
The Journal of Symbolic Logic

Volume 87, Number 2, June 2022

THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY
FOR UNIVERSALLY BAIRE SETS OF REALS

RALF SCHINDLER AND TREVOR M. WILSON

Abstract. We show that the statement “every universally Baire set of reals has the perfect set
property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah
for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness
cardinals but are much weaker: if 0� exists then every Silver indiscernible is VSS in L. We also show that
the statement uB = Δ1

2, where uB is the pointclass of all universally Baire sets of reals, is equiconsistent
modulo ZFC with the existence of a Σ2-reflecting VSS cardinal.

§1. Introduction. A set of reals, meaning a subset of the Baire space �� , is called
universally Baire if its preimages under all continuous functions from all topological
spaces have the Baire property (Feng et al. [2]). We denote the pointclass of all
universally Baire sets of reals by uB. The universally Baire sets of reals include the
Σ1

1 (analytic) and Π1
1 (coanalytic) sets of reals, but not necessarily the Δ1

2 sets of
reals. Every universally Baire set of reals is Lebesgue measurable and has the Baire
property. If there is a Woodin cardinal then every universally Baire set of reals has
the perfect set property,1 whereas if �L1 = �1 then there is a set of reals that is
Π1

1, hence universally Baire, but fails to have the perfect set property (Gödel; see
Kanamori [8, Theorem 13.12]).

In this article we will describe the exact consistency strength of the theory ZFC+
“every universally Baire set of reals has the perfect set property” in terms of a large
cardinal that we call virtually Shelah for supercompactness (VSS).2 It is likely that
this theory was already known to be much weaker than a Woodin cardinal, since it
is not difficult to force it over L if 0� exists, but we are not aware of reference for this.

First we briefly review the notion of a virtual large cardinal property. Many large
cardinal properties are defined in terms of elementary embeddings j :M → N
where M and N are structures. (If M and N are sets with no structure given, we
consider them as structures with the ∈ relation). Such a definition can be weakened
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1If there is a Woodin cardinal then every universally Baire set of reals is weakly homogeneously Suslin

(Woodin; see Steel [17, Theorem 1.2]), and in general every weakly homogeneously Suslin set has the
classical regularity properties including the perfect set property (see Kanamori [8, Theorem 32.7]). There
is also a direct proof using the stationary tower.

2In a draft of this article, we called these large cardinals virtually Shelah based on their resemblance
to Shelah cardinals, but it is more appropriate to call them virtually Shelah for supercompactness based
on their resemblance to Shelah-for-supercompactness cardinals (see Proposition 2.5).
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to a “virtual” large cardinal property by only requiring j to exist in some generic
extension of V. Examples of virtual large cardinal properties are remarkability, which
is a virtual form of Magidor’s characterization of supercompactness (Schindler [12,
Lemma 1.6]), and the generic Vopěnka principle, which is a virtual form of Vopěnka’s
principle (Bagaria et al. [1]).

For a thorough introduction to virtual large cardinal properties, see Gitman and
Schindler [5]. For an application of virtual large cardinals to descriptive set theory
involving ℵ1-Suslin sets instead of universally Baire sets, see Wilson [18].

Note that for set-sized structures M and N in V, if some generic extension of
V contains an elementary embedding of M into N, then by the absoluteness of
elementary embeddability of countable structures (see Bagaria et al. [1, Lemma 2.6])
every generic extension of V by the poset Col(�,M ) contains such an elementary
embedding. The converse implication holds also, of course, and we may abbreviate
these equivalent conditions by the phrase “there is a generic elementary embedding
of M into N.”

Recall that a cardinal κ is called Shelah if for every function f : κ → κ there
is a transitive class M and an elementary embedding j : V →M with crit(j) =
κ and Vj(f)(κ) ⊂M . Note that for any ordinal � ≥ κ + 1, the restriction j � V�
is sufficient to derive an extender E whose ultrapower embedding jE witnesses
the Shelah property of κ as well as j does. Making the convenient choice � =
max{j(f)(κ), κ + 1}, we obtain the following definition as a kind of virtualization.3

Definition 1.1. A cardinal κ is virtually Shelah for supercompactness (VSS) if
for every function f : κ → κ there is an ordinal � > κ, a transitive set M with
V� ⊂M , and a generic elementary embedding j : V� →M with crit(j) = κ and
j(f)(κ) ≤ �.

The VSS property follows immediately from the Shelah property but is much
weaker: Proposition 3.1 will show that if 0� exists then every Silver indiscernible is
VSS in L, a result that is typical of virtual large cardinal properties.

Our main result is stated below. It relates models of ZFC with VSS cardinals to
models of ZFC in which the universally Baire sets are few in number and have nice
properties. It also includes a combinatorial statement about order types of countable
sets of ordinals.

Theorem 1.2. The following statements are equiconsistent modulo ZFC.
1. There is a VSS cardinal.
2. |uB| = �1.
3. Every set of reals in L(R, uB) is Lebesgue measurable.
4. Every set of reals in L(R, uB) has the perfect set property.
5. Every universally Baire set of reals has the perfect set property.
6. For every function f : �1 → �1 there is an ordinal � > �1 such that for a

stationary set of � ∈ P�1(�) we have � ∩ �1 ∈ �1 and o.t.(�) ≥ f(� ∩ �1).4

3We decided in the course of revising this article that the name “virtually Shelah” should be reserved
for the weaker virtualization in which the codomain M of j in the definition is not required to be
well-founded above �, nor to be in V, but only to have V� as a rank initial segment.

