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We consider a single server system accepting two types of retrial customers, which arrive
according to two independent Poisson streams. The service station can handle at most
one customer, and in case of blocking, type i customer, i = 1, 2, is routed to a separate
type i orbit queue of infinite capacity. Customers from the orbits try to access the server
according to the constant retrial policy. We consider coupled orbit queues, and thus, when
both orbit queues are non-empty, the orbit queue i tries to re-dispatch a blocked cus-
tomer of type i to the main service station after an exponentially distributed time with
rate μi. If an orbit queue empties, the other orbit queue changes its re-dispatch rate
from μi to μ∗

i . We consider both exponential and arbitrary distributed service require-
ments, and show that the probability generating function of the joint stationary orbit
queue length distribution can be determined using the theory of Riemann (–Hilbert)
boundary value problems. For exponential service requirements, we also investigate the
exact tail asymptotic behavior of the stationary joint probability distribution of the two
orbits with either an idle or a busy server by using the kernel method. Performance
metrics are obtained, computational issues are discussed and a simple numerical example
is presented.
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1. INTRODUCTION

The study of queues with coupled processors was firstly investigated by Fayolle and Iasno-
gorodski [29] (see also [30]), who analyzed two coupled servers in parallel with exponential
service times. To gain quantitative insights about the queueing process, they derived a solu-
tion for the generating function of the stationary distribution of the underlying Markov
process describing the number of jobs in both queues using the theory of Riemann–Hilbert
boundary value problems.

Motivated by their work, Cohen and Boxma [17], Cohen [18–20], Boxma and Groe-
nendijk [14], Boxma [15], Feng, Kowada, and Adachi [31], Avrachenkov, Nain, and Yechiali
[7] (see also [1,35,36,54], not exhaustive list) gave important generalizations and detailed
analyses for various two-dimensional queueing models with the aid of the theory of Riemann
(–Hilbert) boundary value problems. In particular, a detailed study of the methodological
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140 I. Dimitriou

approach was presented in the monograph by Cohen and Boxma [17]. In [17], a coupled
processor model for the case of generally distributed service times was investigated. Resing
and Ormeci [50], analyzed a tandem queue with two coupled processors and determined the
bivariate generating function of the stationary joint queue length distribution in terms of
the solution of a Riemann–Hilbert boundary value problem. Computational issues of this
problem were investigated in [55] (see also [23]). Recently, the Laplace–Stieltjes transform
of the joint stationary amount of work in the system in a coupled processor model with
simultaneous arrivals was studied by Badila and Resing [9].

Applications of coupled processor models arise in several situations in which coupling
derives from resource sharing. Most of them can be found in telecommunications such as in
data transfer in bidirectional cable and data networks [55], in bandwidth sharing of data
flows [36], in the performance modeling of device-to-device communication [58], in wire-
less communications to model the complex interdependence among transmitters due to the
shared medium and/or to interference [10,11,13,51,56], as well as in assembly lines in man-
ufacturing [2]. In cellular networks, we may consider a system consisting of two neighboring
cellular base stations. A base station serves its associated users accordingly, however, if it is
idle, that is, there are no active users, it may assist the neighboring base station by serving
its users. Coupled processor models were also recently applied in the performance analysis
of ad-hoc networks to capture the dependencies between user achievable rates due to shar-
ing of the wireless transmission medium [12,56,57]. In manufacturing, Andradottir, Ayhan,
and Down [2] used a coupled processor model to increase the throughput of an assembly
line with two stations. There, when a station empties, it helps the non-empty station to
decrease its processing time.

In this work, we focus on the analysis of a retrial queueing system with two independent
exogenous Poisson streams flowing into a common buffer that can hold at most one job. If
a type-i job finds the server busy, it is routed to a separate retrial (orbit) queue from which
jobs are re-transmitted at an exponential rate and under constant retrial policy. Contrary
to the model in [7], we assume that the re-transmission rate of an orbit queue, depends on
the presence/absence of jobs in the other one.

Retrial queues have been extensively studied in the past (e.g., [3–5,25]). Single class
retrial systems under constant retrial policy were investigated in [6,8,21,22,24,27,28] (not
exhaustive list). The important feature of this work is the two-class setting under constant
retrial policy with coupled retrial rates. Clearly, there have been very limited results in retrial
queueing literature with multiple classes of retrial customers. A two-class retrial system with
arbitrary distributed service requirements and classical retrial policy was firstly analyzed in
[40], whereas the extension to an arbitrary number of retrial customers was investigated in
[26]. Moutzoukis and Langaris [44] introduced a non-preemptive priority mechanism in the
[26,40], while more recently, Langaris and Dimitriou [41] investigated a multiclass retrial
queue with many phases of service. In all the above-mentioned works, a classical retrial
policy was used and the authors derived expressions for the expected number of customers
in orbit queues (see also [34]).

In our model, we allow the rate of re-transmission of an orbit queue to depend on the
presence/absence of jobs in the other orbit queue, and using generating function analy-
sis, we conclude in an even general functional equation than in [7]. More importantly, we
investigate the mathematical analysis both for exponential and for arbitrary distributed
service requirements, since the methodological approach that we use for each case is dif-
ferent. In particular, in the former case, the system is described by a three-dimensional
Markov process, while in the latter one, we consider a two-dimensional Markov chain (MC)
at service completion instants. For the model with exponential service requirements, we
also provide a random walk approach using a censored MC. Indeed, our model can be seen

https://doi.org/10.1017/S0269964816000528 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000528


A TWO-CLASS RETRIAL SYSTEM WITH COUPLED ORBIT QUEUES 141

as a random walk in the quarter plane modulated by a two-state MC. Using the special
structure of the model we can transform it to a usual random walk in the quarter plane
and investigate stability conditions. The joint orbit queue length distribution is derived
by solving a homogeneous Riemann–Hilbert boundary value problem, whereas under cer-
tain assumptions on the values of the re-dispatch rates this problem reduces a Dirichlet
boundary value problem. We also apply the kernel method, developed in [43], and pro-
vide the exact tail asymptotic properties for the stationary joint probability distribution
of the two orbits with either an idle or a busy server. Then, we turn our attention to
the analysis of the model with arbitrary distributed service requirements by investigating
the joint orbit queue length distribution at service completion epochs. Using generating
function analysis, we conclude in a functional equation and based on the approach devel-
oped in Cohen and Boxma [17], we derive the joint orbit queue length distribution at
service completion epochs as the solution of a non-homogeneous Riemann boundary value
problem.

Potential applications of our model may be found in cooperative wireless systems (i.e.,
network-layer cooperation), in which each source user increases its quality of service via
cooperation with other users that “share” the antennas of their devices and assist the
source users to transmit their data to a destination node; for example, [37,48,49]. This
is so-called cooperation with relaying, and the assistant users are called relay nodes. If a
transmission of a user’s packet to the destination fails, the relay nodes (i.e., orbits in the
retrial terminology) store the blocked packet in their buffers and try to re-transmit it to
the destination later. Due to the wireless interference, the re-transmission rate of a relay
node may be affected by the state of the other relay node. Other applications may arise in
the modeling of local area computer networks with bus architecture [7,38–40,46,53].

The contribution of our work is mainly theoretically oriented, since we provide for the
first time in the related literature, a complete analysis of a model that unifies two fundamen-
tal queueing systems: the retrial queue with two orbits and constant retrial policy, and the
model with coupled processors, which are both notoriously hard to study analytically. We
show that the powerful and quite technical boundary value theory is an adequate technique
to handle such an intricate model. An effective way to provide exact tail asymptotic results
is also given.

The rest of the paper is outlined as follows. In Section 2, we describe in detail the
mathematical model and derive the balance equations that are used to form the fundamental
functional equation. By assuming exponential service requirements, Section 3 is devoted to
the derivation of several preliminary results that are necessary for the following analysis.
Necessary and sufficient conditions for the ergodicity of our system are investigated by
using results from the theory of random walk in the quarter plane. Some results on the
zero pairs of the kernel of the fundamental functional equation are also derived. Using
that equation, and by distinguishing the analysis according to the values of re-dispatch
rates of the orbits, we derive the probability generating functions of the joint orbit queue
length distribution for both a busy and an idle server by formulating and solving two
boundary value problems (a Riemann–Hilbert and a Dirichlet boundary value problem) in
Section 4. Performance metrics are also obtained. Exact tail asymptotic properties of the
stationary joint probability distribution of the two orbits for both a busy and an idle server
are investigated in Section 5. Section 6 is devoted to the analysis of the model with arbitrary
distributed service requirements. We prove that the joint orbit queue length distribution at
departure epochs can be obtained as a solution of a non-homogeneous Riemann boundary
value problem. Performance metrics are obtained and computational issues are discussed.
Finally, in Section 7, a simple numerical example is presented to give an insight to the
system’s performance.
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2. MODEL

Consider a single server system accepting two types of customers, where its service station
can handle at most one customer. A type i customer, i = 1, 2, arrive according to a Poisson
process with rate λi and if it finds the server busy, it is blocked and routed to a separate type
i orbit queue of infinite capacity. Otherwise, it occupies the server immediately. Customers
from the orbits try to access the server according to the constant retrial policy (see Figure 1).

We consider coupled orbit queues in the sense that when both orbit queues are non-
empty, the orbit queue i tries to re-dispatch a blocked customer of type i to the main service
station after an exponentially distributed time with rate μi. If orbit queue 1 (respectively 2)
empties, then the orbit queue 2 (respectively 1) changes its re-dispatch rate from μ2 (respec-
tively μ1) to μ∗

2 (respectively μ∗
1). The requested service time is independent of the type of

customer, and it is exponentially distributed with rate μ.
Let Ni(t) be the number of customers in the orbit queue i, and C(t), be the state of

the server at time t, respectively. Assume that C(t) = 0, 1 if the server is idle and busy,
respectively. Then Q(t) = {(N1(t), N2(t), C(t)); t ≥ 0} is an irreducible aperiodic Contin-
uous Time Markov chain (CTMC) with state space E = {0, 1, . . .} × {0, 1, . . .} × {0, 1}.
Define its stationary probabilities for i, j = 0, 1, . . ., n = 0, 1,

pi,j(n) = lim
t→∞P (N1(t) = i,N2(t) = j, C(t) = n).

Then, we can write the following sets of balance equations:

1. n = 0

p0,0(0)λ = μp0,0(1), i = j = 0,

p0,j(0)[λ + μ∗
2] = μp0,j(1), i = 0, j > 0, (2.1)

pi,0(0)[λ + μ∗
1] = μpi,0(1), i > 0, j = 0,

pi,j(0)[λ + μ1 + μ2] = μpi,j(1), i > 0, j > 0,

2. n = 1

p0,0(1)[λ + μ] = λp0,0(0) + μ∗
1p1,0(0) + μ∗

2p0,1(0), i = j = 0,

Figure 1. The model.
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p0,j(1)[λ + μ] = λp0,j(0) + λ2p0,j−1(1) + μ1p1,j(0)

+ μ∗
2p0,j+1(0), i = 0, j > 0,

pi,0(1)[λ + μ] = λpi,0(0) + λ1pi−1,0(1) + μ2pi,1(0) (2.2)

+ μ∗
1pi+1,0(0), i > 0, j = 0,

pi,j(1)[λ + μ] = λpi,j(0) + λ1pi−1,j(1) + λ2pi,j−1(1)

+ μ1pi+1,j(0) + μ2pi,j+1(0), i > 0, j > 0,

where λ = λ1 + λ2. Denote for |x| ≤ 1, |y| ≤ 1,

G
(n)
i (y) =

∞∑
j=0

pi,j(n)yj , i = 0, 1, . . . , n = 0, 1,

H(n)(x, y) =
∞∑

i=0

G
(n)
i (y)xi =

∞∑
i=0

∞∑
j=0

pi,j(n)xiyj , n = 0, 1. (2.3)

Forming the generating functions, Eq. (2.1), becomes

[λ + μ∗
2]G

(0)
0 (y) − μG

(1)
0 (y) = μ∗

2p0,0(0), i = 0,

αG
(0)
i (y) − μG

(1)
i (y) = [d1 + μ2]pi,0(0), i > 0, (2.4)

where α = λ + μ1 + μ2, di = μi − μ∗
i , i = 1, 2.

Similarly, Eq. (2.2) becomes

[λ + μ − λ2y]G(1)
0 (y) =

(
λ +

μ∗
2

y

)
G

(0)
0 (y) − d1p1,0(0) − μ∗

2

y
p0,0(0) + μ1G

(0)
1 (y), i = 0,

[λ + μ − λ2y]G(1)
i (y) =

(
λ +

μ2

y

)
G

(0)
i (y) + λ1G

(1)
i−1(y) − d1pi+1,0(0)

+ μ1G
(0)
i+1(y) − μ2

y
pi,0(0), i > 0. (2.5)

Using (2.4) and (2.5) we arrive respectively in,

αH(0)(x, y) − μH(1)(x, y) = (d1 + μ2)H(0)(x, 0) + (d2 + μ1)H(0)(0, y)

− (d1 + d2)H(0)(0, 0), (2.6)

(λxy + μ1y + μ2x)H(0)(x, y) − xy(λ1(1 − x) + λ2(1 − y) + μ)H(1)(x, y)

= (d1y + μ2x)H(0)(x, 0) + (d2x + μ1y)H(0)(0, y) − (d1y + d2x)H(0)(0, 0). (2.7)

Equations (3.5) and (3.6) provide a relationship between generating functions for an idle
and a busy server. If H(x, y) = (H(0)(x, y),H(1)(x, y)), equations (2.6) and (2.7) in matrix
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form give

H(x, y)T (x, y) = H(x, 0)T1(x, y) + H(0, y)T2(x, y) + H(0, 0)T3(x, y), (2.8)

where

T (x, y) =

(
α λxy + μ1y + μ2x

μ −xy(λ1(1 − x) + λ2(1 − y) + μ)

)
,

T1(x, y) =
(

d1 + μ2 d1y + μ2x
0 0

)
,

T2(x, y) =

(
d2 + μ1 d2x + μ1y

0 0

)
,

T3(x, y) =

(−(d1 + d2) −(d1y + d2x)

0 0

)
.

