
JFP 25, e1, 16 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000040

1

PhD Abstracts

GRAHAM HUTTON

University of Nottingham, Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year, but there

is currently no common location in which to promote and advertise the resulting

work. The Journal of Functional Programming would like to change that!

As a service to the community, JFP recently launched a new feature, in the form

of a regular publication of abstracts from PhD dissertations that were completed

during the previous year. The abstracts are made freely available on the JFP website,

i.e. not behind any paywall, and do not require any transfer for copyright, merely a

license from the author. A dissertation is eligible if parts of it have or could have

appeared in JFP, that is, if it is in the general area of functional programming. The

abstracts are not reviewed.

We are delighted to publish 12 abstracts in this second round, and hope that

JFP readers will find many interesting dissertations in this collection that they may

not otherwise have seen. If a student or advisor would like to submit a dissertation

abstract for publication in this series, please contact the editor for further details.

Graham Hutton

PhD Abstract Editor

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


2 G. Hutton

Erasable coercions: A unified approach to type systems

JULIEN CRETIN

Université Paris-Diderot - Paris VII, Paris, France

Date: January 2014; Advisor: Didier Rémy
URL: http://tel.archives-ouvertes.fr/tel-00940511

Functional programming languages, like OCaml or Haskell, rely on the lambda

calculus for their core language. Although they have different reduction strategies

and type system features, their proof of soundness and normalization (in the absence

of recursion) should be factorizable. This thesis does such a factorization for

theoretical type systems featuring recursive types, subtyping, bounded polymor-

phism and constraint polymorphism. Interestingly, soundness and normalization for

strong reduction imply soundness and normalization for all usual strategies. Our

observation is that a generalization of existing coercions permits to describe all type

system features stated above in an erasable and composable way. We illustrate this

by proposing two concrete type systems: first, an explicit type system with a restricted

form of coercion abstraction to express subtyping and bounded polymorphism; and

an implicit type system with unrestricted coercion abstraction that generalizes the

explicit type system with recursive types and constraint polymorphism – but without

the subject reduction property. A side technical result is an adaptation of the step-

indexed proof technique for type-soundness to calculi equipped with a strong notion

of reduction.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


PhD Abstracts 3

Functional techniques for representing and specifying software

DOMINIQUE DEVRIESE

Katholieke Universiteit Leuven, Leuven, Belgium

Date: January 2014; Advisor: Frank Piessens
URL: https://lirias.kuleuven.be/bitstream/123456789/425797/1/thesis.pdf

All softwares are represented as source code in a programming language. The

programming language defines the meaning or semantics of the code, for example,

its operational behaviour. Computational source code is often accompanied by

additional specifications that define how the source code should be interpreted or

provide additional information about the software’s semantics. They make it possible

for programmers to express and verify that their software has the intended semantics

and to express inter-component semantic assumptions. Good representations and

specifications of software components are crucial for efficiently producing software

that is reliable, efficient and secure, and for preserving these qualities during the

software’s evolution. Many types of software components and their desired semantic

properties can be challenging to represent and specify. In this work, I contribute

novel functional techniques for the representation and specification of four types of

software components which are as follows:

Ad hoc polymorphic functions: Functions whose behaviour depends on the types

of their arguments or result. I present instance arguments: a type system extension

for representing ad hoc polymorphic functions in the dependently-typed program-

ming language Agda. Compared to existing proposals, instance arguments do not

introduce an additional structuring concept and ad hoc polymorphic functions using

them are fully first-class. Furthermore, they avoid introducing a separate, powerful

form of type-level computation and existing Agda libraries using records do not

need modifications to be used with them. My implementation has been part of

Agda since version 2.3.0 and I demonstrate a variety of applications of instance

arguments.