4This statement essentially says that �1 satisfies a weak form of the equivalent characterization of the
Shelah-for-supercompactness property given by Perlmutter [11, Corollary 2.9].
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We will show that if statement 1 holds then statements 2–4 hold after forcing with
the Levy collapse poset to make a VSS cardinal equal to �1. Clearly statement 4
implies statement 5, and we will show that statements 2 and 3 also imply statement
5. We will show that statement 5 implies statement 6. Finally, we will show that if
statement 6 holds, then statement 1 holds in L as witnessed by �V1 .

We will also prove an equiconsistency result at a slightly higher level of consistency
strength, namely that of a Σ2-reflecting VSS cardinal. A cardinal κ is called
Σn-reflecting if it is inaccessible andVκ ≺Σn V. This definition is particularly natural
in the case n = 2 because the Σ2 statements about a parameter a are the statements
that can be expressed in the form “there is an ordinal � such that V� |= ϕ[a]” where
ϕ is a formula in the language of set theory. Because the existence of a VSS cardinal
above any given cardinal α is a Σ2 statement about α, if κ is a Σ2-reflecting VSS
cardinal then Vκ satisfies ZFC+ “there is a proper class of VSS cardinals.”

The existence of a Σ2-reflecting cardinal is equiconsistent modulo ZFC with
the statement Δ1

2 ⊂ uB by Feng et al. [2, Theorem 3.3], who showed that if κ is
Σ2-reflecting then Δ1

2 ⊂ uB holds after the Levy collapse forcing to make κ equal to
�1, and conversely that if Δ1

2 ⊂ uB then �V1 is Σ2-reflecting in L.
The reverse inclusion uB ⊂ Δ1

2 is consistent relative to ZFC by Larson and Shelah
[9], who showed that if V = L[x] for some real x then there is a proper forcing
extension in which every universally measurable set of reals—and hence every
universally Baire set of reals—is Δ1

2. Of course this proper forcing is not the Levy
collapse; as we will show, forcing both inclusions to hold simultaneously requires
more large cardinals in the ground model.

Combining the argument of Feng et al. [2, Theorem 3.3] with parts of the proof
of Theorem 1.2, we will show:

Theorem 1.3. The following statements are equiconsistent modulo ZFC.
1. There is a Σ2-reflecting VSS cardinal.
2. uB = Δ1

2.

The remaining sections of this paper are outlined as follows. In Section 2 we
will prove some consequences of Definition 1.1 that will be needed for our main
results, including a reformulation of the definition in which κ is j(crit(j)) instead of
crit(j), justifying the name “virtually Shelah for supercompactness” (Proposition
2.5). In Section 3 we will prove some relations between VSS cardinals and other large
cardinals that will not be needed for our main results. In Section 4 we will review
some properties of universally Baire sets and establish some equivalent conditions
for a universally Baire set to be thin, meaning to contain no perfect subset. In Section
5 we will prove Theorem 1.2. In Section 6 we will prove Theorem 1.3.

§2. Consequences of the VSS property. Recall that a cardinal κ is called ineffable
if for every sequence of sets 〈Aα : α < κ〉 such that Aα ⊂ α for all α < κ, there is
a set A ⊂ κ such that {α < κ : A ∩ α = Aα} is stationary. The following result is
typical of virtual large cardinals (see Schindler [12, Lemma 1.4]).

Proposition 2.1. Every VSS cardinal is ineffable.

Proof. Let κ be a VSS cardinal. Then there is an ordinal � > κ, a transitive
set M such that V� ⊂M , and a generic elementary embedding j : V� →M with
crit(j) = κ. (Here we will not need j(f)(κ) ≤ � for any particular function f.)
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Let �A be a κ-sequence of sets such that �A(α) ⊂ α for every ordinal α < κ. Then
we may define a subset A ⊂ κ by A = j( �A)(κ). We will show that the set

S = {α < κ : A ∩ α = �A(α)}
is stationary. Letting C be a club set in κ we have κ ∈ j(C ), and because

j(A) ∩ κ = A = j( �A)(κ),

we have κ ∈ j(S) also, so it follows that

κ ∈ j(C ) ∩ j(S) = j(C ∩ S),

and by the elementarity of j we have C ∩ S �= ∅. �
A better lower bound for the consistency strength of VSS cardinals will be given

in Section 3 along with an upper bound. For our main results we will only need the
fact that every VSS cardinal is an inaccessible limit of inaccessible cardinals, which
is a consequence of Proposition 2.1.

The following lemma shows (among other things) that the domain of a generic
elementary embedding witnessing the VSS property may be taken to be an
inaccessible rank initial segment of V, which implies that the domain and codomain
both satisfy ZFC.

Lemma 2.2. Letκ be a VSS cardinal and letf : κ → κ. Then there is an inaccessible
cardinal � > κ, a transitive model M of ZFC with V� ⊂M , and a generic elementary
embedding j : V� →M with crit(j) = κ and j(f)(κ) < � < j(κ).

Proof. Because κ is a limit of inaccessible cardinals we may define a function
g : κ → κ such thatg(α) is the least inaccessible cardinal greater than max{f(α), α}
for all α < κ. Because κ is VSS with respect to the function g + 1 defined by
α �→ g(α) + 1, there is an ordinal 	 > κ, a transitive set N with V	 ⊂ N , and a
generic elementary embedding

j : V	 → N with crit(j) = κ and j(g)(κ) < 	.

By the definition of g from f and the elementarity of j it follows that j(g)(κ) is
the least inaccessible cardinal in N greater than max{j(f)(κ), κ}. Because j(g)
is a function from j(κ) to j(κ) we have j(g)(κ) < j(κ). Letting � = j(g)(κ) we
therefore have � > κ and

j(f)(κ) < � < j(κ).

