gfjttinger Nachrichten (1912),
452-479.
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But it follows from (28) that E\E2 = E2E\, and from (29) that
E" E2 = k" E2 E'l. Hence k is an nth root of unity. Accordingly, if
Tu T2, • •.., Tf are the members of a commutative group of periodic
collineations of period n, the elements Ex, E2 , Ef of the corre-
sponding group of matrices must satisfy the two conditions

(30) E'l = \ E, Et Ej = u'vEj E(,

where co is a primitive nth root of unity and the ry are positive integers.
If Ex, E2, ...., Es are generators of the group, A1( A2, . . . . , As may all
have the value unity but then the values of A,- for j > s, are determined.
We shall call such a group an .E-group and notice that to every
i?-group there corresponds a group of periodic commutative collinea-
tions and vice versa.

We shall require the following lemmas.

LEMMA 1. In every E-group there exist two matrices Ex and E%, such
that Ex E2 = pE2 Ex, while Ex Ek = pk> Ek Ex and E2 Ek = pk~- Ek E2 for
every other matrix Ek in the group, where p is a primitive mth root of
unity, m a divisor of n, and k1} k2 are integers.

If r = r12 is a minimum value for the exponents ry of a> in (30),
then ru and r2k are integral multiples of r. For, if rXj = wr+t, where
0 5S t < r, then

Ex E2 Ej = pl E% Ej Ei;

since E2
wEj belongs to the group, t must be zero, as otherwise r

would not be a minimum value of ry. Similarly it can be shown that
r2j must be an integral multiple of r. But of = p where p is a primitive
mth root of unity and m is a divisor of n; accordingly the lemma is
proved.

LEMMA 2. In every maximal E-group, in which not every pair of
matrices is commutative, there exist two matrices E{ and Ej, such that
E{ Ej = pEj E{, Ef = Ef = E, where p is a primitive mth root of unity.

By lemma 1 there exist in the 2?-group two matrices Ex and E2

such that EiE2=pE2E1 and El =E\ =E. Accordingly EX=E2
X pExE2,

so that the latent roots of Ex are the same as the latent roots of pEx.
As each latent root of E1 is an nth root of unity, the latent roots of
Ei can be arranged into sets CDU u^p, . . . . . tOj-p1"-1 (i = 1, 2, . . . . . t/m)
where o>£ is an nth root of unity. If w; = ps o)k for any integral value
of s, the ith of these sets coincides with the kth, so that two sets
either coincide or else have no member in common. Let the set
u>i, cufp, . . . . . ojjp™-1 be repeated exactly tt times; then, if Rx is the
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diagonal matrix (1, p, p2, pm~1) and Kt = â  et • Ru where et is the
unit matrix of order tit the latent roots of Ex are the same as the
latent roots of the diagonal block matrix

(31) F1 = (K1,K2,....,Kq), h + t.2+ ....tq = tjm.

Moreover, if i =j= j , no latent root of Kt is the same as a latent root
of Kj, or differs from a latent root of Kj by an integral power of
p. Accordingly there exists a non-singular matrix D such that
D~xEkD = Fk, where ^ is defined by (31). If, now, Fk is written
as {Fjj), where i and j take the values 1, 2, . . . . , q, Ftj being a matrix
of ^m rows and t^m columns, then it follows from the equation
F1 Fk=pd Fk Fx that Kl Fii=pd F{j Kj. But, if i =(=j, since Kt and pd K>
have no latent root in common, Fti is the zero matrix, so that Ft is a
diagonal block matrix (Fn, F22, . . . . , Fqq). In particular F2 is the
diagonal block matrix (Mlt M2, . . . . Mq), where KiMi= pM^K^,
i taking the values 1, 2, . . . . q.

By methods similar to those used in the proof of theorem 4, we
can find a non-singular matrix G such that

G-1 KiG = Ku G-1 MiG= Nt = Bt • B2, G'1 Fa G = F'u,

where Bt is a diagonal matrix whose elements are nth roots of unity,
and R2 is the square matrix of order m,

0
1
0

0
0

0
0
1

0
0

0 . .
0 . .
0 . .