Context-free grammars: A standard way to define the syntax of formal languages. I

present a technique for representing context-free grammars in an embedded domain-

specific language. It avoids the restrictions of existing parser combinator libraries

using a novel explicit representation of recursion based on advanced type system

techniques in the Haskell programming language. As a byproduct, grammars are

decoupled from sets of semantic actions. On the flip side, the approach requires

the grammar’s author to provide a type- and value-level encoding of the grammar’s

domain and I can provide only a limited form of constructs like many. I demonstrate

the approach with five grammar algorithms, including a pretty-printer, a reachability

analysis, a translation of quantified recursive constructs to standard ones, and an

implementation of the left-corner grammar transform. This work forms the basis of

my grammar-combinators parsing library.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


4 G. Hutton

Meta-programs: Programs that generate or manipulate other programs. I present a

novel set of meta-programming primitives for use in a dependently-typed functional

language. The meta-programs’ types provide strong and precise guarantees about

the meta-programs’ termination, correctness and completeness. The system supports

type-safe construction and analysis of terms, types and typing contexts. Unlike

alternative approaches, meta-programs are written in the same style as normal

programs and use the language’s standard functional computational model. I

formalize the new meta-programming primitives, implement them as an extension of

Agda, and provide evidence of usefulness by means of two compelling applications

in the fields of datatype-generic programming and proof tactics.

Effect polymorphic software: Programs that support arbitrary implementations of

effectful Application Program Interface (APIs) and only produce effects through

those implementations. Static effectful APIs and global mutable state in object-

oriented programming languages make it hard to modularly control effects. Object-

capability (OC) languages solve this by enforcing that effects can only be triggered

by components that hold a reference to the object representing the capability to

do so. I study this encapsulation of effects through a formal translation to a typed

functional calculus with higher-ranked polymorphism (I use a subset of Haskell for

presentation). Based on an informal view of effect-polymorphism as the fundamental

feature of OC languages, I translate an OC calculus to effect-polymorphic Haskell

code, i.e. computations that are universally quantified over the monad in which they

produce effects. The types of my translations assert the OC property and I can

show and exploit this using Reynolds’ parametricity theorem. An important new

insight is that current OC languages and formalisations leave one effect implicitly

available to all code, without a capability: the allocation of new mutable state;

adding a capability for it has important theoretical and practical advantages. My

work establishes a new link between OC languages and the well-studied fields of

functional programming and denotational semantics.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


PhD Abstracts 5

Effective aspects: A typed monadic model to control and reason about
aspect interference

ISMAEL FIGUEROA

Universidad de Chile, Chile and École des Mines de Nantes, France

Date: April 2014; Advisor: Éric Tanter, Nicolas Tabareau and Mario Südholt
URL: http://www.dart-europe.eu/full.php?id=1010984

Aspect-oriented programming (AOP) aims to enhance modularity and reusability

in software systems by offering an abstraction mechanism to deal with crosscutting

concerns. However, in most general-purpose aspect languages aspects have almost

unrestricted power, eventually conflicting with these goals. In this work, we present

EffectiveAspects: a novel approach to embed the pointcut/advice model of aspect-

oriented programming in a statically-typed functional programming language like

Haskell. Our work comprises two main contributions.

First, we define a monadic embedding of the full pointcut/advice model of aspect-

oriented programming. Type soundness is guaranteed by exploiting the underlying

type system, in particular phantom types and a new anti-unification type class. In

this model aspects are first-class, can be deployed dynamically, and the pointcut

language is extensible, therefore combining the flexibility of dynamically-typed

aspect languages with the guarantees of a static type system. Monads enable us

to directly reason about computational effects both in aspects and base programs

using traditional monadic techniques. Using this we extend Aldrich’s notion of

open modules with effects, and also with protected pointcut interfaces to external

advising. These restrictions are enforced statically using the type system. Also, we

adapt the techniques of EffectiveAdvice, a mixin-based model of advice developed by

Schrijvers, Oliveira and Cook, to reason about and enforce control flow properties;

and to control effect interference by restricting access to the different layers of the

monad stack, using a parametricity-based approach. Moreover, we illustrate that

the parametricity-based approach falls short in the presence of multiple aspects and

propose a different approach using monad views, a novel technique for handling the

monad stack, developed by Schrijvers and Oliveira. Then, we exploit the properties

of our model to enable the modular construction of new semantics for aspect scoping

and weaving.