Because � < 	 and V	 ⊂ N , the inaccessibility of � is absolute from N to V. Define
j1 = j � V� and M = j(V�) = VN

j(�). Then j1 : V� →M is a generic elementary
embedding with crit(j1) = κ and j1(f)(κ) < � < j1(κ) as desired. Because V�
satisfies ZFC it follows by the elementarity of j1 that M satisfies ZFC. �

It follows from Lemma 2.2 that every VSS cardinal has an inaccessible cardinal
above it. Because inaccessibility is preserved by small forcing, combining this fact
with the proof of Theorem 1.2 (as outlined following the statement of the theorem)
yields the following curious consequence.

Proposition 2.3. The following statements are equiconsistent modulo ZFC.
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1. Every universally Baire set of reals has the perfect set property.
2. Every universally Baire set of reals has the perfect set property and there is an

inaccessible cardinal.

Note that the natural attempt to show that statement 2 has strictly higher
consistency strength than statement 1 fails because for an inaccessible cardinal
�, the pointclass uBV� might not be equal to uB. For example, if V = L[U ] where
U is a normal measure on �, then it follows from Feng et al. [2, Theorem 3.4] that
Σ1

2 ⊂ uBV� and Σ1
2 �⊂ uB.

Like other known virtual large cardinal properties, the virtual Shelah-for-
supercompactness property is downward absolute to L:

Proposition 2.4. Every VSS cardinal is VSS in L.

Proof. Let κ be a VSS cardinal and let f : κ → κ be a function in L. Then by
Lemma 2.2 there is an inaccessible cardinal � > κ, a transitive model M of ZFC
with V� ⊂M , and a generic elementary embedding j : V� →M with crit(j) =
κ and j(f)(κ) < � < j(κ). Note that LV� = L� and LM = L
 where 
 = OrdM .
Moreover, because � is inaccessible we haveL� = VL� . For the elementary embedding
j1 = j � VL� we have

j1 : VL� → L
 and crit(j1) = κ and j1(f) = j(f).

Let G ⊂ Col(�,VL� ) be a V -generic filter. Then by the absoluteness of elementary
embeddability of countable structures there is an elementary embedding j2 ∈ L[G ]
such that

j2 : VL� → L
 and crit(j2) = κ and j2(f) = j(f).

We have VL� = L� ⊂ L
 and j2(f)(κ) = j(f)(κ) < �, so j2 witnesses the VSS
property for κ in L with respect to f. �

In Proposition 2.5, we characterize VSS cardinals by a property in which κ is
the image of the critical point, as in the characterizations of supercompact and
virtually supercompact (i.e., remarkable) cardinals by Magidor [10, Theorem 1] and
Schindler [12, Lemma 1.6] respectively. Note that if statement 2 of Proposition 2.5 is
unvirtualized by requiring j to exist in V, the result is equivalent to the property called
“Shelah for supercompactness” by Perlmutter [11, Definition 2.7]. This justifies the
name “virtually Shelah for supercompactness.”

Proposition 2.5. For every cardinal κ the following statements are equivalent:

1. κ is VSS.
2. For every functionf : κ → κ there are ordinals �̄ and � and a generic elementary

embedding j : V�̄ → V� with the properties j(crit(j)) = κ and f ∈ ran(j) and
f(crit(j)) ≤ �̄.5

Proof. (1) =⇒ (2): Assume that κ is VSS and let f : κ → κ. By Lemma 2.2
there is an inaccessible cardinal � > κ, a transitive model M of ZFC with V� ⊂M ,

5This statement implies � > κ, and by restricting j if necessary we may assume �̄ < κ if desired.
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and a generic elementary embedding

j : V� →M with crit(j) = κ and j(f)(κ) < � < j(κ).

Define 	 = max{j(f)(κ), κ + 1}, so κ < 	 < � andVM	 = V	 . Let j1 = j � V	 and
note that

j1 : V	 → VMj(	) and crit(j1) = κ and j1(κ) = j(κ) and j1(f) = j(f).

Let G ⊂ Col(�,V	) be a V -generic filter. Because M [G ] is wellfounded, by the
absoluteness of elementary embeddability of countable structures there is an
elementary embedding j2 ∈M [G ] such that

j2 : V	 → VMj(	) and crit(j2) = κ and j2(κ) = j(κ) and j2(f) = j(f).

Then we have

j2(crit(j2)) = j(κ) and j(f) ∈ ran(j2) and j(f)(crit(j2)) ≤ 	,

because j(f)(κ) ≤ 	 . By the elementarity of j and the definability of forcing there
is an ordinal 	̄ < � such that, letting g ⊂ Col(�,V	̄) be a V -generic filter, there is
an elementary embedding j3 ∈ V�[g] with

j3 : V	̄ → V	 and j3(crit(j3)) = κ and f ∈ ran(j3) and f(crit(j3)) ≤ 	̄ .

Therefore statement 2 holds for f.
(2) =⇒ (1): Assume that statement 2 holds and letf : κ → κ. Note that statement

2 implies the ineffability of κ by an argument similar to Proposition 2.1. It follows
that κ is a limit of inaccessible cardinals, so by increasing the values of f we may
assume that for all α < κ, f(α) is an inaccessible cardinal greater than α and we
may furthermore define f+(α) to be the least inaccessible cardinal greater than
f(α). Applying statement 2 to the function f+ : κ → κ yields ordinals �̄ and � and
a generic elementary embedding

j : V�̄ → V� with j(κ̄) = κ and f+ ∈ ran(j) and f+(κ̄) ≤ �̄,

where κ̄ = crit(j). By restricting j if necessary we may assume that �̄ is equal to
f+(κ̄) and is therefore an inaccessible cardinal less than κ. Let 	̄ = f(κ̄) and
	 = j(	̄).

Note thatf+ ∈ ran(j) impliesf ∈ ran(j) because for allα < κ,f(α) is definable
in V� as the largest inaccessible cardinal less than f+(α), so we may define f̄ =
j–1(f). Then we have f̄ : κ̄ → κ̄ and 	̄ = j(f̄)(κ̄). Note that

κ̄ < 	̄ < �̄ < κ < 	 < �.