Equation (2.8) has the same form as Eq. (1.2) in the seminal paper [29]. However, in our
case we deal with a matrix fundamental equation. Clearly, our model is not a random walk
in the quarter plane (RWQP) as the one in [29], but it can be seen as a RWQP modulated
by a two-state Markov process. Due to its special structure, (2.8) can be converted to a
scalar fundamental form, which can be solved in terms of a Riemann–Hilbert boundary
value problem. Indeed, solving (2.6) with respect to H(1)(x, y) and substituting into (2.7)
we arrive in the following functional equation:

K(x, y)H(0)(x, y) = A(x, y)H(0)(x, 0) + B(x, y)H(0)(0, y) + C(x, y)H(0)(0, 0), (2.9)

where

K(x, y) = λ1α(1 − x)xy + λ2α(1 − y)xy − μμ1(1 − x)y − μμ2(1 − y)x, (2.10)

and

A(x, y) = d1y[(λ1x − μ)(1 − x) + λ2x(1 − y)] + μ2x[λ1y(1 − x) + (λ2y − μ)(1 − y)],

B(x, y) = d2x[λ1y(1 − x) + (λ2y − μ)(1 − y)] + μ1y[(λ1x − μ)(1 − x) + λ2x(1 − y)],

C(x, y) = −d1y[(λ1x − μ)(1 − x) + λ2x(1 − y)] − d2x[λ1y(1 − x) + (λ2y − μ)(1 − y)].
(2.11)

3. GENERAL RESULTS

Before proceeding with the main analysis, some interesting results can be obtained by the
functional equation and some side conditions using the local balance approach. Denote,

pi,.(n) =
∞∑

j=0

pi,j(n), i = 0, 1, . . . , p.,j(n) =
∞∑

i=0

pi,j(n), j = 0, 1, . . . , n = 0, 1.

Lemma 1:

H(1)(1, 1) =
λ

μ
.
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1. If μ1μ2 �= d1d2,

H(0)(0, 1) =
μ1μ2

[
1 − λ

μ

(
λ1+μ1

μ1

)
− d1

μ1

(
1 − λ

μ

(
λ2+μ2

μ2

))]
− d1(d2 − μ2)H(0)(0, 0)

μ1μ2 − d1d2
,

H(0)(1, 0) =
μ1μ2

[
1 − λ

μ

(
λ2+μ2

μ2

)
− d2

μ2

(
1 − λ

μ

(
λ1+μ1

μ1

))]
− d2(d1 − μ1)H(0)(0, 0)

μ1μ2 − d1d2
.

(3.1)

2. If μ1μ2 = d1d2, then μ1 = ξμ∗
1, μ2 = (1 − ξ)μ∗

2, 0 ≤ ξ ≤ 1 and

H(0)(0, 0) = 1 − λ

μ

[
λ1 + ξμ∗

1

μ∗
1

+
λ2 + (1 − ξ)μ∗

2

μ∗
2

]
. (3.2)

Proof: For each i = 0, 1, . . . , we consider the vertical cut between the states
{N1 = i, C = 1} and {N1 = i + 1, C = 0}. Then,

λ1pi,.(1) = μ∗
1pi+1,0(0) + μ1

∞∑
j=1

pi+1,j(0)

= μ1pi+1,.(0) − d1pi+1,0(0). (3.3)

Summing for all i = 0, 1, . . ., we derive

λ1H
(1)(1, 1) = μ1[H(0)(1, 1) − p0,.(0)] − d1[p.,0(0) − p0,0(0)]

= μ1[H(0)(1, 1) − H(0)(0, 1)] − d1[H(0)(1, 0) − H(0)(0, 0)], (3.4)

which in turn implies after a rearrangement and using the fact that H(1)(1, 1) +
H(0)(1, 1) = 1,

(λ1 + μ1)H(0)(1, 1) − μ1H
(0)(0, 1) − d1H

(0)(1, 0) + d1H
(0)(0, 0) = λ1. (3.5)

Similarly, by repeating the same procedure,

(λ2 + μ2)H(0)(1, 1) − d2H
(0)(0, 1) − μ2H

(0)(1, 0) + d2H
(0)(0, 0) = λ2. (3.6)

Summing (3.5), (3.6) and subtracting the sum from (2.6), taking into account that
H(1)(1, 1) + H(0)(1, 1) = 1, we obtain H(0)(1, 1) = 1 − λ/μ, and as result H(1)(1, 1) = λ/μ.
Clearly, λ/μ ≤ 1. We have to note that equations (3.5), (3.6) are “conservation of flow”
relations:

λ1λ

μ
= μ1[H(0)(1, 1) − H(0)(0, 1) − H(0)(1, 0) + H(0)(0, 0)]

+ μ∗
1[H

(0)(1, 0) − H(0)(0, 0)], (3.7)

λ2λ

μ
= μ2[H(0)(1, 1) − H(0)(1, 0) − H(0)(1, 0) + H(0)(0, 0)]

+ μ∗
2[H

(0)(1, 0) − H(0)(0, 0)].

Indeed, the first in (3.7) equates the flow of jobs into orbit queue 1, with flow of jobs
out of orbit 1. Note that, (λiλ)/μ is the throughput of jobs in orbit queue i, i = 1, 2,
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H(0)(1, 1) − H(0)(0, 1) − H(0)(1, 0) + H(0)(0, 0) is the fraction of time both orbit queues are
non-empty and the server is idle, while H(0)(1, 0) − H(0)(0, 0), (resp. H(0)(0, 1) − H(0)(0, 0))
is the fraction of time orbit queue 1 (resp. 2) is the only non-empty and the server is idle.
Substituting H(0)(1, 1) = 1 − λ/μ into (3.5) and (3.6) respectively we conclude that,

H(0)(0, 1) = 1 − λ

μ

(
λ1 + μ1

μ1

)
− d1

μ1
[H(0)(1, 0) − H(0)(0, 0)], (3.8)

H(0)(1, 0) = 1 − λ

μ

(
λ2 + μ2

μ2

)
− d2

μ2
[H(0)(0, 1) − H(0)(0, 0)]. (3.9)

Note that H(0)(1, 0) − H(0)(0, 0) is the portion of time the server is idle, the orbit
queue 1 is non-empty, and the orbit queue 2 is empty. Similarly, H(0)(0, 1) − H(0)(0, 0) is
the portion of time the server is idle, the orbit queue 2 is the only non-empty orbit queue.
Since H(0)(0, 1), H(0)(1, 0) must be positive we realize that definitely,

λ

μ

(
λ1 + μ1

μ1

)
< 1,

λ

μ

(
λ2 + μ2

μ2

)
< 1

as also shown in [7]. Note that these conditions ensured stability to the model in [7]. However
in our case, we need a stronger condition. To conclude, these conditions implies that λ1α <
μμ1 or λ2α < μμ2.

In the rest of the paper (unless other specified) we will assume that λ1α < μμ1, or
equivalently λ̂1 < μ̂1, where λ̂i = λiα, μ̂i = μμi, i = 1, 2, λ̂ = λ̂1 + λ̂2. We proceed with the
proof of the Lemma by substituting (3.9) into (3.8) and derive

H(0)(0, 1)
[
1− d1d2

μ1μ2

]
= 1− λ

μ

(
λ1 + μ1

μ1

)
− d1

μ1

[
1− λ

μ

(
λ2 +μ2

μ2

)
+
(

d2

μ2
− 1
)

H(0)(0, 0)
]
.

(3.10)
If μ1μ2 �= d1d2 we derive the first in (3.1). Similarly we can get the second.

On the other hand, if μ1μ2 = d1d2 then μ1
μ∗

1
+ μ2

μ∗
2

= 1, or equivalently μ1 = ξμ∗
1, μ2 =

(1 − ξ)μ∗
2, 0 ≤ ξ ≤ 1. In such a case, the left-hand side (l.h.s.) of (3.10) vanishes and we can

obtain (3.2). From this, we immediately deduce that

ρ =
λ

μ

[
λ1 + ξμ∗

1

μ∗
1

+
λ2 + (1 − ξ)μ∗

2

μ∗
2

]
< 1, (3.11)

is a necessary condition for the stability of the system if μ1μ2 = d1d2. This is equivalent
with,

λ

μ

(
λ1 + ξμ∗

1

ξμ∗
1

)
< 1, and

λ

μ

(
λ2 + (1 − ξ)μ∗

2

(1 − ξ)μ∗
2

)
< 1. (3.12)

Moreover, (3.11) yields

ρ =
λ

μ

[
λ1

μ∗
1

+
λ2 + μ∗

2

μ∗
2

]
< 1, (3.13)

or

ρ =
λ

μ

[
λ1 + μ∗

1

μ∗
1

+
λ2

μ∗
2

]
< 1. (3.14)

From hereon we will assume that this condition (3.11) (or equivalently (3.12) or (3.13)
or (3.14)) is satisfied when μ1μ2 = d1d2. �
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3.1. A Random Walk Approach and Stability Condition

As indicated above, our model it is seen as a RWQP modulated by a finite two-state Markov
process. In the following, using the special structure of our model we will convert it, using
the approach in [52], to a usual RWQP [30] and investigate its stability condition.

This approach starts by considering the corresponding discrete-time MC through a
uniformization technique. Without loss of generality we assume that θ = λ + μ + μ1 + μ2 =
1. Then, we partition the transition matrix P of the uniformized MC according to the server
state, and then consider the censored MC to the set of states of a busy server. We focus on
the set of states with a busy server, because this censored MC can be explicitly expressed.
We focus on the set of states of a busy server since the censored MC to the idle state does
not have an explicit expression for its transition matrix.

Let Q(k) = {(N1k, N2k, Ck)}, {0, 1, . . .} × {0, 1, . . .} × {0, 1}, and E = {0, 1, . . .} ×
{0, 1, . . .} × {1}, Ec = {0, 1, . . .} × {0, 1, . . .} × {0}. Then

P =
( Ec E

Ec P00 P01

E P10 P11

)
, (3.15)

where using the lexicographical ordering for the states of (N1k, N2k):

P00 = diag(A0, A1, A1 . . .), P10 = diag(C0, C0, . . .),

P01 =

⎛⎜⎜⎝
B∗

0

B1 B0

B1 B0

⎞⎟⎟⎠ , P11 =

⎛⎜⎜⎝
D0 D1

D0 D1

D0 D1

⎞⎟⎟⎠ ,

B∗
0 =

⎛⎜⎜⎝
λ
μ∗

2 λ
μ∗

2 λ

⎞⎟⎟⎠ , B0 =

⎛⎜⎜⎝
λ
μ2 λ

μ∗
2 λ

⎞⎟⎟⎠ ,

A0 = diag(μ + μ1 + μ2, 1 − (λ + μ∗
2), 1 − (λ + μ∗

2), . . .),

A1 = diag(1 − (λ + μ∗
1), μ, μ, . . .)

B1 = diag(μ∗
1, μ1, μ1, . . .),

C0 = μI,

D0 =

⎛⎜⎜⎝
μ1 + μ2 λ2

μ1 + μ2 λ2

⎞⎟⎟⎠ , D1 = λ1I.

Since P00 is diagonal, it is easy to have the fundamental matrix of P00 as:

P̂00 =
∞∑

j=0

P j
00 = diag(Â0, Â1, Â1, . . .),

where

Â0 = diag
(

1
λ

,
1

λ + μ∗
2

,
1

λ + μ∗
2

, . . .

)
,
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Â1 = diag
(

1
λ + μ∗

1

,
1

λ + μ1 + μ2
,

1
λ + μ1 + μ2

, . . .

)
The transition matrix of the censored MC to E can be easily computed as:

P (E) = P11 + P10P̂00P01

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

D0 + μÂ0B
∗
0 D1

μÂ1B1 D0 + μÂ0B0 D1

μÂ1B1 D0 + μÂ0B0 D1

. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.16)

This is a simple RWQP whose one-step transition probabilities from state (m,n) to
(m + i, n + j) are for −1 ≤ i, j ≤ 1:

p(m,n;m+i,n+j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pi,j if m,n > 0,

p
(1)
i,j if m > 0, n = 0,

p
(2)
i,j if m = 0, n > 0,

p
(0)
i,j if m = 0, n = 0,

p
(1)
−1,0 =

μμ∗
1

λ + μ∗
1

, p
(1)
0,0 = μ1 + μ2 +

λμ

λ + μ∗
1

, p
(1)
1,0 = λ1, p

(1)
0,1 = λ2,

p
(2)
0,−1 =

μμ∗
2

λ + μ∗
2

, p
(2)
0,0 = μ1 + μ2 +

λμ

λ + μ∗
2

, p
(2)
1,0 = λ1, p

(2)
0,1 = λ2,

p
(0)
0,0 = μ1 + μ2 + μ, p

(0)
1,0 = λ1, p

(0)
0,1 = λ2,

p−1,0 =
μμ1

λ + μ1 + μ2
, p0,0 = μ1 + μ2 +

λμ

λ + μ1 + μ2
, p1,0 = λ1,

p0,1 = λ2, p0,−1 =
μμ2

λ + μ1 + μ2
.

Using the notation in Fayolle, Iasnogorodski, and Malyshev [30], and define for |x| ≤ 1,
|y| ≤ 1, k = 0, 1,

π(k)(x, y) :=
∞∑

i=1

∞∑
j=1

pi,j(k)xi−1yj−1,

π
(k)
1 (x) := π(k)(x, 0) =

∞∑
i=1

pi,0(k)xi−1,

π
(k)
2 (y) := π(k)(0, y) =

∞∑
j=1

p0,j(k)yj−1.