Our second contribution builds upon MRI, which stands for modular reasoning

for incremental programming, a powerful model that extends EffectiveAdvice in

order to reason about mixin-based composition of effectful components and their

interference, based on equational reasoning, parametricity and algebraic laws about

monadic effects. Our contribution is to show how to reason about interference in

the presence of unrestricted quantification through pointcuts. We show that global

reasoning can be compositional, which is a key for the scalability of the approach

in the face of large and evolving systems. We prove a general equivalence theorem

that is based on a few conditions that can be established, reused and adapted

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


6 G. Hutton

separately as the system evolves. The theorem is defined for an abstract monadic,

aspect-oriented programming model; we illustrate its use with a simple version of

the model just described. This work brings type-based reasoning about effects for the

first time in the pointcut/advice model, in a framework that is both expressive and

extensible. The framework is well-suited for development of robust aspect-oriented

systems as well as being a research tool for experimenting and reasoning about new

aspect semantics.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


PhD Abstracts 7

Analysis and synthesis of inductive families

HSIANG-SHANG KO

University of Oxford, Oxford, UK

Date: September 2014; Advisor: Jeremy Gibbons
URL: http://ora.ox.ac.uk/objects/uuid:2bc39bde-ce59-4a49-b499-3afdf174bbab

Based on a natural unification of logic and computation, Martin-Löf’s intuitionistic

type theory can be regarded simultaneously as a computationally meaningful higher-

order logic system and an expressively typed functional programming language,

in which proofs and programs are treated as the same entities. Two modes of

programming can then be distinguished: in externalism, we construct a program

separately from its correctness proof with respect to a given specification, whereas in

internalism, we encode the specification in a sophisticated type such that any program

inhabiting the type also encodes a correctness proof, and we can use type information

as a guidance on program construction. Internalism is particularly effective in the

presence of inductive families, whose design can have a strong influence on program

structure. Techniques and mechanisms for facilitating internalist programming are

still lacking, however.

This dissertation proposes that internalist programming can be facilitated by

exploiting an interconnection between internalism and externalism, expressed as

isomorphisms between inductive families into which data structure invariants are

encoded and their simpler variants paired with predicates expressing those invariants.

The interconnection has two directions: one analysing inductive families into simpler

variants and predicates, and the other synthesising inductive families from simpler

variants and specific predicates. They respectively give rise to two applications,

one achieving a modular structure of internalist libraries, and the other bridging

internalist programming with relational specifications and program derivation. The

datatype-generic mechanisms supporting the applications are based on McBride’s

ornaments. Theoretically, the key ornamental constructs – parallel composition of

ornaments and relational algebraic ornamentation – are further characterised in terms

of lightweight category theory. Most of the results are completely formalised in the

Agda programming language.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


8 G. Hutton

Extending implicit computational complexity and abstract machines to
languages with control

GIULIO PELLITTA

University of Bologna, Bologna, Italy

Date: May 2014; Advisor: Simone Martini
URL: http://amsdottorato.unibo.it/6558/

Introduction: The Curry–Howard isomorphism is the idea that proofs in natural

deduction can be put in correspondence with lambda terms in such a way that

this correspondence is preserved by normalization. The concept can be extended

from intuitionistic logic to other systems, such as linear logic. One of the nice

consequences of this isomorphism is that we can reason about functional programs

with formal tools which are typical of proof systems: such analysis can also include

quantitative qualities of programs, such as the number of steps it takes to terminate.

Another is the possibility to describe the execution of these programs in terms of

abstract machines. In 1990 Griffin proved that the correspondence can be extended

to Classical Logic and control operators. That is, Classical Logic adds the possibility

to manipulate continuations. In this thesis we see how the things we described above

work in this larger context.

Outline: In Part I, we analyze some variants of lambda mu-calculus (an extension

of lambda calculus with two control operators for manipulating continuations),

with special attention to the calculus of de Groote; and the main ideas of im-

plicit computational complexity (a series of tools and techniques to characterize

complexity classes), especially restrictions of linear logic with limited complexity

and in particular bounded linear logic (BLL). In Part II, we investigate how to

adapt techniques of implicit computational complexity to characterize a fragment of

lambda mu-calculus which is expressive enough to represent all functions that can be

computed in time polynomial w.r.t. the input size. In Part III, we study some abstract

machines for evaluating lambda- and lambda mu-terms; we ultimately review an

abstract machine for lambda terms which has not received a lot of attention in the

last few years and adapt it to lambda mu-calculus.

Part I: We introduce the main subjects of the thesis, namely control operators and

implicit computational complexity. Continuations can enrich functional program-

ming languages with imperative features. We review the operators call/cc (call-with-

current-continuation) and Felleisen’s C, which have been extensively studied in the

literature. Finally, we introduce Parigot’s lambda mu-calculus, which extends lambda

calculus with two operators called mu and bracket, and then the extended calculus

by De Groote, in which the operators mu and bracket do not have to be paired.