For the elementary embedding j1 = j � V	̄ we have

j1 : V	̄ → V	 and crit(j1) = κ̄ and j1(κ̄) = κ and j1(f̄) = f.

Let g ⊂ Col(�,V	̄) be a V -generic filter. Then by the absoluteness of elementary
embeddability of countable structures there is an elementary embedding j2 ∈ V [g]
such that

j2 : V	̄ → V	 and crit(j2) = κ̄ and j2(κ̄) = κ and j2(f̄) = f.

https://doi.org/10.1017/jsl.2019.63 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.63


514 RALF SCHINDLER AND TREVOR M. WILSON

LettingM = V	 we therefore have

V	̄ ⊂M and j2 : V	̄ →M and crit(j2) = κ̄ and j2(f̄)(κ̄) = 	̄ .

Because �̄ is inaccessible in V and remains so in V [g], a Skolem hull argument in
V [g] yields a transitive set M ′ ∈ V�̄[g] and an elementary embedding j3 ∈ V�̄[g]
such that

V	̄ ⊂M ′ and j3 : V	̄ →M ′ and crit(j3) = κ̄ and j3(f̄)(κ̄) = 	̄ .

LetG ⊂ Col(�,V	) be a V -generic filter. By the elementarity of j and the definability
of forcing, there is a transitive setM ′′ ∈ V�[G ] and an elementary embedding j4 ∈
V�[G ] with

V	 ⊂M ′′ and j4 : V	 →M ′′ and crit(j4) = κ and j4(f)(κ) = 	.

Therefore κ is VSS with respect to f. �

§3. Relation to other large cardinal properties. It is clear from the definitions that
every Shelah cardinal (and a fortiori every Shelah-for-supercompactness cardinal) is
VSS. In fact the VSS property is much weaker than either of these traditional large
cardinal properties by the following result, which is typical of virtual large cardinals:

Proposition 3.1. If 0� exists then every Silver indiscernible is a VSS cardinal in L.

Proof. Assume that 0� exists and let κ be a Silver indiscernible. Then there is an
elementary embedding j : L→ L with crit(j) = κ. Let f : κ → κ be a function in
L and define � = max{j(f)(κ), κ + 1}. For the elementary embedding j1 = j � VL�
we have

j1 : VL� → VLj(�) and crit(j1) = κ and j1(κ) = j(κ) and j1(f) = j(f).

Let G ⊂ Col(�,VL� ) be a V -generic filter. Then by the absoluteness of elementary
embeddability of countable structures there is an elementary embedding j2 ∈ L[G ]
such that

j2 : VL� → VLj(�) and crit(j2) = κ and j2(κ) = j(κ) and j2(f) = j(f).

We have j2(f)(κ) = j(f)(κ) ≤ �, so j2 witnesses the VSS property for κ in L with
respect to the function f. �

We can obtain a better upper bound for the consistency strength of VSS cardinals
in terms of the hierarchy of α-iterable cardinals defined by Gitman [3]. If 0� exists
then every Silver indiscernible is α-iterable in L for every ordinal α < �L1 by Gitman
and Welch [6, Theorem 3.11], and we will show that 2-iterable cardinals already
exceed VSS cardinals in consistency strength. We will not need the definition of
α-iterability below, only a certain established consequence of it in the case α = 2.

Proposition 3.2. If κ is a 2-iterable cardinal then κ is a stationary limit of cardinals
that are VSS in Vκ.

Proof. Assume that κ is 2-iterable. Then by Gitman and Welch [6, Theorem 4.7]
there is a transitive model M of ZFC with Vκ ∈M and an elementary embedding
j :M → N with critical point equal to κ where N is a transitive model of ZFC and
M = VN

j(κ).
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First, we show that κ is VSS in N. Let f : κ → κ be in N and therefore also in
M. Define � = max{j(f)(κ), κ + 1}. Because j(f) is a function from j(κ) to j(κ)
we have � < j(κ) = OrdM , so VM� = VN� and we have an elementary embedding
j1 = j � VM� with

j1 : VN� → VNj(�) and crit(j1) = κ and j1(κ) = j(κ) and j1(f) = j(f).

Let G ⊂ Col(�,VN� ) be a V -generic filter. Then by the absoluteness of elementary
embeddability of countable structures there is an elementary embedding j2 ∈ N [G ]
such that

j2 : VN� → VNj(�) and crit(j2) = κ and j2(κ) = j(κ) and j2(f) = j(f).

Because j2(f)(κ) = j(f)(κ) ≤ �, this elementary embedding j2 witnesses the VSS
property for κ in N with respect to f.

Now let C be club in κ. Then κ ∈ j(C ), so the model N satisfies the statement
“there is a VSS cardinal in j(C )” and by the elementarity of j it follows that the
model M satisfies the statement “there is a VSS cardinal in C.” Let κ̄ ∈ C be VSS
in M. Because we have j(κ̄) = κ̄ and

j(Vκ) = j(VMκ ) = VNj(κ) =M,

it follows by the elementarity of j that κ̄ is VSS in Vκ. �
Because the set of all ordinals α < κ such that Vα ≺Σ2 Vκ is club in κ, the

conclusion of Proposition 3.2 implies that κ is a stationary limit of cardinals that are
both Σ2-reflecting and VSS in Vκ. (Note that the VSS property is upward absolute
from Vκ to V but the Σ2-reflecting property might not be.) It follows that ZFC+
“there is a Σ2-reflecting VSS cardinal” has lower consistency strength than ZFC+
“there is a 2-iterable cardinal.”