0 . .
0 . .

. 0

. 0

. 0

. 0

. 1

1
0
0

0
0

Moreover G can be chosen in such a manner that Bt • R2 becomes a
diagonal block matrix (Slt S2, . . . . . Sw), where each matrix Sj is of
the form a>3- e'j • R2 and no latent root of St is the same as a latent
root of Sj or differs from a latent root of Sj by a power of p.
Accordingly, since F'u Nt = pv Nt F'u, by a proof similar to the above,
F'u must also be a diagonal block matrix. We have thus shown
that the matrices Eu of the original .E-group, can be reduced by the
same similarity transformation to the diagonal block matrices

Tt = (Ta, Ti2 , Tih), where Tlf= Wj e, • Ru T2j=ej«', • R2, e, being a
unit matrix of some order. But the matrices T'1=-=(T\1, T'12, .. .., T'u)
and T'2 = (T'21, T'22, , T'^), where T\} = e3 • R1 and T'2j = Sj • R2,
are members of any maximal .E-group, in which the matrices T1 and
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T2 lie. For, from the equations Tk Tx = P
k> Tx Tk and T,. T2=P

k-- T2 Tk

it follows immediately that Tk T\ = / • T\ Tk and Tk T'2 = P
k~- T'2 Tk.

Since (T\)m = (T'2)
m = E and T\ T'2 = PT'2 T\, we may take, for the

matrices i?j and Ej, the matrices in the original i?-group, which are
similar to T1 and T2 respectively. Thus the lemma is proved.

If all the matrices in an 2?-group of matrices of order t are
commutative, the group must be simply isomorphic with a subgroup
of the group of order n'"1, whose component matrices are all diagonal
matrices with nth roots of unity as their elements, the first element
in each matrix being unity. Thus the only type of maximal E-group,
in which all the matrices are commutative, is one of order nl~x; in this
case every matrix can be reduced simultaneously by a similarity
transformation to diagonal form.

If, however, all the matrices in a maximal iJ-group are not
commutative, the minimum value r of rtj in (30) is less than n, so
that, by lemmas 1 and 2, there exist in the 2£-group two matrices
E1 and E2, such that E1E2 = PE2E1 and Ef = Ef = E, where p is a
primitive mth root of unity. Then, by Theorem 4, Ex and E2 are
similar to the matrices e' • Rx and e' • R2, where e' is the unit matrix
of order t/m; i?x and R2 are then obtained from Qx and Q2 respectively
by replacing OJ by P and n by TO. Moreover Rx R2 = PR2 R±; if
Ex Ek = P

d' Ek Ex and E2 Ek = P
d-- Ek E2, then Ek is similar to the matrix

Ak • R{' R2-, where ex and e2 are determined uniquely from a\ and d2 by
congruences similar to (22). Accordingly the matrices Ak must form
an i?-group of matrices of order t/m, which must also be maximal
since the original JE/-group is maximal. Thus the original .E-group is
the direct product of one maximal .©-group of matrices of order t/m
and another of matrices of order m. If we denote the group of order
ra2, generated by Rx and R2, by G (TO), we may say that the original
S-group is of type H x G (TO), where H is a maximal 2?-group of
matrices of order t/m. Thus the problem of determining all .B-groups
of matrices of order t, is reduced to that of determining all .©-groups
of matrices of order t/m.

But the matrices in a maximal 2?-group are either all commuta-
tive, in which case H is of order nttm~1, or else H is the direct product
of a group G (TOX) and a group Hlt where Hi is a maximal .E-group of
matrices of order t/mmx. Thus, by repeated applications of this
process, we are led to the conclusion that if TOJ, m2 , mk are k
divisors (not necessarily distinct) of n, and if

(32) t — m1m2 .. .. mks
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where s is a positive integer, then there exists a maximal E-group
G (mi, m2 . . . . mk) of matrices of order t, which is the direct product of a
group G (mx) of order m\, a group G (m^) of order m\, ...., a group
G(mk) of order m\ and a group H of order ns~1, so that the order of
G (mx, m2, . . . . , mk) is m\m\ . . . . m\n*'1. Moreover every maximal
E-group of matrices of order t is simply isomorphic to a group
G (mi, m2 »%•) for some set mt of divisors of n which satisfy (32).