Implicit computational complexity aims at studying machine-free characterization of

complexity classes with a mathematically-oriented approach. Linear logic, in which

duplication/erasure are explicit, has proved of fundamental importance in this field.

Among various type systems for lambda calculus inspired by variants of linear logic

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


PhD Abstracts 9

with restricted rules, we focus on Girard’s BLL, a type systems for terms that can

be run in polynomial time w.r.t. input size.

Part II: Polarized bounded linear logic is defined starting from Laurent’s work on

polarized linear logic, a variant of linear logic, which can be used as a type system for

lambda mu, where contraction can be applied to any negative formula. Formulas of

polarized bounded linear logic can be either positive or negative just likein polarized

linear logic, but have exponential modalities which are bounded as in BLL. Polarized

bounded linear logic can be used as type system for De Groote’s lambda mu which

characterizes terms which can be evaluated in polynomial time (analogously to BLL).

The system is expressive enough to type the aforementioned call/cc and Felleisen’s

C. One significant improvement w.r.t. BLL is that the polynomial-soundness result

holds w.r.t. head reduction (that is, we are allowed to reduce under lambda and mu

binders).

Part III: The Krivine abstract machine is a mechanism for call-by-name evaluation

of lambda terms (which has been extended by De Groote for lambda mu-calculus).

The Krivine abstract machine computes the (weak) head normal form of a lambda

term, performing a series of transitions depending on the shape of the term (more

precisely, it performs head linear reduction). It is based on the notion of closure,

a pair consisting of a term and a sequence of closures. The main drawback of the

Krivine abstract machine is that it may build closures that are never used during

execution. One variant of the Krivine abstract machine designed to avoid this,

namely the Pointer Abstract Machine (PAM), has been studied by Herbelin, Danos

and Regnier. Instead of working with closures, it uses pointers to keep track of where

a closure should have been build so that the corresponding term can be retrieved

on the fly. The PAM is explained somewhat more clearly than before (e.g., using

explicit substitutions rather than game semantics, in a more operational approach)

and it is suggested how it can be adapted to lambda mu-calculus.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


10 G. Hutton

Operational aspects of full reduction in lambda calculi

ÁLVARO GARCÍA PÉREZ

Universidad Politécnica de Madrid, Madrid, Spain

Date: October 2014; Advisor: Juan José Moreno Navarro and Pablo Nogueira
URL: http://babel.ls.fi.upm.es/ agarcia/phd-thesis/thesis.pdf

This thesis studies full reduction in lambda calculi. In a nutshell, full reduction

consists in evaluating the body of the functions in a functional programming

language with binders. The classical (i.e. pure untyped) lambda calculus is set as the

formal system that models the functional paradigm. Full reduction is a prominent

technique when programs are treated as data objects, for instance when performing

optimisations by partial evaluation, or when some attribute of the program is

represented by a program itself, like the type in modern proof assistants.

A notable feature of many full-reducing operational semantics is its hybrid nature,

which is introduced and which constitutes the guiding theme of the thesis. In the

lambda calculus, the hybrid nature amounts to a “phase distinction” in the treatment

of abstractions when considered either from outside or from inside themselves. This

distinction entails a layered structure in which a hybrid semantics depends on one

or more subsidiary semantics.

From a programming languages standpoint, the thesis shows how to derive

implementations of full-reducing operational semantics from their specifications,

by using program transformations techniques. The program transformation tech-

niques are syntactical transformations which preserve the semantic equivalence of

programs. The existing program transformation techniques are adjusted to work

with implementations of hybrid semantics. The thesis also shows how full reduction

impacts the implementations that use the environment technique. The environment

technique is a key ingredient of real-world implementations of abstract machines

which helps to circumvent the issue with binders.

From a formal systems standpoint, the thesis discloses a novel consistent theory

for the call-by-value variant of the lambda calculus which accounts for full reduction.