Recall that every VSS cardinal is ineffable by Proposition 2.1. We can obtain a
better lower bound for the consistency strength of VSS cardinals in terms of the
virtually A-extendible cardinals defined by Gitman and Hamkins [4, Definition 6]:
For a cardinal α and a class A (meaning either a definable class in ZFC or more
generally an arbitrary class in GBC) we say that α is virtually A-extendible if for
every ordinal 	 > α there is an ordinal 
 and a generic elementary embedding

j : 〈V	 ;∈, A ∩ V	〉 → 〈V
 ;∈, A ∩ V
〉,
with crit(j) = α and j(α) > 	 .

Proposition 3.3. If κ is a VSS cardinal then the structure 〈Vκ,Vκ+1;∈〉 satisfies
the statement “for every class A there is a virtually A-extendible cardinal.”6

Proof. Let κ be a VSS cardinal, let A ⊂ Vκ, and assume toward a contradiction
that no cardinal less than κ is virtually A-extendible in 〈Vκ,Vκ+1;∈〉. Then we
may define a function f : κ → κ such that for every ordinal α < κ, f(α) is the
least ordinal greater than α such that for every ordinal 
 < κ there is no generic
elementary embedding from 〈Vf(α);∈, A ∩ Vf(α)〉 to 〈V
 ;∈, A ∩ V
〉 that has critical
point α and maps α above f(α).

6Here 〈Vκ, Vκ+1;∈〉 is a two-sorted structure in which elements of Vκ and Vκ+1 are regarded as sets
and classes respectively.
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Becauseκ is VSS, by Lemma 2.2 there is an inaccessible cardinal � > κ, a transitive
model M of ZFC with V� ⊂M , and a generic elementary embedding

j : V� →M with crit(j) = κ and j(f)(κ) < � < j(κ).

Defining 	 = j(f)(κ), we have

κ < 	 < � < j(κ) < j(	) < OrdM.

Let j1 = j � V	 , considered as an elementary embedding whose domain is the
structure 〈V	 ;∈, j(A) ∩ V	〉. Then we have

j1 : 〈V	 ;∈, j(A) ∩ V	 〉 → 〈VMj(	);∈, j(j(A) ∩ V	 )〉 and crit(j1) = κ and j1(κ) = j(κ).

Let G ⊂ Col(�,V	) be a V -generic filter. Then by the absoluteness of elementary
embeddability of countable structures there is an elementary embedding j2 ∈M [G ]
such that

j2 : 〈V	 ;∈, j(A) ∩ V	 〉 → 〈VMj(	);∈, j(j(A) ∩ V	 )〉 and crit(j2) = κ and j2(κ) = j(κ).

Note that j2(κ) = j(κ) > j(f)(κ) = 	 . By the elementarity of j and the definability
of forcing it follows that there is a cardinalα < κ such that, letting g ⊂ Col(�,Vf(α))
be a V -generic filter, there is an elementary embedding j3 ∈ V�[g] with

j3 : 〈Vf(α);∈, A ∩ Vf(α)〉 → 〈V	 ;∈, j(A) ∩ V	〉 and crit(j3) = α and j3(α) > f(α).

Because V� ⊂M we have j3 ∈M [g], and because 	 < j(κ) it then follows by
the elementarity of j that there is an ordinal 
 < κ and an elementary embedding
j4 ∈ V�[g] such that

j4 : 〈Vf(α);∈, A ∩ Vf(α)〉 → 〈V
 ;∈, A ∩ V
〉 and crit(j4) = α and j4(α) > f(α).

The existence of such a generic elementary embedding j4 contradicts the definition
of the function f. �

We can state a further consequence of the VSS property in terms of the generic
Vopěnka principle defined by Bagaria et al. [1], which says that for every proper
class of structures of the same type there is a generic elementary embedding from
one of the structures into another. The generic Vopěnka principle, formalized as a
statement in GBC, follows from the existence of a virtually A-extendible cardinal for
every class A by Gitman and Hamkins [4, Theorem 7].7 Combining this fact with
Proposition 3.3 gives the following result.

Corollary 3.4. If κ is a VSS cardinal then the structure 〈Vκ,Vκ+1;∈〉 satisfies
the generic Vopěnka principle.

Remark 3.5. Gitman and Hamkins [4, Theorem 7] showed more specifically
that the generic Vopěnka principle is equivalent to the existence of a proper class
of weakly virtually A-extendible cardinals for every class A, where the definition of
weak virtual A-extendibility is obtained from the definition of virtual A-extendibility
by removing the requirement that the image of the critical point is greater than the

7Note that the existence of a virtually A-extendible cardinal for every class A implies the existence of
a proper (in fact stationary) class of virtually A-extendible cardinals for every class A.
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rank of the domain structure. Solovay et al. [16, Theorem 6.9] proved an analogous
result in the non-virtual setting, where Kunen’s inconsistency erases the distinction
between weak extendibility and extendibility: Vopěnka’s principle is equivalent to
the existence of an A-extendible cardinal for every class A.

§4. Thin universally Baire sets of reals. In this section we will establish some
equivalent conditions for a universally Baire set of reals to be thin, meaning to have
no perfect subset. To do this we will need a characterization of universal Baireness
in terms of trees and forcing due to Feng et al. [2].

For a class X, a tree on X is a subset of X<� that is closed under initial segments.
For a tree T on X we let [T ] denote the set of all infinite branches of T. Note that
[T ] is a closed subset of X� (where X has the discrete topology) and conversely
every closed subset of X� is the set of branches of some tree on X.

We will typically consider trees on� × Ord, whose elements we may think of either
as finite sequences of pairs or as pairs of equal-length finite sequences. Because we
require trees to be sets, a tree on� × Ord is actually a tree on� × � for some ordinal
�, but there is usually no need to specify a particular ordinal.