For this censored random walk, the fundamental form (Eq. (1.3.6) in [30]) is given by:

− k(1)(x, y)π(1)(x, y) = a(1)(x, y)π(1)
1 (x) + b(1)(x, y)π(1)

2 (y) + c(1)(x, y)π(1)(0, 0), (3.17)
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where

k(1)(x, y) = xy

⎡⎣ 1∑
i=−1

1∑
j=−1

pi,jx
iyj − 1

⎤⎦
= a(x)y2 + b(x)y + c(x)

=
xy

λ + μ1 + μ2
[λ̂1x + λ̂2y + μ̂1x

−1 + μ̂2y
−1 − (λ̂ + μ̂1 + μ̂2)]

a(1)(x, y) = x

⎡⎣ 1∑
i=−1

1∑
j=0

p
(1)
i,j xiyj − 1

⎤⎦ = a1(x)y + b1(x)

=
x[λ1(λ + μ∗

1)x + λ2(λ + μ∗
1)y + μμ∗

1x
−1 − λ(λ + μ∗

1) − μμ∗
1]

λ + μ∗
1

b(1)(x, y) = y

⎡⎣ 1∑
i=0

1∑
j=−1

p
(2)
i,j xiyj − 1

⎤⎦
= a2(x)y2 + b2(x)y + c2(x)

=
y[λ1(λ + μ∗

2)x + λ2(λ + μ∗
2)y + μμ∗

2y
−1 − λ(λ + μ∗

2) − μμ∗
2]

λ + μ∗
2

c(1)(x, y) =
1∑

i=0

1∑
j=0

p
(0)
i,j xiyj − 1 = a0(x)y + b0(x)

= λ1x + λ2y − λ,

where

a(x) = p0,1x, b(x) = p−1,0 − (1 − p0,0)x + p1,0x
2, c(x) = p0,−1x;

a1(x) = p
(1)
0,1x, b1(x) = p

(1)
−1,0 − (1 − p

(1)
0,0)x + p

(1)
1,0x

2;

a2(x) = p
(2)
0,1, b2(x) = p

(2)
0,0 − 1 + p

(2)
1,0x, c2(x) = p

(2)
0,−1; (3.18)

a0(x) = p
(0)
0,1x, b0(x) = p

(0)
1,0x − (1 − p

(0)
0,0).

Our model is now converted to a usual RWQP and we can proceed as in Fayolle et al.
[30] and solve (3.17) by transform it into a Riemann–Carleman boundary value problem. As
stated above, the censored chain to the idle state does not have an explicit expression for
its transition matrix. However, it is easy to see that the functional Eq. (2.9) is equivalent
to:

K(x, y)π(0)(x, y) =
A(x, y) − K(x, y)

y
π

(0)
1 (x) +

B(x, y) − K(x, y)
x

π
(0)
2 (y)

+
C(x, y) + A(x, y) + B(x, y) − K(x, y)

xy
π(0)(0, 0).

After some algebra, the above equation can be written as:

− k(0)(x, y)π(0)(x, y) = a(0)(x, y)π(0)
1 (x) + b(0)(x, y)π(0)

2 (y) + c(0)(x, y)π(0)(0, 0), (3.19)
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where

k(0)(x, y) = (λ + μ1 + μ2)k(1)(x, y),

a(0)(x, y) = (λ + μ∗
1)a

(1)(x, y),

b(0)(x, y) = (λ + μ∗
2)b

(1)(x, y),

c(0)(x, y) = λc(1)(x, y).

The functional Eq. (3.19) is the fundamental form corresponding to a RWQP defined
by:

p̂
(1)
−1,0 = μμ∗

1, p̂
(1)
0,0 = 1 − [λ(λ + μ∗

1) + μμ∗
1], p̂

(1)
1,0 = λ1(λ + μ∗

1),

p̂
(1)
0,1 = λ2(λ + μ∗

1),

p̂
(2)
0,−1 = μμ∗

2, p̂
(2)
0,0 = 1 − [λ(λ + μ∗

2) + μμ∗
2], p̂

(2)
1,0 = λ1(λ + μ∗

2),

p̂
(2)
0,1 = λ2(λ + μ∗

2),

p̂
(0)
0,0 = 1 − λ2, p̂

(0)
1,0 = λλ1, p̂

(0)
0,1 = λλ2,

p̂−1,0 = μ̂1, p̂0,0 = 1 − (λ̂ + μ̂1 + μ̂2), p̂1,0 = λ̂1,

p̂0,1 = λ̂2, p̂0,−1 = μ̂2.

Set⎧⎪⎪⎪⎨⎪⎪⎪⎩
M = (Mx,My) = (

∑
ip̂i,j ,

∑
jp̂i,j) = (λ̂1 − μ̂1, λ̂2 − μ̂2),

M (1) = (M (1)
x ,M

(1)
y ) = (

∑
ip̂

(1)
i,j ,
∑

jp̂
(1)
i,j ) = (λ1(λ + μ∗

1) − μμ∗
1, λ2(λ + μ∗

1)),

M (2) = (M (2)
x ,M

(2)
y ) = (

∑
ip̂

(2)
i,j ,
∑

jp̂
(2)
i,j ) = (λ1(λ + μ∗

2), λ2(λ + μ∗
2) − μμ∗

2).

The following theorem is due to Fayolle et al. [30].

Theorem 1: When M �= 0, a random walk is ergodic if, and only if, one of the following
conditions holds,

1. ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mx < 0,My < 0,

MxM
(1)
y − MyM

(1)
x < 0,

MyM
(2)
x − MxM

(2)
y < 0;

2. Mx < 0, My ≥ 0, MyM
(2)
x − MxM

(2)
y < 0;

3. Mx ≥ 0, My < 0, MxM
(1)
y − MyM

(1)
x < 0.

Clearly, M �= 0, since we have already assumed that Mx < 0, which implies λ̂1 < μ̂1

(Condition 3. is also not considered here. Thus, we only focus on conditions 1. and 2.). The
following theorem gives sufficient and necessary conditions for the ergodicity of the random
walk that describes our system:
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Theorem 2: Let λ̂1 < μ̂1. Then, the system is ergodic if and only if

1.

μ∗
1 >

λ(λ1μ2 − λ2μ1)
μ̂2 − λ(λ2 + μ2)

,

μ∗
2 >

λ(λ2μ1 − λ1μ2)
μ̂1 − λ(λ1 + μ1)

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , λ̂2 < μ̂2.

2.

μ∗
2 >

λ(λ2μ1 − λ1μ2)
μ̂1 − λ(λ1 + μ1)

, λ̂2 ≥ μ̂2.

Proof: The proof of the theorem is completely based on Theorem 1. After some algebra
we can see that:

MxM (1)
y − MyM (1)

x < 0 ⇔ d1 + μ2
λ(λ1 + μ1) − μ̂1

μ̂2 − λ(λ2 + μ2)
< 0 ⇔ μ∗

1 >
λ(λ1μ2 − λ2μ1)
μ̂2 − λ(λ2 + μ2)

.

Similarly,

MyM (2)
x − MxM (2)

y < 0 ⇔ d2 + μ1
λ(λ2 + μ2) − μ̂2

μ̂1 − λ(λ1 + μ1)
< 0 ⇔ μ∗

2 >
λ(λ2μ1 − λ1μ2)
μ̂1 − λ(λ1 + μ1)

. �

Note that this Theorem is similar to Theorem 7.2, p. 345 in [29], and will help us to
determine the index of a Riemann–Hilbert problem, the solution of which will give us the
joint probability generating function of the orbit queue length distribution for an idle server
(see Section 4). Moreover, it is easy to see that conditions 1 and 2 in Theorem 2, reduce to
condition (3.11) when μ1μ2 = d1d2.

3.2. Zero Pairs of the Kernel

For fixed y, the equation K(x, y) = 0 in variable x has two roots

X±(y) =
−(λ̂2y

2 − (λ̂ + μ̂1 + μ̂2)y + μ̂2) ±
√

Δ2(y)

2λ̂1y
, (3.20)

where
Δ2(y) = (λ̂2y

2 − (λ̂ + μ̂1 + μ̂2)y + μ̂2)2 − 4λ̂1μ̂1y
2.

We can easily prove that Δ2(y) has four real roots such that 0 < y1 < y2 ≤ 1 ≤ y3 < y4

given by,

y1 =
λ̂ + μ̂1 + μ̂2 + 2

√
λ̂1μ̂1 −

√
s
(1)
X

2λ̂2

, y2 =
λ̂ + μ̂1 + μ̂2 − 2

√
λ̂1μ̂1 −

√
s
(2)
X

2λ̂2

,

y3 =
λ̂ + μ̂1 + μ̂2 − 2

√
λ̂1μ̂1 +

√
s
(2)
X

2λ̂2

, y4 =
λ̂ + μ̂1 + μ̂2 + 2

√
λ̂1μ̂1 +

√
s
(1)
X

2λ̂2

, (3.21)

where

s
(1)
X = (λ̂ + μ̂1 + μ̂2 + 2

√
λ̂1μ̂1)2 − 4λ̂2μ̂2,

s
(2)
X = (λ̂ + μ̂1 + μ̂2 − 2

√
λ̂1μ̂1)2 − 4λ̂2μ̂2. (3.22)
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It is easy to see that y2 = 1 when λ̂1 = μ̂1 and λ̂2 ≤ μ̂2, and y3 = 1 when λ̂1 = μ̂1 and
λ̂2 ≥ μ̂2. Define for y ∈ C − ([y1, y2] ∪ [y3, y4]) the two branches of X(y) by

X0(y) =

{
X−(y) if |X−(y)| ≤ |X+(y)|,
X+(y) if |X−(y)| > |X+(y)|;

, X1(y) =

{
X+(y) if |X−(y)| ≤ |X+(y)|,
X−(y) if |X−(y)| > |X+(y)|.

The function X0(y) is analytic in C − ([y1, y2] ∪ [y3, y4]) and the function X1(y) is mero-
morphic in C − ([y1, y2] ∪ [y3, y4]) with a single pole at 0. The function X0(y) analytically
continues in the whole of C − ([y1, y2] ∪ [y3, y4]) the function X+(y) defined for y < y1.
Similarly, the function X1(y) meromorphically continues in the same domain the function
X−(y) defined for y < y1.

Similarly, for fixed x, the equation K(x, y) = 0 in variable y has two roots

Y±(x) =
−(λ̂1x

2 − (λ̂ + μ̂1 + μ̂2)x + μ̂1) ±
√

Δ1(x)

2λ̂2x
, (3.23)

where
Δ1(x) = (λ̂1x

2 − (λ̂ + μ̂1 + μ̂2)x + μ̂1)2 − 4λ̂2μ̂2x
2.

The discriminant Δ1(x) has four real roots such that 0 < x1 < x2 ≤ 1 < μ̂1/λ̂1 < x3 <
x4 given by,

x1 =
λ̂ + μ̂1 + μ̂2 + 2

√
λ̂2μ̂2 −

√
s
(1)
Y

2λ̂1

, x2 =
λ̂ + μ̂1 + μ̂2 − 2

√
λ̂2μ̂2 −

√
s
(2)
Y

2λ̂1

,

x3 =
λ̂ + μ̂1 + μ̂2 − 2

√
λ̂2μ̂2 +

√
s
(2)
Y

2λ̂1

, x4 =
λ̂ + μ̂1 + μ̂2 + 2

√
λ̂2μ̂2 +

√
s
(1)
Y

2λ̂1

, (3.24)

where

s
(1)
X = (λ̂ + μ̂1 + μ̂2 + 2

√
λ̂1μ̂1)2 − 4λ̂2μ̂2,

s
(2)
X = (λ̂ + μ̂1 + μ̂2 − 2

√
λ̂1μ̂1)2 − 4λ̂2μ̂2. (3.25)

Note that x2 = 1 when λ̂2 = μ̂2 and λ̂1 ≤ μ̂1, and x3 = 1 when λ̂2 = μ̂2 and λ̂1 ≥ μ̂1.
The functions Y±(x) defined in (3.23) are well defined for x ∈ C − ([x1, x2] ∪ [x3, x4]), and
the two branches are defined by

Y0(x) =

{
Y−(x) if |Y−(x)| ≤ |Y+(x)|,
Y+(x) if |Y−(x)| > |Y+(x)|; , Y1(x) =

{
Y+(x) if |Y−(x)| ≤ |Y+(x)|,
Y−(x) if |Y−(x)| > |Y+(x)|.

Similar properties as for X±(y) also holds for Y±(x). The following conformal mapping
result is classical and for more details see [30].

Lemma 2: The function X0(y) is a conformal mapping from the open set D(0,
√

μ̂2

λ̂2
) −

[y1, y2] onto the open set D(0,
√

μ̂1

λ̂1
) − [x1, x2], where D(0,

√
μ̂i

λ̂i
) denotes the disk with center

0 and radius
√

μ̂i

λ̂i
, i = 1, 2. The reciprocal function is Y0(x).
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To conclude, note that X−(1) ≤ X+(1), and X−(1) < 1 if and only if λ̂1 > μ̂1 and then
X−(1) = μ̂1/λ̂1. Similarly, Y−(1) < 1 if and only if λ̂2 > μ̂2, in which case Y−(1) = μ̂2/λ̂2.
For more properties on the zero pairs of the kernel the interested reader is referred to [7]
(Proposition 3, p. 14), and [52] (Lemmas 4.1, 4.2, pp. 10–11).

Using similar arguments as in [29], Section III, we can prove that H(0)(x, 0) (resp.
H(0)(0, y)) can be continued as a meromorphic function to the whole complex plane cut
along the segment [x3, x4] (resp. [y3, y4]). In the remaining text, we assume that λ̂1 < μ̂1.
Since the continuation of H(0)(x, 0) (resp. H(0)(0, y)) may have poles between the unit

circle and the |x| =
√

μ̂1/λ̂1 (resp. |y| =
√

μ̂2/λ̂2 if λ̂2 < μ̂2). However, from the analyticity
of A(x, Y0(x))H(0)(x, 0) it follows that the poles of H(0)(x, 0) must coincide with the zeros

of A(x, Y0(x)) in the band between the unit circle and |x| =
√

μ̂1/λ̂1.

3.3. Intersection Points of K(x, y) = 0 and A(x, y) = 0

When K(x, y) = 0, we can see from (2.9) that we can express H(0)(x, 0) (resp. H(0)(0, y))
as a function of H(0)(0, y) (resp. H(0)(x, 0)) and C(x, y), where A(x, y) appears in the
denominator. Thus, the common solutions of the equations K(x, y) = 0 and A(x, y) = 0 are
potential singularities for the functions H(0)(x, 0) and H(0)(0, y).