This novel theory entails a notion of observational equivalence which distinguishes

more points than other existing theories for the call-by-value lambda calculus. This

contribution helps to establish a “standard theory” in that calculus which constitutes

the analogous of the “standard theory” advocated by Barendregt in the classical

lambda calculus. Some proof-theoretical results are presented, and insights on the

model-theoretical study are given.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


PhD Abstracts 11

Certificates for incremental type checking

MATTHIAS PUECH

Università di Bologna, Italy and Université Paris Diderot - Paris VII, France

Date: April 2013; Advisor: Andrea Asperti and Hugo Herbelin
URL: http://amsdottorato.unibo.it/5870/

The central topic of this thesis is the study of algorithms for type checking, both

from the programming language and from the proof-theoretic point of view. A type

checking algorithm takes a program or a proof, represented as a syntactical object,

and checks its validity with respect to a specification or a statement; it is a central

piece of compilers and proof assistants. First, we present a tool which supports

the development of functional programs manipulating proof certificates (certifying

programs). It uses LF as a representation metalanguage for higher-order proofs

and OCaml as a programming language, and facilitates the automated and efficient

verification of these certificates at run time. Technically, we introduce in particular

the notion of function inverse allowing to abstract from a local environment when

manipulating open terms. Then, we remark that the idea of a certifying type

checker, generating a typing derivation, can be extended to realize an incremental

type checker, working by reuse of typing subderivation. Such a type checker would

make possible the structured and type-directed edition of proofs and programs.

Finally, we showcase an original correspondence between natural deduction and the

sequent calculus, through the transformation of the corresponding type checking

functional programs: we show, using off-the-shelf program transformations, that the

latter is the accumulator-passing version of the former.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


12 G. Hutton

Intersection types and higher-order model checking

STEVEN J. RAMSAY

University of Oxford, Oxford, UK

Date: August 2014; Advisor: C.-H. Luke Ong
URL: http://ora.ox.ac.uk/objects/uuid:46b7bc70-3dfe-476e-92e7-245b7629ae4e

Higher-order recursion schemes are systems of equations that are used to define

finite and infinite labelled trees. Since, as Ong has shown, the trees defined have a

decidable monadic second order theory, recursion schemes have drawn the attention

of research in program verification, where they sit naturally as a higher-order,

functional analogue of Boolean programs. Driven by applications, fragments have

been studied, algorithms developed and extensions proposed; the emerging theme is

called higher-order model checking. Kobayashi has pioneered an approach to higher-

order model checking using intersection types, from which many recent advances

have followed. The key is a characterisation of model checking as a problem of

intersection type assignment. This dissertation contributes to both the theory and

practice of the intersection type approach.

A new, fixed-parameter polynomial-time decision procedure is described for

the alternating trivial automaton fragment of higher-order model checking. The

algorithm uses a novel, type-directed form of abstraction refinement, in which

behaviours of the scheme are distinguished according to the intersection types that

they inhabit. Furthermore, by using types to reason about acceptance and rejection

simultaneously, the algorithm is able to converge on a solution from two sides. An

implementation, preface, and an extensive body of evidence demonstrate empirically

that the algorithm scales well to schemes of several thousand rules. A comparison

with other tools on benchmarks derived from current practice and the related

literature puts it well beyond the state-of-the-art.

A generalisation of the intersection type approach is presented in which higher-

order model checking is seen as an instance of exact abstract interpretation.

Intersection type assignment is used to characterize a general class of safety checking

problems, defined independently of any particular representation (such as automata)

for a class of recursion schemes built over arbitrary constants. Decidability of any

problem in the class is an immediate corollary. Moreover, the work looks beyond

whole-program verification, the traditional territory of model checking, by giving a

natural treatment of higher-type properties, which are sets of functions.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


PhD Abstracts 13

Free theorems in languages with real-world programming features

DANIEL SEIDEL

Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

Date: October 2013; Advisor: Janis Voigtländer
URL: http://nbn-resolving.de/urn:nbn:de:hbz:5n-33798

Free theorems, type-based assertions about functions, have become a prominent

reasoning tool in functional programming languages. But their correct application

requires a lot of care. Restrictions arise due to features present in implemented such

languages, but not in the language free theorems were originally investigated in.

This thesis advances the formal theory behind free theorems w.r.t. the application

of such theorems in non-strict functional languages such as Haskell. In particular,

the impact of general recursion and forced strict evaluation is investigated. As formal

ground, we employ different lambda calculi equipped with a denotational semantics.

For a language with general recursion, we develop and implement a counterex-

ample generator that tells if and why restrictions on a certain free theorem arise

due to general recursion. If a restriction is necessary, the generator provides a

counterexample to the unrestricted free theorem. If not, the generator terminates

without returning a counterexample. Thus, we may on the one hand enhance the

understanding of restrictions and on the other hand, point to cases where restrictions

are superfluous.