The letter p denotes projection:

p[T ] = {x ∈ �� : 〈x,f〉 ∈ [T ] for some f ∈ Ord�}.
For a tree T on � × Ord and a real x ∈ �� we define the section Tx of T as the
set of all s ∈ Ord<� such that 〈x � |s | , s〉 ∈ T . Note that Tx is a tree on Ord that
is illfounded if and only if x ∈ p[T ], so the statement x ∈ p[T ] is absolute to all
transitive models of ZFC containing x and T by the absoluteness of wellfoundedness.

A pair of trees 〈T, T̃ 〉 on � × Ord is complementing if

p[T ] = �� \ p[T̃ ]

and for a poset P it is P-absolutely complementing if it is complementing in every
generic extension of V by P. The statement p[T ] ∩ p[T̃ ] = ∅ is generically absolute
by the absoluteness of wellfoundedness of the tree of all triples 〈r, s1, s2〉 such that
〈r, s1〉 ∈ T and 〈r, s2〉 ∈ T̃ , so a complementing pair of trees 〈T, T̃ 〉 is P-absolutely
complementing if and only if p[T ] ∪ p[T̃ ] = �� in every generic extension of V by
P. A tree T is called P-absolutely complemented if there is a tree T̃ such that the pair
〈T, T̃ 〉 is P-absolutely complementing.

We say that a set of reals A is P-Baire if A = p[T ] for some P-absolutely
complemented tree T on � × Ord. By Feng et al. [2, Theorem 2.1] a set of reals is
universally Baire if and only if it is P-Baire for every poset P. We will adopt this
characterization of universal Baireness as our definition from now on.

For a cardinal κ, we say that a set of reals is κ-universally Baire if it is P-
Baire for every poset P of cardinality less than κ. We denote the pointclass of all
κ-universally Baire sets of reals by uBκ. Note that if κ is inaccessible, then a set of
reals is κ-universally Baire if and only if it is Col(�,<κ)-Baire.8

8The forward direction holds by the κ-chain condition: every real added by forcing with the Levy
collapse is added by a proper initial segment of the generic filter. The reverse direction holds because the
Levy collapse is universal for posets of cardinality less than κ.
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If a set of reals A is P-Baire and G ⊂ P is a V -generic filter, then the canonical
extension of A to V [G ] is the set of reals AV [G ] in V [G ] defined by

AV [G ] = p[T ]V [G ],

where T is a P-absolutely complemented tree in V such that A = p[T ]V. By a
standard argument using the absoluteness of wellfoundedness, this definition of the
canonical extension does not depend on the choice of T.

For every positive integer n, all of the above definitions and facts about universally
Baire sets of reals can easily be generalized to universally Baire n-ary relations on
the reals by replacing trees on � × Ord with trees on �n × Ord.

Now we can establish some equivalent conditions for thinness. The equivalence
of statements 1 and 2 seems to be well known (and perhaps the others are also) but
we are not aware of a reference.

Lemma 4.1. For every universally Baire set of reals A, the following statements are
equivalent in ZFC.

1. A is thin.
2. AV [G ] = AV for every generic extension V [G ] of V.
3. For every n < �, every subset of An is universally Baire.
4. There is a universally Baire wellordering of A.

Proof. (1) =⇒ (2): Assume that statement 2 fails, so there is a generic extension
V [G ] of V by a poset P and a real x ∈ AV [G ] \ V . Letting 〈T, T̃ 〉 be a P-absolutely
complementing pair of trees for A in V we have x ∈ p[T ]V [G ] \ L[T ], so by
Mansfield’s theorem in V [G ] (see Jech [7, Lemma 25.24]) there is a perfect tree
U ∈ L[T ] on � such that [U ] ⊂ p[T ] in V [G ]. This implies [U ] ⊂ A in V, so A is
not thin.

(2) =⇒ (3): Assume statement 2 and let P be a poset. Then there is a tree T¬A on
� × Ord such that

�P p[T¬A] = �� \ A.

Let n < �. From T¬A, one can define a tree T¬An on �n × Ord such that

�P p[T¬An ] = (��)n \ An.

Now let B ⊂ An. We will show that B is P-Baire. Take trees TB and TAn\B on
�n × |B | and�n × |An \ B | respectively that project to B andAn \ B respectively in
every generic extension. (Such trees can be trivially defined for every pointset.) From
T¬An and TAn\B , one can define a tree T¬B on �n × Ord such that every generic
extension satisfies p[T¬B ] = p[T¬An ] ∪ p[TAn\B ]. Then we have

�P p[T¬B ] = (��)n \ B,

so the pair of trees 〈TB, T¬B〉 witnesses that B is P-Baire.
(3) =⇒ (4): This follows directly from the existence of a wellordering of A given

by the axiom of choice.
(4) =⇒ (1): Suppose toward a contradiction that some universally Baire set of

reals A has a universally Baire wellordering but is not thin. Because A has a perfect
subset there is a continuous injection f : 2� → �� whose range is contained in A.
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Taking the preimage of a universally Baire wellordering of A under the continuous
function f × f we obtain a wellordering of 2� with the Baire property, which leads
to a contradiction using the Kuratowski–Ulam theorem (see Kanamori [8, Corollary
13.10]). �

§5. Proof of Theorem 1.2. The following “universally Baire reflection” lemma is
the key to obtaining consequences of the VSS property by forcing. Our statement
of the lemma will use the following definition. For a V -generic filter G on the Levy
collapse poset Col(�,<κ) and an ordinalα < κwe defineG � α = G ∩ Col(�,<α),
which is a V -generic filter on Col(�,<α).

Lemma 5.1. Let κ be a VSS cardinal, let G ⊂ Col(�,<κ) be a V-generic filter,
and let A be a universally Baire set of reals in V [G ]. Then there is an ordinal α < κ
and a κ-universally Baire set of reals A0 in V [G � α] such that A = AV [G ]

0 .