In the group G(mu m2, . . . . , mk) the sn~1 matrices in the sub-
group H are permutable with every matrix in the group, while no
other matrix in G (mlt m2 , mk) has this property. Moreover,
since the matrices in H can all be reduced simultaneously to diagonal
form, it follows that the matrices in any .E-group, simply isomorphic
to G (mu m2, mk), can be reduced simultaneously by a similarity
transformation to diagonal block matrices, whose blocks are matrices
of order t/s.

We now proceed to show that two different sets mt of divisors
of n, both of which satisfy (32) with the same value for s, do not
determine two groups G (mx, m^, . . . . . mk) which are necessarily
distinct.

To do this we consider a group G which is the direct product of
two groups G (m{) and G (ra,,). If w is the greatest common divisor of
m,- and m,j, so that m{ = wg and m, = wf, where g and / are relatively
prime, the least common multiple of m̂  and m., is wfg = m. Then, if
p is a primitive mth root of unity, pf is a primitive m^ root of unity,
and pg a primitive m/h root. Accordingly in G (m^ there exist two
matrices Et and E2 and in G (m3) two matrices Fi and F2, such that
E1E2 = p*E2Ex, FXF2 = pf>F2F1, EtFj = FjEi} where i and j take
the values 1, 2. Now, since / and g are relatively prime, there exist
two integers a and j3 satisfying the equation af + fig = 1. Hence
the two matrices Ex Fx and E\ F^, which both lie in G, satisfy the
condition

(EiFi) (El F%)=p (El Fi) (Ex Fx).

Accordingly, by our previous results, G must be the direct product
of a group G (m) and some other group, which must necessarily be
G(w). Thus the integers mi in G(mx, m2, . . . . , mk) can always be
chosen in such a way that, if m{ and wij are any two of them, then
either mt is a divisor of m^ or else m^ is a divisor of mt. Moreover, if
the group G(r) xG (s) is simply isomorphic with the group G(r') xG(s'),
where s is a divisor of r and s' of r', then r = r' and s = s'. For,
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if not, we may suppose r > r'; then in G (r) xG(a) there are at least
two elements of order r, while in G (r') xG(s') every element is of
order not exceeding r'; and this is impossible. Hence we have the
following result:
Every maximal E-group of matrices of order t is simply isomorphic to
one and only one group G (TO1( m2, . . . . , mk), where mt is a divisor of
»»,-_!, and i = 2, 3, . ..., k.

I t should be noted that mt is a divisor of m ^ j , not a proper
divisor, so that the case in which mt coincides with mi^1 is not
excluded.

As an alternative form of the last result we have the following:
Every maximal E-group of matrices of order t is simply isomorphic to
one and only one group G {mly m2, . . . . , mk), where each mt is a power
of a prime.

For, if a and b are two relatively prime integers whose product
is m, it is easily shown that the group G (m) is the direct product of
two groups G (a) and G (ft). Therefore, if m = p\l p"tf . . . . ppi, where
Pit P2y • • • •. Ph a r e the distinct prime factors of m, G (TO) is the direct
product of h groups G {p\i).

In conclusion we state our results as a theorem on groups of
commutative collineations of period n:

THEOREM 5. Every maximal group of commutative periodic collinea-
tions of period n in a space of t — 1 dimensions is simply isomorphic to
an E-group of type G (m1; m2, ...., mk), where the m{ form a set of
divisors of n satisfying (32), and such that mt is a divisor of m^^
i — 2, 3, . . . ., k. Corresponding to each group G(mu m2 , mk),
satisfying the above conditions, there is one and only one protectively
distinct collineation group.
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