For a language with a strictness primitive, we develop a refined type system that

allows to localize the impact of forced strict evaluation. Refined typing results in

stronger free theorems and therefore increases the value of the theorems. Moreover,

we provide a generator for such stronger theorems.

Lastly, we broaden the view on the kind of assertions free theorems provide.

For a very simple, strict evaluated, calculus, we enrich free theorems by (runtime)

efficiency assertions. We apply the theory to several toy examples. Finally, we

investigate the performance gain of the foldr/build program transformation. The

latter investigation exemplifies the main application of our theory: free theorems

may not only ensure semantic correctness of program transformations, they may

also ensure that a program transformation speeds up a program.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


14 G. Hutton

Incremental parallelization of existing sequential runtime systems

JAMES EDWARD SWAINE

Northwestern University, Evanston, IL, USA

Date: June 2014; Advisor: Robert Bruce Findler
URL: http://plt.eecs.northwestern.edu/swaine-phd.pdf

Many language implementations, particularly for high-level and scripting lan-

guages, are based on carefully honed runtime systems that have an internally

sequential execution model. Adding support for parallelism in the usual form – as

threads that run arbitrary code in parallel – would require a major revision or even

a rewrite to add safe and efficient locking and communication. This dissertation

describes an alternative approach to incremental parallelization of runtime systems.

This approach can be applied inexpensively to many sequential runtime systems,

and we demonstrate its effectiveness in the Racket runtime system and Parrot virtual

machine. The evaluation assesses performance benefits, developer effort needed to

implement such a system in these two runtime systems, and the ease with which

users can leverage the resulting parallel programming constructs without sacrificing

expressiveness. We find that incremental parallelization can provide useful, scalable

parallelism on commodity multicore processors at a fraction of the effort required

to implement conventional parallel threads.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


PhD Abstracts 15

The choice calculus: A formal language of variation

ERIC WALKINGSHAW

Oregon State University, Corvallis, OR, USA

Date: June 2013; Advisor: Martin Erwig
URL: http://hdl.handle.net/1957/40652

In this thesis I present the choice calculus, a formal language for representing

variation in software and other structured artefacts. The choice calculus is intended

to support variation research in a way similar to the lambda calculus in programming

language research. Specifically, it provides a simple formal basis for presenting,

proving and communicating theoretical results. It can serve as a common language

of discourse for researchers working on different views of similar problems and

provide a shared back-end in tools.

This thesis collects a large amount of work on the choice calculus. It defines the

syntax and denotational semantics of the language along with modular language

extensions that add features important to variation research. It presents several

theoretical results related to the choice calculus, such as an equivalence relation

that supports semantics-preserving transformations of choice calculus expressions,

and a type system for ensuring that an expression is well formed. Many of these

results have been reused successfully in our work on extending Hindley–Milner type

inference to variational programs.

This thesis also presents a domain-specific language embedded in Haskell, based

on the choice calculus, for exploring the concept of variational programming.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040


16 G. Hutton

The interpretation and inter-derivation of small-step and big-step
specifications

IAN ZERNY

Aarhus University, Aarhus, Denmark

Date: June 2013; Advisor: Olivier Danvy and Jan Midtgaard
URL: http://www.zerny.dk/zerny-phd.html

We study the interpretation and inter-derivation of big-step and small-step specifi-

cations. In particular, we consider formal specifications of programming languages,

e.g., denotational semantics and operational semantics, and investigate how these

specifications relate to each other. We carry out this investigation by interpreting

specifications as programs in a pure functional metalanguage and by constructively

deriving one program from the other using program transformations. To this end,

we use two derivational correspondences: the functional correspondence between

compositional higher-order specifications and first-order transition systems, and the

syntactic correspondence between rewriting specifications and first-order transition

systems.

The main contribution of this dissertation is threefold: first, we extend these

correspondences to systematically derive small-step reduction semantics and abstract

machines from big-step reduction strategies. Second, we show how these correspon-

dences can be used to relate specifications for lazy evaluation, e.g., graph reduction

and call-by-need evaluation. Third, we describe an alternative interpretation of

specifications as logic programs in a logical framework, and we give a logical

counterpart to the functional correspondence.

https://doi.org/10.1017/S0956796815000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000040