Proof. Suppose toward a contradiction that for every ordinal α < κ we have

∀A0 ∈ uBV [G�α]
κ AV [G ]

0 �= A.
Then for every ordinal α < κ, because κ is inaccessible in V [G � α] and we have

uBV [G�α]
κ =

⋂

	<κ

uBV [G�α]
	 and R

V [G ] =
⋃

	<κ

R
V [G�	],

it follows that for all sufficiently large ordinals 	 < κ we have 	 > α and

∀A0 ∈ uBV [G�α]
	 AV [G�	]

0 �= A ∩ V [G � 	].

Then by the κ-chain condition for Col(�,<κ) it follows that there is a function
f : κ → κ in V such that for all α < κ we have f(α) > α and

∀A0 ∈ uBV [G�α]
f(α) AV [G�f(α)]

0 �= A ∩ V [G � f(α)].

Because κ is a limit of inaccessible cardinals in V we may additionally assume that
f(α) is inaccessible in V for every ordinal α < κ.

Becauseκ is VSS, by Lemma 2.2 there is an inaccessible cardinal � > κ, a transitive
model M of ZFC in V with V� ⊂M , and a generic elementary embedding

j : V� →M with crit(j) = κ and j(f)(κ) < � < j(κ).

Defining 	 = j(f)(κ), we have

κ < 	 < � < j(κ) < j(	) < OrdM.

Note that 	 is inaccessible in M by our assumption on f and the elementarity of j,
and because V� ⊂M and 	 < � this implies that 	 is also inaccessible in V.

We can extend j to a generic elementary embedding

ĵ : V�[G ] →M [H ],

where H ⊂ Col(�,<j(κ)) is an V -generic filter such that H � κ = G . By the fact
that 	 = j(f)(κ) and the elementarity of ĵ it follows that

∀A0 ∈ uBM [G ]
	 AM [H�	]

0 �= ĵ(A) ∩M [H � 	].
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We will now obtain a contradiction by showing

A ∈ uBM [G ]
	 and AM [H�	] = ĵ(A) ∩M [H � 	].

In V [G ], because A is universally Baire we may take a Col(�,<	)-absolutely
complementing pair of trees 〈T, T̃ 〉 on � × Ord such that p[T ] = A. We may
assume that 〈T, T̃ 〉 ∈ V�[G ]: if necessary, replace T and T̃ by their images under the
transitive collapse of an elementary substructure of a sufficiently large rank initial
segment of V [G ] containing V	 [G ] ∪ {	, T, T̃} and having cardinality 	 . Because
V� ⊂M we haveV�[G ] ⊂M [G ] and the pair 〈T, T̃ 〉 ∈ V�[G ] witnessesA ∈ uBM [G ]

	

as desired.
We have 〈ĵ(T ), ĵ(T̃ )〉 ∈M [H ] and it follows by the elementarity of ĵ that

p[ĵ(T )]M [H ] = ĵ(A).

Mapping branches pointwise by j gives the inclusions

p[T ] ⊂ p[ĵ(T )] and p[T̃ ] ⊂ p[ĵ(T̃ )],

which are absolute to transitive models containing these trees, so in particular they
hold inM [H ]. Because the pair 〈T, T̃ 〉 is Col(�,<	)-absolutely complementing in
V [G ] and the pair 〈ĵ(T ), ĵ(T̃ )〉 is complementing inM [H ], these inclusions become
equalities when restricted to the reals ofM [H � 	], so

AM [H�	] = p[T ]M [H�	] = p[ĵ(T )]M [H�	] = ĵ(A) ∩M [H � 	],

completing the desired contradiction. �
We can use Lemma 5.1 to show that the consistency of statement 1 of Theorem

1.2 (which says there is a VSS cardinal) implies the consistency of statements 2–4,
and the corresponding statement for the Baire property:

Proposition 5.2. Let κ be a VSS cardinal and letG ⊂ Col(�,<κ) be a V-generic
filter. Then the following statements hold in V [G ]:

• |uB| = �1.
• Every set of reals in L(uB,R) is Lebesgue measurable, has the Baire property,

and has the perfect set property.

Proof. By Lemma 5.1 every universally Baire set of reals in V [G ] is definable
in a uniform way from V, G, and elements of Vκ, namely an ordinal α < κ and a
Col(�,<α)-name for a κ-universally Baire set of reals. (Recall that the canonical
extension of a κ-universally Baire set of reals does not depend on any choice of
trees.) Because the rank initial segment Vκ of the ground model has cardinality �1

in V [G ], it follows that V [G ] satisfies |uB| = �1.
Now let B be a set of reals in L(uB,R)V [G ]. Then B is definable in V [G ] from

a universally Baire set A, a real x, and an ordinal 
. By Lemma 5.1 there is an
ordinal α < κ and a tree T on � × Ord in V [G � α] such that A = p[T ]V [G ].
Letting Ṫ ∈ V be a Col(�,<α) name for T and letting y ∈ V [G ] be a real
coding x and the hereditarily countable set G � α, the set B is definable in V [G ]
from the parameter 〈
, Ṫ 〉 ∈ V and the real parameter y. Then B has the three
claimed regularity properties by Lemmas III.1.4, III.1.6, and III.1.7 respectively of
Solovay [14]. �
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Proceeding with the proof of Theorem 1.2, note that statement 4 of the theorem,
which says that every set of reals in L(uB,R) has the perfect set property, obviously
implies statement 5 of the theorem, which says that every universally Baire set of
reals has the perfect set property.