The common roots in variable y. Let y ∈ C − ([y1, y2] ∪ [y3, y4]) and K(x, y) = 0, x =
X±(y). If in addition A(x, y) = 0, y is a root of the resultant in x of the two polynomials
K(x, y) and A(x, y), denoted by Qx(y). Qx(y) is a polynomial of degree 5 in y, which has
at most four distinct zeros in C. The point 0 is a double root. Another trivial root is 1
since K(1, 1) = 0 and A(1, 1) = 0. It can be shown that the resultant Qx(y) can actually be
decomposed as

Qx(y) = λ1μ
2y2(y − 1)Q̂x(y), (3.26)

where

Q̂x(y) = λλ2(d1 + μ2)(λd1 − μ2μ
∗
1)y

2 + λμ2y[μμ∗
1(d1 + μ2)

− (λd1 − μ2μ
∗
1)(λ + μ∗

1)] − μ̂2μ
∗
1μ2(λ + μ∗

1).

The common roots in variable x. Letting now x ∈ C − ([x1, x2] ∪ [x3, x4]) and K(x, y) =
0, y = Y±(x), we can easily show that the resultant in y of the two polynomials K(x, y) and
A(x, y), denoted by Py(x) is

Py(x) = λ2μ
2μ2x

2(x − 1)P̂y(x), (3.27)

where

P̂y(x) = λλ1(λ + μ∗
1)(d1 + μ2)x2 − λ[μμ∗

1(d1 + μ2)

+ (λd1 − μ2μ
∗
1)(λ + μ∗

1)]x + μ∗
1μ(λd1 − μ2μ

∗
1).

The roots of this polynomial are real since the discriminant

Δ(1)
y = (λμ∗

1μ(d1 + μ2))2 + (λ(λd1 − μ2μ
∗
1)(λ + μ1∗))2

+ 2λ(λ2 − λ1)μ∗
1μ(d1 + μ2)(λd1 − μ2μ

∗
1)

≥ [λμ∗
1μ|d1 + μ2| − λ|λd1 − μ2μ

∗
1|(λ + μ1∗)]2 ≥ 0,
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given by

ξ± =
λ[μμ∗

1(d1 + μ2) + (λd1 − μ2μ
∗
1)(λ + μ∗

1)] ±
√

Δ(1)
y

2λλ1(λ + μ∗
1)(d1 + μ2)

. (3.28)

To show that these roots are positive we follow the lines in [29], Section V, and subtract
A(x, Y0(x)) from K(x, Y0(x)) to obtain,

λ1(λ + μ∗
1)(1 − x) + μμ∗

1

(
1 − 1

x

)
+ λ2(λ + μ∗

1)(1 − Y0(x)) = 0.

Then, x ≤ 0, yields Y0(x) > 1 which is impossible. Thus, any root is positive and cannot
belong to the cut [x1, x2] since Y0(x) is a complex number and A(x, Y0(x)) never vanishes
in that case.

4. FORMULATION OF THE BOUNDARY VALUE PROBLEMS

In the following, we distinguish the analysis in two cases, based on certain assumptions on
the values of re-transmission rates.

4.1. Reduction to a Riemann–Hilbert Boundary Value Problem

In the following, we assume the case where μ1μ2 �= d1d2. We can easily observe that,

d2(d1 − μ1)A(x, y) + d1(d2 − μ2)B(x, y) = (μ1μ2 − d1d2)C(x, y). (4.1)

Using (4.1), we observe that

Im
(

C(x, y)
B(x, y)

)
=

d2(d1 − μ1)
d1d2 − μ1μ2

Re
(

i
A(x, y)
B(x, y)

)
,

Im
(

C(x, y)
A(x, y)

)
=

d1(d2 − μ2)
d1d2 − μ1μ2

Re
(

i
B(x, y)
A(x, y)

)
, (4.2)

leading to the following transformation:

G(x) = H(0)(x, 0) − d2(d1 − μ1)
d1d2 − μ1μ2

H(0)(0, 0),

W (y) = H(0)(0, y) − d1(d2 − μ2)
d1d2 − μ1μ2

H(0)(0, 0),

and thus the fundamental relation (2.9) is rewritten for (x, y) such that K(x, y) = 0, |x| ≤ 1,
|y| ≤ 1,

G(x)A(x, y) + W (y)B(x, y) = 0. (4.3)

Therefore, the l.h.s. of (4.3) must vanish for all pairs (X0(y), y) such that |y| = 1, which
yields,

A(X0(y), y)G(X0(y)) = −B(X0(y), y)W (y), |y| = 1. (4.4)

The right-hand side (r.h.s.) of (4.4) is analytic for y ∈ D(0, 1) − [y1, y2] and continuous for
|y| = 1, so it can be analytically continued up to the interval [y1, y2], which implies that for
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y ∈ [y1, y2],
A(X0(y), y)G(X0(y)) = −B(X0(y), y)W (y). (4.5)

We proved in Lemma 7 that B(X0(y), y) �= 0 for y ∈ [y1, y2] (similarly we also can prove
that A(X0(y), y) �= 0 for y ∈ [y1, y2]). Let X0(y) = x, so that Y0(X0(y)) = y, we may write:

A(x, Y0(x))G(x) = −B(x, Y0(x))W (Y0(x)), |x| =

√
μ̂1

λ̂1

.

Following [29], it can be shown that for μ̂1 > λ̂1, the function A(x, Y0(x))G(x) can be
analytically continued at least up to the circle |x| = μ̂1/λ̂1. Therefore we may write,

Re

(
i
A(x, Y0(x))
B(x, Y0(x))

G(x)
)

= 0, |x| =

√
μ̂1

λ̂1

, (4.6)

with Y0(x) ∈ [y1, y2]. We must ensure that the function G(x) is analytic inside the circle
|x| = μ̂1/λ̂1, so that we have to check for poles of G(x) in 1 ≤ x ≤ μ̂1/λ̂1, since it is already
analytic inside the unit circle (H(0)(x, 0) is analytic inside the unit circle since it is a
probability generating function). From the analyticity of A(x, Y0(x))G(x) it follows that

the poles of G(x) coincides with zeros of A(x, Y0(x)) for 1 ≤ |x| ≤
√

μ̂1/λ̂1.
We proceed as in [29], section V and for our convenience we can rewrite A(x, Y0(x)) as,

A(x, Y0(x)) =
(

1 − 1
x

)
μ̂2 − λ2(λ + μ2)Y0(x) − λ1μ2x

μ̂2 − λ̂2Y0(x)
[d1 + Ψ(x)],

where

Ψ(x) =
λ1(λ + μ1)x + λ1μ2Y0(x) − μ̂1

μ̂2 − λ2(λ + μ2)Y0(x) − λ1μ2x
.

Following the lines in [29] (section V) it can be proved that according to system’s parameters,

A(x, Y0(x)) has at most one zero ( �= 1) in 1 ≤ |x| ≤
√

μ̂1/λ̂1, given by ξ− (see (3.28)).
We focus on the condition under which such a zero exists. It is easy to see using (2.10),

(2.11) that K(x, y) and A(x, y) vanish simultaneously if and only if

(1 − x)[λ1(λ + μ∗
1)x − μμ∗

1] + λ2(λ + μ∗
1)x(1 − y) = 0, (4.7)

y(1 − x)[λ1(d1 + μ2)x − μd1] + x(1 − y)[λ2(d1 + μ2)y − μ̂2] = 0. (4.8)

Equation (4.7) gives for (x, y) /∈ {(0, 0), (1, 1)},

y =
x[λ2(λ + μ∗

1) + μμ∗
1] − μμ∗

1 − λ1(λ + μ∗
1)x

2

λ2(λ + μ∗
1)x

. (4.9)

Substituting (4.9) into (4.8) will lead to (3.27). If 1 < ξ− ≤
√

μ̂1/λ̂1 then A(x, Y0(x)) has a

unique zero in
(

1,

√
μ̂1/λ̂1

]
provided that

Y0(ξ−) =
ξ−[λ2(λ + μ∗

1) + μμ∗
1] − μμ∗

1 − λ1(λ + μ∗
1)ξ

2
−

λ2(λ + μ∗
1)ξ−

≤
√

μ̂2/λ̂2,

since that branch Y0(x) is such that |Y0(x)| ≤
√

μ̂2/λ̂2, x ∈ C. On the contrary, if Y0(ξ−) >√
μ̂2/λ̂2, A(x, Y0(x)) does not vanish in

(
1,

√
μ̂1/λ̂1

]
.
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Thus, define for k = 0, 1 (k = 0(1) means that A(x, Y0(x)) does not vanish (vanishes

respectively) in
(

1,

√
μ̂1/λ̂1

]
).

U(x) :=
A(x, Y0(x))

B(x, Y0(x))(x − ξ−)k
, G̃(x) := (x − ξ−)kG(x),

and using (4.6) we obtain,

Re(iU(x)G̃(x)) = 0, |x| =
√

μ̂1/λ̂1, (4.10)

which defines a homogeneous Riemann–Hilbert problem on the circle |x| =
√

μ̂1/λ̂1. Let the
index χ := − 1

π [argU(x)]|x|=
√

μ̂1/λ̂1
. Following the lines of Theorem 7.1 in [29], it is proved

that under stability conditions given in Theorem 2, the index χ = 0. Thus, the solution of

the homogeneous Riemann–Hilbert problem (4.10) for |x| <

√
μ̂1/λ̂1 is given by,

H(0)(x, 0) = D(x − ξ−)−k exp

(
1

2iπ

∫
|t|=

√
μ̂1/λ̂1

log {J(t)}
t − x

dt

)
+

d2(d1 − μ1)
d1d2 − μ1μ2

H(0)(0, 0),

(4.11)

where D is a constant and J(z) = U(z)
U(z) , |z| =

√
μ̂1/λ̂1. Setting x = 0 in (4.11) we obtain D

in term of H(0)(0, 0). In particular,

D =
μ1μ

∗
2(−ξ)k

μ1μ2 − d1d2
exp

(
− 1

2iπ

∫
|t|=

√
μ̂1/λ̂1

log {J(t)}
t

dt

)
H(0)(0, 0).

Then, substituting back in (4.11), setting x = 1, and combining with the second in (3.1),
we get the constants D and H(0)(0, 0). Indeed, substituting D in the second on (3.1) we
obtain

H(0)(0, 0) =
μ1(μ̂2 − λ(λ2 + μ2)) − d2(μ̂1 − λ(λ1 + μ1))

μ̂1μ∗
2

(
ξ− − 1

ξ−

)k

× exp

(
− 1

2iπ

∫
|t|=

√
μ̂1/λ̂1

log {J(t)}
t(t − 1)

dt

)
, (4.12)

so that

H(0)(x, 0) =
μ1(μ̂2 − λ(λ2 + μ2)) − d2(μ̂1 − λ(λ1 + μ1))

μ̂1μ∗
2(μ1μ2 − d1d2)

[(
ξ− − 1
ξ− − x

)k

μ1μ
∗
2

× exp

(
1

2iπ

∫
|t|=

√
μ̂1/λ̂1

log {J(t)} (x − 1)
(t − 1)(t − x)

dt

)
(4.13)

− d2(d1 − μ1)
(

ξ− − 1
ξ−

)k

exp

(
−1
2iπ

∫
|t|=

√
μ̂1/λ̂1

log {J(t)}
t(t − 1)

dt

)]
.

Using a similar approach we can also determine H(0)(0, y) by solving another Riemann–

Hilbert boundary value problem on the circle |y| =
√

μ̂2/λ̂2. Then, using the fundamental
functional equation we obtain H(0)(x, y), and substituting back in (2.6), H(1)(x, y) is also
uniquely determined.
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4.1.1. Performance metrics We proceed with the computation of some important met-
rics such as the expected number of customers in orbits 1 and 2, and the probability of an
empty system (i.e., P (N1 = 0, N2 = 0, C = 0)). Clearly,

E(N1) =
∞∑

i=1

i

⎡⎣ ∞∑
j=0

pi,j(0) +
∞∑

j=0

pi,j(1)

⎤⎦ =
d

dx
H(0)(x, 1)|x=1 +

d

dx
H(1)(x, 1)|x=1,

E(N2) =
∞∑

j=1

j

⎡⎣ ∞∑
i=0

pi,j(0) +
∞∑

j=0

pi,j(1)

⎤⎦ =
d

dy
H(0)(1, y)|y=1 +

d

dy
H(1)(1, y)|y=1, (4.14)

P (N1 = 0, N2 = 0, C = 0) = H(0)(0, 0)

=
μ1(μ̂2 − λ(λ2 + μ2)) − d2(μ̂1 − λ(λ1 + μ1))

μ̂1μ∗
2(μ1μ2 − d1d2)

(
ξ− − 1

ξ−

)k

× [μ∗
2μ1 + μ∗

1d2] exp

(
−1
2iπ

∫
|t|=

√
μ̂1/λ̂1

log {J(t)}
t(t − 1)

dt

)
. (4.15)

Moreover, by differentiating (4.13) with respect to x, setting x = 1 implies

d

dx
H(0)(x, 0)|x=1 =

μ1(μ̂2 − λ(λ2 + μ2)) − d2(μ̂1 − λ(λ1 + μ1))
μ(μ1μ2 − d1d2)

×
(

k

ξ− − 1
+

1
2iπ

∫
|t|=

√
μ̂1/λ̂1

log {J(t)}
(t − 1)2

dt

)
. (4.16)

Using (2.10) and setting y = 1 we derive

H(0)(x, 1) =
λ1(d1 + μ2)x − μd1

λ̂1x − μ̂1

H(0)(x, 0) +
λ1(d2 + μ1)x − μ̂1

λ̂1x − μ̂1

H(0)(0, 1)

+
μd1 − λ1(d1 + d2)x

λ̂1x − μ̂1

H(0)(0, 0). (4.17)

Differentiating (4.17) with respect to x, setting x = 1 yields

d

dx
H(0)(x, 1)|x=1 =

λ1μ

(λ̂1 − μ̂1)2

[
(d1(λ + μ2) − μ1μ2)H(0)(1, 0) + μ1(λ + μ∗

2)H
(0)(0, 1)

+ (μ1d2 − d1(λ + μ2))H(0)(0, 0)
]

+
λ1(d1 +μ2)−μd1

λ̂1 − μ̂1

d

dx
H(0)(x, 0)|x=1,

(4.18)

where H(0)(0, 1), H(0)(1, 0), d
dxH(0)(x, 0)|x=1 and H(0)(0, 0) can be found in (3.1), (4.16)

and (4.12), respectively. Finally, using (2.6):

d

dx
H(1)(x, 1)|x=1 =

α

μ

d

dx
H(0)(x, 1)|x=1 − d1 + μ2

μ

d

dx
H(0)(x, 0)|x=1. (4.19)
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Thus, using (4.18), (4.19) we conclude that

E(N1) =
μ2(λ1 + μ∗

1) − d1(λ2 + μ)

λ̂1 − μ̂1

d

dx
H(0)(x, 0)|x=1 + H(0)(1, 0)

λ1μ[d1(λ + μ2) − μ1μ2]

(λ̂1 − μ̂1)2

+ H(0)(0, 1)
λ1μ̂1(λ + μ∗

2)

(λ̂1 − μ̂1)2
+ H(0)(0, 0)

λ1μ[μ1d2 − d1(λ + μ2)]

(λ̂1 − μ̂1)2
. (4.20)

To derive E(N2), we need to obtain d
dy H(0)(0, y)|y=1, and this can be done using (4.4).

Then,

d

dy
W (y)|y=1 = − lim

y→1

A(X0(y), y)
B(X0(y), y)

d

dy
G(x)|x=1X

′
0(1) − lim

y→1

d

dy

A(X0(y), y)
B(X0(y), y)

G(1) ⇒

d

dy
H(0)(0, y)|y=1 = − lim

y→1

A(X0(y), y)
B(X0(y), y)

d

dy
H(0)(x, 0)|x=1X

′
0(1)

− lim
y→1

d

dy

A(X0(y), y)
B(X0(y), y)

[H(0)(1, 0) − d2(d1 − μ1)
d1d2 − μ1μ2

H(0)(0, 0)]

= − lim
y→1

A(X0(y), y)
B(X0(y), y)

d

dy
H(0)(x, 0)|x=1X

′
0(1)

− lim
y→1

d

dy

A(X0(y), y)
B(X0(y), y)

[
μ1(μ̂2 − λ(λ2 + μ2)) + d2(λ(λ1 + μ1) − μ̂1)

μ
],

(4.21)

where using the L’Hospital rule we can obtain after some algebra

lim
y→1

A(X0(y), y)
B(X0(y), y)

=
λ2(d1 + μ2) − μ̂2 + (λ1(d1 + μ2) − μd1)X

′
0(1)

λ2(d2 + μ1) − μd2 + (λ1(d2 + μ1) − μ̂1)X
′
0(1)

,

X
′
0(1) =

λ̂2 − μ̂2

μ̂1 − λ̂1

,

X
′′
0 (1) =

2[(μ̂1 + μ̂2 − 2(λ̂1 + λ̂2))μ2μ1μ2 + λ̂2
1μ̂2 + λ̂2

2μ̂1]

(μ̂1 − λ̂1)3
,

and

lim
y→1

d

dy

A(X0(y), y)
B(X0(y), y)

=
μ

2(λ2(d2 + μ1) − μd2 + (λ1(d2 + μ1) − μ̂1)X
′
0(1))2

×
{

2[μ2(d2 + μ1 − d2(d1 + μ2)) + X
′
0(1)(d1(d2 + μ1) − μ1(d1 + μ2))](λ2 + (X

′
0(1))2)

−X
′′
0 (1)[(d1 + μ2)(λ1d2 − λ2μ1) + (d2 + μ1)(λ2d1 − λ1μ2) + μ(μ1μ2 − d1d2)]

}
.

Similarly,

d

dy
H(1)(1, y)|y=1 =

α

μ

d

dy
H(0)(1, y)|y=1 − d2 + μ1

μ

d

dy
H(0)(0, y)|y=1,

d

dy
H(0)(1, y)|y=1 =

λ2μ

(λ̂2 − μ̂2)2

[
(d2(λ + μ1) − μ1μ2)H(0)(0, 1) + μ2(λ + μ∗

1)H
(0)(1, 0)

+(μ2d1 − d2(λ + μ1))H(0)(0, 0)
]

+
λ2(d2 + μ1) − μd2

λ̂2 − μ̂2

d

dy
H(0)(0, y)|y=1.

https://doi.org/10.1017/S0269964816000528 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000528


A TWO-CLASS RETRIAL SYSTEM WITH COUPLED ORBIT QUEUES 159

Therefore,

E(N2) =
μ1(λ2 + μ∗

2) − d2(λ1 + μ)

λ̂2 − μ̂2

d

dy
H(0)(0, y)|y=1 + H(0)(0, 1)

λ2μ[d2(λ + μ1) − μ1μ2]

(λ̂2 − μ̂2)2

+ H(0)(1, 0)
λ2μ̂2(λ + μ∗

1)

(λ̂2 − μ̂2)2
+ H(0)(0, 0)

λ2μ[μ2d1 − d2(λ + μ1)]

(λ̂2 − μ̂2)2
. (4.22)

Finally, recall that (see Lemma 1) P (C = 1) = λ
μ .

4.2. A Dirichlet Boundary Value Problem

Consider now the case where μ1μ2 = d1d2. Thus, there is a ξ ∈ [0, 1], such that μ1 = ξμ∗
1,

μ2 = (1 − ξ)μ∗
2. Assume also that the system is in steady state (see (3.2)), that is, ρ < 1.

Then, it is easily seen that

B(x, y) = − ξ

1 − ξ
A(x, y),

C(x, y) = μ∗
2x[λ1y(1 − x) + (λ2y − μ)(1 − y)] − A(x, y)

= μ∗
1y[λ2x(1 − y) + (λ1x − μ)(1 − x)] − B(x, y).

For pairs (x, y), |x| ≤ 1, |y| ≤ 1, K(x, y) = 0, the functional Eq. (2.9) reduces to

(1 − ξ)H(0)(x, 0) − ξH(0)(0, y) + (1 − ρ)(1 − ξ)
C(x, y)
A(x, y)

= 0. (4.23)

Since Im(H(0)(0, y)) = 0 for y ∈ [y1, y2], we conclude in,

Re
(
iH(0)(x, 0)

)
= f(x), |x| =

√
μ̂1

λ̂1

, (4.24)

where

f(x) = (1 − ρ)Im
(

μ∗
2x[(μ − λ2Y0(x))(1 − Y0(x)) − λ1Y0(x)(1 − x)]

A(x, Y0(x))
]
)

.

Clearly, if A(x, Y0(x)) has no zero for |x| <
√

μ̂1

λ̂1
, then H(0)(x, 0) is analytic in |x| <

√
μ̂1

λ̂1

and continuous on the boundary, and (4.24) represents a Dirichlet problem on a circle. If
there is a root, say x0, of A(x, Y0(x)) for |x| <

√
μ̂1

λ̂1
, then another Dirichlet problem can be

defined for the function (x − x0)kH(0)(x, 0), k = 0, 1. Thus, we have the following problem:
Determine a function H(0)(x, 0) such that

1. H(0)(x, 0) is regular for |x| =
√

μ̂1/λ̂1, and continuous for |x| ≤
√

μ̂1/λ̂1.

2. Re
(
iH(0)(x, 0)

)
= f(x), |x| =

√
μ̂1/λ̂1.
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Its solution is given by (see [33,45])

H(0)(x, 0) = −1 − ρ

2π

∫
|t|=

√
μ̂1/λ̂1

u(t)
t + x

t − x

dt

t
+ Z, |x| <

√
μ̂1/λ̂1, (4.25)

where

u(t) = Im
(

μ∗
2t[(μ − λ2Y

∗(t))(1 − h(t)) − λ1Y
∗(t)(1 − t)]

A(x, Y ∗(t))

)
,

|t| =
√

μ̂1/λ̂1 and Z a constant to be determined. Setting x = 0 in (4.25) we get

Z = (1 − ρ)

[
1 +

1
2π

∫
|t|=

√
μ̂1/λ̂1

u(t)
dt

t

]
.

Let x =
√

μ̂1/λ̂1e
iθ. Then, the characteristic Eq. (2.10) becomes

λ̂2y
2 − (λ̂ + μ̂1 + μ̂2)y + μ̂2 = 0,

and its solution with the smallest modulus

y = y(θ) := Y0(x) =
λ̂2 + μ̂2 + a −

√
(λ̂2 + μ̂2 + a)2 − 4λ̂2μ̂2

2λ̂2

,

is in [y1, y2] for |x| =
√

μ̂1/λ̂1, and a = λ̂1 + μ̂1 − 2
√

λ̂1μ̂1 cos θ. Then,

H(0)(x, 0) = −1 − ρ

2π

∫ π

−π

T̂ (θ)

√
μ̂1/λ̂1e

iθ + x√
μ̂1/λ̂1eiθ − x

dθ + Z, |x| <

√
μ̂1/λ̂1, (4.26)

where T̂ (θ) = u(
√

μ̂1/λ̂1e
iθ). Using the facts that y(θ) is an even function of θ and T (θ) is

an odd function of θ, we obtain for |x| <

√
μ̂1/λ̂1

H(0)(x, 0) =
2
√

μ̂1λ̂1(1 − ρ)

π

∫ π

0

T̂ (θ)x sin θ

μ̂1 − 2
√

μ̂1λ̂1 cos θ + λ̂1x2

dθ + Z. (4.27)

Similarly, we can also obtain the H(0)(0, y), |y| <

√
μ̂2/λ̂2, by solving another Dirichlet

problem. Substituting H(0)(0, y), H(0)(x, 0), into (2.6), (2.7), we can determine H(1)(x, y),
H(0)(x, y).

5. ASYMPTOTIC ANALYSIS

In the following, we focus on the model analyzed in Section 4 for μ1μ2 = d1d2, that is,
μ1 = ξμ∗

1, μ2 = (1 − ξ)μ∗
2. Similar results can be deduced for the general case.

In [42,43], the kernel method was applied to study the exact tail asymptotic properties
for random walks in the quarter plane. Song, Liu, and Zhao [52] performed asymptotic
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analysis for the model in [7]. In this section, we fill the gap and provide asymptotic results
for a retrial model with two input streams and coupled orbit queues, based on the random
walk approach presented in Section 3.1. Using the fundamental Eq. (3.17), we can obtain
asymptotic properties at the dominant singularity for the generating functions π

(1)
1 (x),

π
(1)
2 (y), with the aid of which, we can identify the exact tail properties for pi,j(1), through the

Tauberian-like theorem. Then, using (2.6) we can also characterize the exact tail asymptotic
properties for pi,j(0).

We proceed with the investigation of the dominant singularity of the π
(1)
1 (x) (similar

results can be obtained for π
(1)
2 (y)). The dominant singularity of π

(1)
1 (x) is either a branch

point of the kernel equation k(1)(x, y) = 0 or a pole of the function π
(1)
1 (x) [42,43]. Clearly,

k(1)(x, y) = −αK(x, y), and thus, the branch points of k(1)(x, y) = 0 coincides with the
branch points of K(x, y) = 0, thoroughly investigated in Section 3.2 (see also [52] pp. 10–11).

Since the censored MC on the states of a busy server is a standard random walk in the
quarter plane, we can employ literature results on the analysis of the dominant singularity
of π

(1)
1 (x). Except the branch point

x3 =
λ̂1 + ξμμ∗

1 + (
√

λ̂2 −
√

(1 − ξ)μμ∗
2)

2 −√
V

2λ̂1

,

where

V =

[
(λ̂1 + ξμμ∗

1) +
(√

λ̂2 −
√

(1 − ξ)μμ∗
2

)2
]2

− 4λ̂1ξμ
∗
1,

the other candidate for the dominant singularity is a pole of π
(1)
1 (x) in the interval (1, x3],

which can only be the zero of A(x, Y0(X)).
Note that for this censored random walk, pi,j , p

(1)
i,j are not X-shaped, and according to

[43], Theorem 4.5, either A(x, Y0(x)) has no zeros with modulus in (1, x3], or it has only one,
say x∗ in (1, x3]. In the former case, let x∗ = +∞ (in this case, obviously x∗ can never be
the dominant singularity since x3 < +∞). To check the existence of such a zero, instead of
directly considering the equation A(x, Y0(x)) = 0, we consider the product of two functions
A(x, Y0(x)) and A(x, Y1(x)), which is a polynomial:

A(x, Y0(x))A(x, Y1(x)) =
μ(1 − ξ)(x − 1)

α(λ + μ∗
1)2

g(x),

where

g(x) = λλ1(λ + μ∗
1)(μ

∗
2 − μ∗

1)x
2 + λμ∗

1x[(λ + μ∗
1)(λ + μ∗

2) + μ(μ∗
1 − μ∗

2)] − μ(μ∗
1)

2(λ + μ∗
2).

It is easily checked that g(0) < 0, and g(1) = μμ∗
1μ

∗
2(λ + μ∗

2)(ρ − 1) < 0 due to the stability
condition (3.14). The polynomial g(x) has two real roots since

Δ0 = (λμ∗
1(λ + μ∗

2)(λ + μ∗
1))

2 + (λμμ∗
1(μ

∗
1 − μ∗

2))
2 + 2λ(λ2 − λ1)(μ∗

1)
2(λ + μ2)(μ∗

1 − μ∗
2)

≥ (λμ∗
1(λ + μ2)(λ + μ∗

1) − λμμ∗
1|μ∗

1 − μ∗
2|)2 ≥ 0,

given by

x± =
−λμ∗

1[μ(μ∗
1 − μ∗

2) + (λ + μ∗
2)(λ + μ∗

1)]x ±√
Δ0

2λλ1(μ∗
1 − μ∗

2)(λ + μ∗
1)

.

Moreover, these roots cannot belong to (x2, 1] since their product has modulus greater
than 1. If μ∗

2 − μ∗
1 > 0, x± are of opposite sign with x+ > 1. If μ∗

2 − μ∗
1 < 0, then they are
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both positive and x− ≤ x3 < x4 ≤ x+. In the former case we focus on x+, while in the latter
one in x−.

We proceed with the case μ∗
2 − μ∗

1 > 0; the procedure with the other case is repetitive
and it is omitted. Solving A(x+, Y (x+)) = 0, we get

y = Y (x+) = 1 − [λ1(λ + μ∗
1) + μμ∗

1](x+ − 1)
λ2(λ + μ∗

1)x+
. (5.1)

Due to stability condition (3.14), λ(λ1+μ∗
1)

μμ∗
1

< 1. Thus, λ1(λ + μ∗
1) < μμ∗

1, and

g

(
μμ∗

1

λ1(λ + μ∗
1)

)
=

λλ1μ(μ∗
1)

2(λ + μ∗
2)

λ1
> 0.

Hence, 1 < x+ <
μμ∗

1
λ1(λ+μ∗

1) , which means Y (x+) > 1.
The following results are simple generalizations of the results found in [42] (Lemmas

2.3, 4.4, pp. 12–13) and will be used in the following.

Lemma 3:

1. If μ̂2 > λ̂2, the value of x∗ depends on the value of x+:
(a) For x+ ∈ (1, μ̂1/λ̂1], x∗ = ∞;

(b) For x+ ∈ (μ̂1/λ̂1,min(x3,
μμ∗

1
λ1(λ+μ∗

1) )), x∗ = x+ < x3 if Y (x+) <

√
μ̂2/λ̂2, and

x∗ = ∞ otherwise;

(c) For x+ = x3 <
μμ∗

1
λ1(λ+μ∗

1) , Y (x+) =
√

μ̂2/λ̂2 and x∗ = x3 = x+;

(d) For x3 < x+ <
μμ∗

1
λ1(λ+μ∗

1) , x∗ = ∞.

2. If μ̂2 ≤ λ̂2, x∗ = ∞.

Proof: The proof is completely based on [42] (Lemma 4.3). �

Lemma 4:

1. If μ̂2 > λ̂2, x+ ∈ (μ̂1/λ̂1,min(x3,
μμ∗

1
λ1(λ+μ∗

1) )) and Y (x+) <

√
μ̂2/λ̂2, the dominant

singularity xdom = x∗ = x+ < x3, which is a pole.

2. If μ̂2 > λ̂2 and x+ = x3 ∈ ( μ̂1

λ̂1
,

μμ∗
1

λ1(λ+μ∗
1) ), the dominant singularity xdom = x∗ =

x+ = x3, which is both a pole and a branch point.

3. Under one of the following three (a) μ̂2 ≤ λ̂2; (b) μ̂2 > λ̂2 and x+ ∈ (1, μ̂1/λ̂1]; and

(c) μ̂2 > λ̂2, x+ ∈ (μ̂1/λ̂1,min(x3,
μμ∗

1
λ1(λ+μ∗

1) )) and Y (x+) ≥
√

μ̂2/λ̂2, the dominant
singularity xdom = x3 < x∗ = ∞, which is a branch point.

The following theorem proves that there are three types of detailed asymptotic
properties of π

(1)
1 (x) as x approaches the dominant singularity.
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Theorem 3: The behavior of π
(1)
1 (x) at the dominant singularity is given as

1. If xdom = x∗ = x+ < x3, then

lim
x→x+

(
1 − x

x+

)
π

(1)
1 (x) = C1,0,

where

C1,0 =
α(λ + μ∗

1)a
(1)(x+, Y0(x+))

μ(1 − ξ)λλ1(μ∗
2 − μ∗

1)x+(x+ − 1)(x+ − x−)

× [b(1)(x+, Y0(x+))π(1)
2 (Y0(x+)) + c(1)(x+, Y0(x+))π(1)(0, 0)].

2. If xdom = x∗ = x+ = x3, then

lim
x→xdom

√
1 − x

xdom
π

(1)
1 (x) = C2,0,

where

C2,0 =
2
λ1

b(1)(xdom, Y0(xdom))π(1)
2 (Y0(xdom)) + c(1)(xdom, Y0(xdom))π(1)(0, 0)√

xdom(xdom − x1)(xdom − x2)(x4 − xdom)
.

3. If xdom = x3 < x∗ = +∞, then

lim
x→x3

√
1 − x

x3

d

dx
π

(1)
1 (x) = C3,0,

where

C3,0 = −q(x3)
2x3

d

dy

[
b(1)(x3, y)π(1)

2 (y) + c(1)(x3, y)π(1)(0, 0)
a(1)(x3, y)

]
|y=Y0(x3),

q(x3) = − λ1

2λ2x3

√
x3(x3 − x1)(x3 − x2)(x4 − x3).

Proof: The proof is based on [43] p. 15 and due to space economy the details are omitted.
�

We are going to apply the following Tauberian-like theorem in order to obtain the exact
tail asymptotic properties in stationary probabilities from the corresponding asymptotic
properties of the generating function. Note that using the Tauberian-like theorem, it is not
necessary to fully determine the unknown generating function with the aid of the boundary
value theory. For alternative approaches see [35,36]. Just for sake of clarity we state the
following Tauberian-like theorem for single singularity that we are going to use (for further
reading see Flajolet and Sedgewick [32]).

Theorem 4 [32]: Let A(z) =
∑

n≥0 anzn be analytic at zero with R the radius of conver-
gence. Suppose that R is a singularity of A(z) that can be continued to a Δ-domain at R.
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If for a real number β /∈ {0, 1, 2, . . .},

lim
z→R

(1 − z/R)βA(z) = g,

where g is a non-zero constant. Then,

an ∼ g

Γ(β)
nβ−1R−n,

where Γ(β) is the value of Gamma function at β, and an ∼ bn is equivalent to limn

(an/bn) = 1.

5.1. Exact Tail Asymptotics for a Busy Server

The following theorem provides asymptotic properties of the boundary probabilities pi,0(1),
and it is a direct consequence of Theorems 3 and 4.

Theorem 5: If ρ < 1 then, when i is large, we have three types of tail asymptotic properties
for the boundary probabilities pi,0(1):

1. Exact geometric decay: If xdom = x∗ = x+ < x3, then

pi,0(1) ∼ C1,0

(
1

x+

)i−1

, i ≥ 1;

2. Geometric decay with prefactor i−1/2: If xdom = x∗ = x+ = x3, then

pi,0(1) ∼ C2,0√
π

i−1/2

(
1

xdom

)i−1

, i ≥ 1;

3. Geometric decay with prefactor i−3/2: If xdom = x3 < x∗ = +∞, then

pi,0(1) ∼ C3,0√
π

i−3/2

(
1
x3

)i−2

, i ≥ 1,

where Ci,0, i = 1, 2, 3 are given in Theorem 3.

We proceed with the characterization of the asymptotic behavior of the marginal
probability π

(1)
i =

∑
j≥1 pi,j(1). We compute

π(1)(x, 1) =
a(1)(x, 1)π(1)

1 (x) + b(1)(x, 1)π(1)
2 (1) + c(1)(x, 1)π(1)(0, 0)

−k(1)(x, 1)

=
α

λ + μ∗
1

[λ1(λ + μ∗
1)x − μμ∗

1]π
(1)
1 (x) + λ1(λ + μ∗

1)(π
(1)
2 (1) + π(1)(0, 0))

ξμμ∗
1(1 − λ̂1

ξμμ∗
1
)

.

Following the discussion in [52], p. 17, it can be seen that the Tauberian-like theorem can
be applied for the marginal probability π

(1)
i :
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Theorem 6:

lim
x→ξμμ∗

1/λ̂1

(
1 − x

ξμμ∗
1/λ̂1

)
π(1)(x, 1) = Ci,

where

Ci = − (1 − ξ)μ∗
2

λ + μ∗
1

π
(1)
1 (ξμμ∗

1/λ̂1) +
λ̂1

ξμμ∗
1

(π(1)
2 (1) + π(1)(0, 0)).

The marginal probabilities π
(1)
i has an exact geometric decay with decay rate equal to xdom =

ξμμ∗
1/λ̂1:

π
(1)
i ∼ Ci

(
λ̂1

ξμμ∗
1

)i−1

.

Next, we focus on the exact tail asymptotic behavior for joint probabilities pi,j(1).
Following the lines in Theorem 7.1 and Lemma 7.2 in [43], we conclude to the following
theorem.

Theorem 7: Corresponding to the three types in Theorem 3, when i is large, we have the
following tail asymptotic properties for the joint probabilities pi,j(1) for a fixed j:

1. Exact geometric decay: If xdom = x∗ = x+ < x3, then

pi,j(1) ∼ −b1(x+)C1,0

c(x+)

(
1

Y1(x+)

)j−1( 1
x+

)i−1

, j ≥ 1;

2. Geometric decay with prefactor i−1/2: If xdom = x∗ = x+ = x3, then

pi,j(1) ∼ −b1(xdom)C2,0√
πc(xdom)

(
1

Y1(xdom)

)j−1

i−1/2

(
1

xdom

)i−1

, j ≥ 1;

3. Geometric decay with prefactor i−3/2: If xdom = x3 < x∗ = +∞, then

pi,j(1) ∼ −b1(x3)C3,0 + (j − 1)l(x3)√
πc(x3)

(
1

Y1(x3)

)j−1

i−3/2

(
1
x3

)i−2

, j ≥ 1,

where l(x) = 2λ̂2xb1(x)−[λ̂1x2−(λ̂+μ̂1+μ̂2)x+μ̂1]

2λ̂2xc(x)
C3,0, and b1(x), c(x) are given in (3.18).

5.2. Exact Tail Asymptotics for an Idle Server

Our knowledge on the exact tail asymptotic properties of the boundary, marginal and joint
distributions for a busy server, will help us to obtain the corresponding properties for an
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idle server. Clearly, setting y = 0 in (2.6) we conclude in

H(0)(x, 0) =
μ

λ + μ∗
1

H(1)(x, 0) +
(1 − ρ)μ∗

1

λ + μ∗
1

, (5.2)

which means that H(0)(x, 0) and H(1)(x, 0) have the same asymptotic property. Setting
y = 0 in (2.6) we conclude in

αH(0)(x, 1) = μH(1)(x, 1) − (μ∗
1 − μ∗

2)
[
(1 − ξ)H(0)(x, 0) − ξH(0)(0, 1)

]
+ (1 − ρ)[(1 − ξ)μ∗

1 + ξμ∗
2]. (5.3)

Substituting (5.2) into (5.3) yields

αH(0)(x, 1) = μH(1)(x, 1) − (μ∗
1 − μ∗

2)
[
(1 − ξ)μ
λ + μ∗

1

H(1)(x, 0)

−ξH(0)(0, 1)
]

+ (1 − ρ)
[

μ∗
1

λ + μ∗
1

+ (1 − ξ)μ∗
1 + ξμ∗

2

]
.

Thus, H(0)(x, 1) and H(1)(x, 1) have the same asymptotic property. Based on the above,
we have the following conclusion:

Theorem 8: If ρ < 1 then,

1. For large i, we have three types of tail asymptotic properties for the boundary
probabilities pi,0(0) correspondingly.
(a) Exact geometric decay: If xdom = x∗ = x+ < x3, then

pi,0(0) ∼ μ

λ + μ∗
1

C1,0

(
1

x+

)i−1

, i ≥ 1;

(b) Geometric decay with prefactor i1/2: If xdom = x∗ = x+ = x3, then

pi,0(0) ∼ μ

λ + μ∗
1

C2,0√
π

i−1/2

(
1

xdom

)i−1

, i ≥ 1;

(c) Geometric decay with prefactor i3/2: If xdom = x3 < x∗ = +∞, then

pi,0(0) ∼ μ

λ + μ∗
1

C3,0√
π

i−3/2

(
1
x3

)i−2

, i ≥ 1,

where Ci,0 are given in Theorem 3.

2. The tail asymptotic property of the marginal distribution π
(0)
i =

∑
j≥1 pi,j(0) is

determined by

π
(0)
i ∼ μ

α
Ci

(
λ̂1

ξμμ∗
1

)i−1

,

where Ci is given in Theorem 6.

Finally, referring to the second equation in (2.4) we conclude in the following theorem
for the tail asymptotic behavior of the joint probabilities pi,j(0):
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Theorem 9: Corresponding to the three types in Theorem 3, when i is large, we have the
following tail asymptotic properties for the joint probabilities pi,j(1) for a fixed j:

1. Exact geometric decay: If xdom = x∗ = x+ < x3, then

pi,j(0) ∼ −μ

α

b1(x+)C1,0

c(x+)

(
1

Y1(x+)

)j−1( 1
x+

)i−1

, j ≥ 1;

2. Geometric decay with prefactor i−1/2: If xdom = x∗ = x+ = x3, then

pi,j(0) ∼ −μ

α

b1(xdom)C2,0√
πc(xdom)

(
1

Y1(xdom)

)j−1

i−1/2

(
1

xdom

)i−1

, j ≥ 1;

3. Geometric decay with prefactor i−3/2: If xdom = x3 < x∗ = +∞, then

pi,j(0) ∼ −μ

α

b1(x3)C3,0 + (j − 1)l(x3)√
πc(x3)

(
1

Y1(x3)

)j−1

i−3/2

(
1
x3

)i−2

, j ≥ 1,

where

(x) =
2λ̂2xb1(x) − [λ̂1x

2 − (λ̂ + μ̂1 + μ̂2)x + μ̂1]

2λ̂2xc(x)
C3,0,

and b1(x), c(x) are given in (3.18).

6. THE MODEL WITH GENERAL SERVICE TIMES

In the following, we consider a generalization of the main model by assuming that the service
time distribution is not exponentially distributed, but instead, it is arbitrarily distributed
with cdf (cumulative distribution function) B(x), pdf (probability density function) b(x)
and Laplace–Stieltjes Transform (LST) β(s) and mean b̄. The assumption of arbitrary dis-
tributed service times will change our analysis, but hopefully, we are able to use the approach
developed in Cohen and Boxma [17] and transform the inherent functional equation into a
boundary value problem of the Riemann type.

Let Xi(n), to be the number of type i, i = 1, 2, retrial customers in orbit i, just after
the end of the nth service completion. Define by Ai(n), i = 1, 2, to be the number of type
i customers that arrive during the nth service service time. Denote for |z1| ≤ 1, |z2| ≤ 1,

πm,l = lim
n→∞Pr((X1(n),X2(n)) = (m, l)),Π(z1, z2) =

∞∑
m=0

∞∑
l=0

πm,lz
m
1 zl

2.

Clearly, if ri = λi/λ, i = 1, 2, λ = λ1 + λ2,

P (A1 = k,A2 = m) = dk,m =
∫ ∞

0

e−λ1t (λ1t)k

k!
e−λ2t (λ2t)k

m!
dB(x),

d∗(z1, z2) =
∞∑

m=0

∞∑
l=0

dkmzk
1zm

2 = β∗(λ(1 − r1z1 − r2z2)).
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Set y := λ(1 − r1z1 − r2z2). Considering the transition probabilities during successful
service completion epochs we obtain,

πm,l =
μ1

λ + μ1 + μ2

m+1∑
k1=1

l∑
k2=1

πk1,k2dm+1−k1,l−k2 +
μ2

λ + μ1 + μ2

m∑
k1=1

l+1∑
k2=1

πk1,k2dm−k1,l+1−k2

+
λ

λ + μ1 + μ2

m∑
k1=1

l∑
k2=1

πk1,k2dm−k1,l−k2 +
μ∗

1

λ + μ∗
1

m+1∑
k1=1

πk1,0dm+1−k1,l + π0,0dm,l

+
λ

λ + μ∗
1

m∑
k1=1

πk1,0dm−k1,l +
μ∗

2

λ + μ∗
2

l+1∑
k2=1

π0,k2dm,l+1−k2 +
λ

λ + μ∗
2

l∑
k2=1

π0,k2dm,l−k2 .

Forming the generating functions we conclude that

K̂(z1, z2)Π(z1, z2) = Â(z1, z2)Π(z1, 0) + B̂(z1, z2)Π(0, z2) + Ĉ(z1, z2)Π(0, 0), (6.1)

where

K̂(z1, z2) = z1z2 − K̃(z1, z2), (6.2)

Â(z1, z2) = z2Ã(z1, z2) − K̃(z1, z2),

B̂(z1, z2) = z1B̃(z1, z2) − K̃(z1, z2), (6.3)

Ĉ(z1, z2) = K̃(z1, z2) + z2(r1z1β
∗(y) − Ã(z1, z2)) + z1(r2z2β

∗(y) − B̃(z1, z2)),

and

K̃(z1, z2) =
[
μ1z2 + μ2z1 + λz1z2

α

]
β∗(y),

Ã(z1, z2) =
μ∗

1 + λz1

λ + μ∗
1

β∗(y), B̃(z1, z2) =
μ∗

2 + λz2

λ + μ∗
2

β∗(y). (6.4)

In order to present the essential character of the analysis and to avoid intricate technical
problems, we consider the following assumption: In the following, assume that μ∗

1 = μ1 +
μ2 = μ∗

2. More precisely, when orbit queue 1 (resp. 2) empties, the re-dispatch rate at orbit
queue 2 (resp. 1) increases to μ1 + μ2. Taking into account that assumption, the functional
Eq. (6.1) becomes,

[z1z2 − (μ̄1z2 + μ̄2z1)β̌∗(z1, z2)]Π(z1, z2) = β̌∗(z1, z2)

× {(z2 − z1)[μ̄2Π(z1, 0) − μ̄1Π(0, z2)] + [z1z2 − (μ̄1z1 + μ̄2z2)]Π(0, 0)} , (6.5)

where μ̄i = μi

μ1+μ2
, i = 1, 2, μ̄ = μ1 + μ2 and

β̌∗(z1, z2) =
μ̄β∗(λ(1 − r1z1 − r2z2))

μ̄ + λ(1 − β∗(λ(1 − r1z1 − r2z2)))
. (6.6)

We have to note that β̌∗(z1, z2) is a probability generating function. Indeed, let B̌ be the
time elapsed from the epoch a service is initiated until the epoch the server remains idle
just after a service completion of an orbiting customer of either type. Then, it is easy to see
that the probability generating function of the number of customers that arrive during B̌ is

β̌∗(z1, z2) =
∞∑

k=0

(
λ

λ + μ̄

)k
μ̄

λ + μ̄
(β∗(λ(1 − r1z1 − r2z2)))k+1.
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Remark 1: Note that the model under generally distributed service requirements, is closely
connected with a two queue polling system with probabilistic scheduling and a generalized
service time. More precisely, the server offers service of duration B̌, and upon such a service
completion epoch, the next customer to be served comes from queue i with probability μ̄i,
i = 1, 2.

The analysis of the kernel of (6.5), z1z2 − (μ̄1z2 + μ̄2z1)β̌∗(z1, z2) is the starting point
for the determination of Π(z1, z2), which is regular for |z1| < 1, continuous for |z1| ≤ 1 for
every fixed z2 with |z2| ≤ 1; and similarly, with z1, z2 interchanged.

6.1. Analysis of the Kernel

Following Cohen and Boxma [17], consider the kernel for

z1 = gs, z2 = gs−1, |s| = 1, |g| ≤ 1.

Consequently,

K̂(gs, gs−1) = g2 − g[μ̄1s
−1 + μ̄2s]β̌∗(gs, gs−1),

β̌∗(gs, gs−1) =
μ̄β∗(λ(1 − g(r1s + r2s

−1))
μ̄ + λ(1 − β∗(λ(1 − g(r1s + r2s−1)))

.

Lemma 5:

1. If λb̄( μ̄+λ
μ̄ ) < 1 the kernel K̂(gs, gs−1) has in |g| ≤ 1 exactly two zeros, of which one

is identically zero. The other zero, say g = g(s), is given by

g(s) = E([r1s + r2s
−1]n−1[μ̄1s

−1 + μ̄2s]n), (6.7)

where n be the number of customers being served in a busy period of an M/G/1
queue with arrival rate λ and service time distribution with LST β̌∗.

2. For |s| = 1,
g(s) = −g(−s), g(s̄) = g(s).

Proof: See the appendix. �

Define,

S1 := {z1 : z1 = g(s)s, |s| = 1} , S2 :=
{
z2 : z2 = g(s)s−1, |s| = 1

}
.

A point of major concern is to prove that the contours S1, S2 are simply connected. However,
this is not true for general μ̄i, ri. We further restrict our analysis to cases where it is rather
easily to prove that S1, S2 are simply connected, and from hereon we will also assume that:

μ̄1 = r1, μ̄2 = r2, r1 > r2. (6.8)

Under that assumption it follows that

g(s) = [r1s
−1 + r2s]E(|r1s + r2s

−1|2n−2),

since, for |s| = 1, r1s
−1 + r2s = r1s + r2s−1.
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Lemma 6: The contours S1, S2 are simply connected and smooth.

Proof: See the appendix. �

It is easily seen that z1 = 0 ∈ S−
1 , z2 = 0 ∈ S+

2 , where S+
i , S−

i denote the interior and
exterior of the contour Si, i = 1, 2, respectively.

6.2. Kernel’s Parametrization

Now, following Cohen and Boxma [17], p. 161, we have to consider the following boundary
value problem for the functions z1 := g(s)s, z2 := g(s)s−1: To construct in the x-plane
a smooth contour L and a pair of mappings z1(x), x ∈ L+ ∪ L, z2(x), x ∈ L− ∪ L such
that:

1. z1(x) is regular and univalent for x ∈ L+, continuous for x ∈ L+ ∪ L;
z2(x) is regular and univalent for x ∈ L−, continuous for x ∈ L− ∪ L.

2. z1(x) maps L+ conformally onto S+
1 ;

z2(x) maps L− conformally onto S+
2 .

3. z+
1 (x), z−2 (x), x ∈ L is a zero pair of (6.2), where

z+
1 (x) = lim

y→x, y∈L+
z1(y), z−2 (x) = lim

y→x, y∈L−
z2(y).

4. z1(0) > 0, z1(1) = 1, z2(∞) = 0, 0 < d := lim|x|→∞ |xz2(x)| < ∞.

We proceed with the determination of L, and the mappings z1(.), z2(.). Since for x ∈ L,
(z+

1 (x), z−2 (x)) is a zero pair of (6.2) for |z1| ≤ 1, |z2| ≤ 1 with z+
1 (x) ∈ S1, z−2 (x) ∈ S2, we

may write

z+
1 (x) = g(eiλ(x))eiλ(x), z−2 (x) = g(eiλ(x))e−iλ(x), (6.9)

where λ(.) : L → [0, π], λ(1) = 0. Then it is seen that for x ∈ L:

log z+
1 (x) + log

xz−2 (x)
d

= log
g2(eiλ(x))

d
+ log x,

log z+
1 (x) − log

xz−2 (x)
d

= 2iλ(x) − log x + log d. (6.10)

Using the usual procedure as in [17], the solution of the above boundary value problem is:

z1(x) = exp
{

1
2πi

∫
ζ∈L

[log
{

g(eiλ(ζ))ζ1/2
}

]
{

ζ + x

ζ − x
− ζ + 1

ζ − 1
dζ

ζ

}}
, x ∈ L+,

z2(x) = x−1 exp
{
− 1

2πi

∫
ζ∈L

[log
{

g(eiλ(ζ))ζ1/2
}

]
{

ζ + x

ζ − x
− ζ + 1

ζ − 1
dζ

ζ

}}
, x ∈ L−.

Applying Plemelji–Sokhotski formulas for x ∈ L gives:

z+
1 (x) = g(eiλ(x))x1/2 exp

{
1

2πi

∫
ζ∈L

[log
{
g(eiλ(ζ))ζ1/2

}
]
{

ζ + x

ζ − x
− ζ + 1

ζ − 1
dζ

ζ

}}
,

z−2 (x) = g(eiλ(x))x−1/2 exp
{
− 1

2πi

∫
ζ∈L

[log
{

g(eiλ(ζ))ζ1/2
}

]
{

ζ + x

ζ − x
− ζ + 1

ζ − 1
dζ

ζ

}}
.
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Substituting back in (6.10) gives the following relation for the determination of L, λ(x),
x ∈ L:

exp {iλ(x)} = x1/2 exp
{

1
2πi

∫
ζ∈L

[log
{

g(eiλ(ζ)ζ1/2
}

]
{

ζ + x

ζ − x
− ζ + 1

ζ − 1
dζ

ζ

}}
.

6.3. Solution of a Riemann Boundary Value Problem

Since for x ∈ L, (z+
1 (x), z−2 (x)) is a zero pair of (6.2), it readily follows from (6.5) that

r2(z+
1 (x) − z−2 (x))Π(z+

1 (x), 0) + r1(z−2 (x) − z+
1 (x))Π(0, z−2 (x))

= (z+
1 (x)z−2 (x) − r1z

+
1 (x) − r2z

−
2 (x))Π(0, 0).

Using (6.9) we conclude in:

Π(z+
1 (x), 0) =

r1

r2
Π(0, z−2 (x)) + Ĵ(x),

where

Ĵ(x) =
g(eiλ(x)) − r1e

iλ(x) − r2e
−iλ(x)

r2(r1eiλ(x) − r2e−iλ(x))
Π(0, 0).

Thus, we come up with the following Riemann boundary value problem: For a simply
connected Jordan contour L and the mappings z1(x), x ∈ L ∪ L+, z2(x), x ∈ L ∪ L−, find
two functions such that

1. Π(z1(x), 0) is regular for x ∈ L+, continuous for x ∈ L ∪ L+;
Π(0, z2(x)) is regular for x ∈ L−, continuous for x ∈ L ∪ L−.

2. Satisfying the boundary condition: for x ∈ L,

Π(z+
1 (x), 0) =

r1

r2
Π(0, z−2 (x)) + Ĵ(x).

Since the r1
r2

never vanishes, its index is indx∈L
r1
r2

= 0, and clearly r1
r2

satisfies the Holder
condition on L. Moreover, Ĵ(x) satisfies the Holder condition on L, since both its numerator
and its denominator satisfies it. Thus, the solution of this Riemann boundary value problem
is given by:

r2Π(z1(x), 0) =
1

2iπ

∫
ζ∈L

Ĵ(ζ)
dζ

ζ − x
+ r1Π(0, 0), x ∈ L+,

r1Π(0, z2(x)) =
1

2iπ

∫
ζ∈L

Ĵ(ζ)
dζ

ζ − x
+ r2Π(0, 0), x ∈ L−. (6.11)

Let now x = w1(z1), z1 ∈ S+
1 , and x = w2(z2), z2 ∈ S+

2 the inverse mappings of z1(x),
z2(x), respectively. These are conformal mappings of S+

1 (resp. S+
2 ) onto L+ (resp. L−).

Since S1, S2 and L are smooth, by the theorem of corresponding boundaries [47] is implied
that w1(.) maps S1 onto L, and w2(.) maps S2 onto L. Finally, let ω2 : S1 → S2 a mapping
from the contour S1 onto the contour S2 (its existence is ensured due to Theorem 1.1,
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p. 101 in [19]), such that, for every x ∈ L, the pair (z+
1 (x), ω2(z+

1 (x))) is a zero pair of the
kernel (6.2), that is, ω2(z+

1 (x)) = z−2 (x). Then, Ĵ(x) may be rewritten as:

Ĵ(x) =
z+
1 (x)ω2(z+

1 (x)) − r1z
+
1 (x) − r2ω2(z+

1 (x))
z+
1 (x) − ω2(z+

1 (x))
Π(0, 0) = f(x)Π(0, 0).

Applying the Plemelj–Sokhotski formulas [33] we have for x ∈ L

r2Π(z+
1 (x), 0) =

Π(0, 0)
2iπ

∫
ζ∈L

f(ζ)
dζ

ζ − x
+

1
2
f(x)Π(0, 0) + r1Π(0, 0),

r1Π(0, z−2 (x)) =
Π(0, 0)

2iπ

∫
ζ∈L

f(ζ)
dζ

ζ − x
− 1

2
f(x)Π(0, 0) + r2Π(0, 0). (6.12)

We now obtain Π(0, 0), by deriving some preliminary results from the functional
Eq. (6.5), under assumption (6.8). Setting z2 = 1 in (6.5), and subsequently letting z2 → 1,
and vice versa yields the following linear relations between Π(0, 1), Π(1, 0) and Π(0, 0):

r1(1 − ρ) = r1Π(0, 1) − r2Π(1, 0) + r2Π(0, 0),

r2(1 − ρ) = r2Π(1, 0) − r1Π(0, 1) + r1Π(0, 0), (6.13)

Summing (6.13), results in Π(0, 0) = 1 − ρ. Letting x → 1 in the first of (6.11) we obtain
Π(1, 0) and then substituting in one from (6.13) we can obtain Π(0, 1). Note that Π(1, 0),
Π(0, 1) denote the probability of finding the second and the first orbit queue empty at
service completion epochs, respectively.

Note also that the stability condition ρ = λb̄( μ̄+λ
μ̄ ) < 1 has a very nice probabilistic

interpretation. Indeed,

ρ = λb̄

(
μ̄ + λ

μ̄

)
< 1 ⇔ λb̄ < 1 − λ

μ̄ + λ
.

This condition can be rewritten as

E(B(1)
n = 1|Xi(n) > 0, i = 1, 2) + E(B(2)

n = 1|Xi(n) > 0, i = 1, 2)

+ E(A1(n)) + E(A2(n)) < 1, (6.14)

where E(Ai(n)) = λib̄ be the expected number of customers of type i that arrive during a
service time. If B

(i)
n be the number of external arrivals of type i at the epoch at which the

nth service starts, then (6.14) says that the mean number of external arrivals of either type
between two consecutive departures during a busy period must be smaller than one, which
is expected in order the system to be stable.

6.4. Performance Metrics and Computational Issues

In the following, we derive expressions for E(Xi), that is, the expected number of customers
in orbit i, i = 1, 2. Using (6.5) for z2 = 1 and differentiating with respect to z1, and then
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setting z1 = 1 and vice versa yields:

E(X1) = r1

[
ρ +

λ1

2(1 − ρ)

(
μ̄ + λ

μ̄

)(
b̄(2) +

λ(b̄)2

μ̄

)]
− r2

r1(1 − ρ)
d

dz1
Π(z1, 0)

∣∣∣∣
z1=1

,

E(X2) = r2

[
ρ +

λ2

2(1 − ρ)

(
μ̄ + λ

μ̄

)(
b̄(2) +

λ(b̄)2

μ̄

)]
− r1

r2(1 − ρ)
d

dz2
Π(0, z2)

∣∣∣∣
z2=1

.

(6.15)

Differentiating (6.12) with respect to x and substituting x = 1 yields

d

dz1
Π(z1, 0)

∣∣∣∣
z1=1

=
1

r2(z+
1 )′(1)

[
d

dx

{
1 − ρ

2iπ

∫
ζ∈L

f(ζ)
dζ

ζ − x

} ∣∣∣∣
x=1

+
1
2
(1 − ρ)f

′
(1)
]

=
1

r2(z+
1 )′(1)

[
1 − ρ

2iπ

∫
ζ∈L

f(ζ) + f
′
(1)

ζ − 1
dζ

]
.

d

dz2
Π(0, z2)

∣∣∣∣
z2=1

=
1

r1ω
′
2(1)(z+

1 )′(1)

[
d

dx

{
1 − ρ

2iπ

∫
ζ∈L

f(ζ)
dζ

ζ − x

} ∣∣∣∣
x=1

− 1
2
(1 − ρ)f

′
(1)
]

=
1

r1ω
′
2(1)(z+

1 )′(1)

[
1 − ρ

2iπ

∫
ζ∈L

f(ζ) − f
′
(1)

ζ − 1
dζ

]
. (6.16)

where “ ′ ” means first-order derivative. For an efficient computation of the integrals,
we proceed with the following parametrization of the contour S1 using the mapping
φ : [0, 2π] → C,

φ(t) = g(e(−1/2)it)e(1/2)it,

and set η(t) := w+
1 (φ(t)), t ∈ [0, 2π], where w+

1 (.) is the inverse mapping of z+
1 (.). Then,

f
′
(1) =

1
η′(0)

d

dt
f(η(t))

∣∣∣∣
t=0

=
1

η′(0)
d

dt

{
φ(t)ω2(φ(t)) − r1φ(t) − r2ω2(φ(t))

φ(t) − ω2(φ(t))

} ∣∣∣∣
t=0

.

To proceed, we need some extra preliminary results. Having in mind that

g(s) = (r1s
−1 + r2s)β̌(g(s)s, g(s)s−1),

implicit differentiation with respect to s, at s = 1 yields

g
′
(1) = r2 − r1, g

′′
(1) = 2r1

(
1 + 4r2

ρ

1 − ρ

)
.

Thus, φ(0) = 1, φ
′
(0) = r2i, φ

′′
(1) = r2(r1 − r2 − 2r1

1−ρ ). Since (z+
1 (x), ω2(z+

1 (x))), x ∈ L is
a zero pair of the kernel, it is seen that

z+
1 (x)ω2(z+

1 (x) = (r1ω2(z+
1 (x)) + r2z

+
1 (x))β̌(z+

1 (x), ω2(z+
1 (x))),

and thus, differentiating with respect to x, at x = 1 yields after some algebra

ω
′
2(1) = −r1

r2
, ω

′′
2 (1) =

2r1

r2
2(1 − ρ)

.

Therefore,

f
′
(1) =

r1r2iρ

(1 − ρ)η′(0)
, (z+

1 )
′
(1) =

r2i

η′(0)
.
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Substituting the last equation into (6.16) yields

d

dz1
Π(z1, 0)|z1=1 =

r1ρ

2r2
+

η
′
(0)(1 − ρ)

r2
2i

d

dx

{
1

2iπ

∫
ζ∈L

f(ζ)
dζ

ζ − x

} ∣∣∣∣
x=1

,

d

dz2
Π(0, z2)|z2=1 =

r2ρ

2r1
− η

′
(0)(1 − ρ)

r2
1i

d

dx

{
1

2iπ

∫
ζ∈L

f(ζ)
dζ

ζ − x

} ∣∣∣∣
x=1

.

(6.17)

Regarding the last term in the r.h.s. of (6.17) we write:

d

dx

{
1

2iπ

∫
ζ∈L

f(ζ)
dζ

ζ − x

}
|x=1 =

d

dx

{
1

2iπ

∫
ζ∈L

f(ζ) − f(1) − (ζ − 1)f
′
(1)

ζ − x
dζ

}∣∣∣∣
x=1

+
d

dx

{
1

2iπ

∫
ζ∈L

f(1) + (ζ − 1)f
′
(1)

ζ − x
dζ

}∣∣∣∣
x=1

=
1

2iπ

∫
ζ∈L

f(ζ) − f(1) − (ζ − 1)f
′
(1)

(ζ − 1)2
dζ +

1
2
f

′
(1).

Then, changing the variable of of integration we obtain:

d

dx

{
1

2iπ

∫
ζ∈L

f(ζ)
dζ

ζ − x

} ∣∣∣∣
x=1

=
1

2iπ

∫ 2π

0

f(η(t))− f(1)− (η(t)− 1)f
′
(1)

(η(t)− 1)2
η

′
(t)dt +

1
2
f

′
(1),

(6.18)
with the aid of which we can found that f(1) = r2 − r1. Substituting (6.17), (6.18) to the
first equation in (6.15) we can obtain E(X1). Similarly we can obtain E(X2).

7. NUMERICAL EXAMPLE

In the following, we present a simple numerical result, focusing on the model with expo-
nential service requirements analyzed in subsection 4.1. We investigate the probability of
an empty system using (4.15) and assume that μ2 = 3, μ = 4, μ∗

1 = 3, μ∗
2 = 4. The contour

integrals in (4.15) were evaluated by numerical integration using the trapezium method.

More precisely, we firstly change the variable t =
√

μ̂1/λ̂1e
iφ, φ ∈ [0, 2π), changing the

differential to dt =
√

μ̂1/λ̂1ie
iφdφ. Then, we divided the interval [0.2π) into K = 20, 000

equal parts and apply the trapezium numerical integration approach, evaluating the
integrand at points φk = 2πk/20, 000, k = 0, 1, . . . ,K − 1.

In Figure 2, we can observe the impact of λ2 on the probability of an empty system,
for different values of λ1. Clearly, as we increase λ2, P (N1 = 0, N2 = 0, C = 0) decreases, a
result that is expected. Figures 3 and 4 compare P (N1 = 0, N2 = 0, C = 0) for our model and
the model in Avrachenkov et al. [7], where no coupled orbits were considered. In Figure 3,
we observe that when λ2 takes relatively small values, P (N1 = 0, N2 = 0, C = 0) is clearly
larger for our model. However, as λ2 increases, the impact of coupled rates decreases, since
it is more likely the arriving customers to occupy the server, and thus, the two systems
give similar values on P (N1 = 0, N2 = 0, C = 0). Finally, Figure 4 describes the impact of
coupled retrial rates on P (N1 = 0, N2 = 0, C = 0) for increasing values of μ1. It is seen that
the increase in μ1, will increase P (N1 = 0, N2 = 0, C = 0), and clearly for the model with
coupled rates, that increase is more apparent, compared with the model in [7].
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Figure 2. Probability of an empty system for μ1 = 2.

Figure 3. Comparison between our model and the model in [7] for λ1 = 0.5, μ1 = 2.

Figure 4. Comparison between our model and the model in [7] for λ1 = 0.5 = λ2.

8. CONCLUSION

In this paper, we provided a thorough investigation of retrial queueing systems with two
classes of retrial customers and coupled orbit queues. The main characteristic of the system
is that when an orbit queue empties, the re-transmission rate of the other one is affected. For
exponential service requirements, stability conditions were investigated and the joint orbit
queue length distribution was obtained with the aid of Riemann–Hilbert boundary value
theory. Exact tail asymptotic properties of the stationary orbit queue length distribution
were also investigated. For arbitrary distributed service times, the joint orbit queue length
distribution was obtained in terms of the solution of a non-homogeneous Riemann boundary
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value theory. Performance metrics were derived and used to present a simple numerical
example.
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APPENDIX

Lemma 7: Under stability condition, B(X0(y), y) �= 0, y ∈ [y1, y2].

Proof: K(x, y) = 0 reads,

y(x − 1)(μ̂1 − λ̂1x) = x(y − 1)(λ̂2y − μ̂2).

Combining with B(x, y) = 0, yields for (x, y) /∈ {(0, 0), (1, 1)}:

λ2μ1(λ + μ2 − d2)y + λ1(μ2μ1 − d2(λ + μ1)x − μ̂2μ1 + μ̂1d2 = 0.

However, for |x| ≤ 1, |y| ≤ 1,

|λ2μ1(λ + μ2 − d2)y + λ1(μ2μ1 − d2(λ + μ1)x − μ̂2μ1 + μ̂1d2|
≤ λ2μ1(λ + μ2 − d2) + λ1(μ2μ1 − d2(λ + μ1)x − μ̂2μ1 + μ̂1d2

= [μ̂1 − λ(λ1 + μ1)][d2 + μ1
λ(λ2 + μ2) − μ̂2

μ̂1 − λ(λ1 + μ1)
] < 0,

under stability conditions. This proves that the only solutions to K(x, y) = B(x, y) = 0 in |x| ≤ 1,
|y| ≤ 1, are (0, 0), (1, 1), and thus B(X0(y), y) �= 0 for y ∈ [y1, y2]. �

Proof of Lemma 5: Clearly, for fixed |s| = 1, g = 0 is a zero of K(gs, gs−1), |g| ≤ 1. For |g| = 1
it is seen that for |s| = 1, s �= ±1

|[μ̄1s−1 + μ̄2s]β̌∗(gs, gs−1)| ≤ |μ̄1s−1 + μ̄2s| < 1 = |g|.

Since β̌∗(gs, gs−1) is regular in g for |g| < 1, with fixed s, |s| = 1, and continuous for |g| ≤ 1, by
applying Rouche’s theorem [16] to the contour |g| = 1 it is seen that g−1K(gs, gs−1) has for every
fixed s, |s| = 1 a unique zero in |g| ≤ 1, with multiplicity 1. Set now,

h(s) = (r1s + r2s−1)g. (A.1)

Substituting in

g−1K(gs, gs−1) = g − [μ̄1s−1 + μ̄2s]β̌∗(gs, gs−1),

we conclude in

h = [μ̄1s−1 + μ̄2s][r1s + r2s−1]
μ̄β∗(λ(1 − h))

μ̄ + λ(1 − β∗(λ(1 − h)))
. (A.2)
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Applying Takacs’ lemma [16] to (A.2) we find that if ρ = λb̄( μ̄+λ
μ̄ ) < 1:

h(s) =

∞∑
n=1

([μ̄1s−1 + μ̄2s][r1s + r2s−1])nλn−1

n!

∫ ∞

0
e−λttn−1dSn∗

(t)

= E([μ̄1s−1 + μ̄2s]n[r1s + r2s−1]n). (A.3)

From (A.1) and (A.3) it follows that

g(s) = E([r1s + r2s−1]n−1[μ̄1s−1 + μ̄2s]n).

The validity of the second statement it can be seen by considering the equation

g(s) = [μ̄1s−1 + μ̄2s]β̌∗(g(s)s, g(s)s−1).

�

Proof of Lemma 6: For |s| = 1

S1 =
{

z1 : z1 = [r1 + r2s2]E(|r1s + r2s−1|2n−2)
}

,

S2 =
{

z2 : z2 = [r1s−2 + r2]E(|r1s + r2s−1|2n−2)
}

. (A.4)

Let,

U1 =
{

u1 : u1 = r1 + r2s2, |s| = 1
}

=
{

u1 : u1 = r1 + r2e2iφ, 0 ≤ φ ≤ 2π
}

,

U2 =
{

u2 : u2 = r1s−2 + r2, |s| = 1
}

=
{

u2 : u2 = r1e−2iφ + r2, 0 ≤ φ ≤ 2π
}

. (A.5)

Clearly, U1, U2 are smooth, simple contours, and if s traverses the unit circle once anticlockwise,
U1 is traversed twice anticlockwise and U2 is traversed twice clockwise. Note also that for |s| = 1,

0 < |r1 − r2| = ||r1s| − |r2s−1|| ≤ |r1s + r2s−1| ≤ |r1s| + |r2s−1| = r1 + r2 = 1.

Since n ≥ 1 with probability 1, it follows that

0 < (r1 − r2)
2 ≤ E(|r1s + r2s−1|2n−2) ≤ 1.

Consequently, S1 ⊂ {z1 : Re(z1) > 0}. Moreover, since for s = ±i,

(r1s−2 + r2)E(|r1s + r2s−1|2n−2) = (r2 − r1)E((r1 − r2)
2n−2) < 0,

we realize that z2 = 0 /∈ S2. Therefore, S1, S2 are both simple, smooth contours. �
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