We will show that statements 2 and 3 also imply statement 5.
Assume that statement 5 fails, so there is an uncountable thin universally Baire

set A. Then by Lemma 4.1 every subset of A is also universally Baire, so |uB| ≥ 2�1

and therefore statement 2 fails. To show that statement 3 fails, meaning that there
is a non-measurable set of reals in L(uB,R), it suffices by Shelah [13, Theorem
5.1B] to show that L(uB,R) satisfies DC and the statement “there is a set of reals
of cardinality ℵ1.” Because every countable sequence of universally Baire sets (or
reals) is coded by a single universally Baire set (or real), DC in V implies DCuB ∪R in
L(uB,R), which in turn implies DC inL(uB,R) by the proof of Solovay [15, Lemma
1.4]. Because A is universally Baire and thin, it has a universally Baire wellordering
by Lemma 4.1. Because A is uncountable, this wellordering has an initial segment
of order type �1, giving a set of reals of cardinality ℵ1 in L(uB,R) as desired.

Next we show that statement 5 implies statement 6:

Lemma 5.3. Assume that every universally Baire set of reals has the perfect set
property. Then for every function f : �1 → �1 there is an ordinal � > �1 such that for
a stationary set of � ∈ P�1(�) we have � ∩ �1 ∈ �1 and o.t.(�) ≥ f(� ∩ �1).

Proof. Assume toward a contradiction that some function f : �1 → �1 fails to
have this property. For every ordinal � > �1 the set {� ∈ P�1(�) : � ∩ �1 ∈ �1} is
always club inP�1(�), so it follows from our assumption that the set of all � ∈ P�1(�)
such that � ∩ �1 ∈ �1 and o.t.(�) < f(� ∩ �1) contains a club set in P�1(�). (This
statement holds for � ≤ �1 as well, since it is weaker for smaller �.) Increasing the
values of f if necessary, we may assume that f is a strictly increasing function.

We may consider every real x as coding a structure 〈�;Ex〉 where Ex is a binary
relation on �. More precisely, for all m, n ∈ � we let 〈m, n〉 ∈ Ex if and only if
x(2m3n) = 0. We may use AC to choose for every countable ordinal 	 a real x	 that
codes 	 in the sense that 〈�;Ex	 〉 ∼= 〈	,∈〉. We claim that the set of reals

A = {x	 : 	 ∈ ran(f)},

which is uncountable, is also universally Baire and thin. This will contradict our
assumption that every universally Baire set of reals has the perfect set property.

Because |A| = �1 we may trivially define a tree T on � × �1 from A such that
p[T ] = A in every generic extension of V. To prove the claim, it will therefore suffice
to show that for every poset P there is a tree T̃ on � × Ord such that the pair 〈T, T̃ 〉
is P-absolutely complementing, which for this trivial tree T simply means

�P p[T̃ ] = �� \ A.

This will show that A is universally Baire by definition, and also that A is thin by
condition 2 of Lemma 4.1. (Note that our assumption on f is only needed to prove
universal Baireness of A. The thinness of A follows from the more general fact that
the set {x	 : 	 < �1} is thin, which can be proved using the boundedness lemma;
see Jech [7, Corollary 25.14].)
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Fix a poset P and let � = max{|P|+, �1}. Using our hypothesis on the existence
of club sets, for every ordinal � in the interval [�1, �) we may choose a function

g� : �<� → �,

such that for every g�-closed set � ∈ P�1(�) we have � ∩ �1 ∈ �1 and o.t.(�) <
f(� ∩ �1). (If P is countable then this interval is empty and there is nothing to do
in this step.) Moreover, we can choose g� to satisfy the additional property that for
every g�-closed set � ∈ P�1(�) the set � ∩ �1 is f -closed. Then because f is strictly
increasing, these properties imply that for every g�-closed set � ∈ P�1(�) the order
type of � is not in the range of f.

As a first step in defining the tree T̃ , note that there is a tree T̃1 on � × � in V
such that in every generic extension of V we have

p[T̃1] = {x ∈ �� : 〈�;Ex〉 is not a well-ordering},

because this set of reals is Σ1
1.

As a second step in defining T̃ , note that for every ordinal 	 < �V1 there is a tree
T̃2,	 on � × � in V such that in every generic extension of V we have

p[T̃2,	 ] = {x ∈ �� : 〈�;Ex〉 ∼= 〈	 ;∈〉 and x /∈ A},

because this set of reals is Σ1
1(x	) where x	 is our chosen code of 	 . (The condition

x /∈ A in the definition of this set either subtracts the single point x	 from the set or
leaves it unchanged, according to whether or not 	 is in the range of f.)

As a third step in defining T̃ , note that for every ordinal � ∈ [�V1 , �) there is a tree
T̃3,� on � × � in V such that in every generic extension of V we have

p[T̃3,�] = {x ∈ �� : 〈�;Ex〉 ∼= 〈�;∈〉 for some g�-closed set � ∈ P�1(�)}.

To show this, it suffices to represent the set of all such reals x as the projection
of a closed subset of �� × �� onto its first coordinate. Using a definable pairing
function �× � ∼= �, it equivalently suffices to represent the set of all such reals x
as the projection of a closed subset of �� × �� × �� onto its first coordinate. An
example of such a closed set is the set of all triples 〈x, h, y〉 ∈ �� × �� × �� such
that h is an embedding 〈�;Ex〉 → 〈�;∈〉 and y is a function telling us how far we
have to look ahead in order to verify that the range of h is g�-closed. To be precise,
we require that for all n < � the pointwise image of the set {h(i) : i < n}<n under
g� is contained in {h(i) : i < y(n)}.

Now we can define a tree T̃ on � × � in V as an amalgamation of these trees, so
in every generic extension of V we have

p[T̃ ] = p[T̃1] ∪
⋃

	<�V1

p[T̃2,	 ] ∪
⋃

�∈[�V1 ,�)

p[T̃3,�].

Let G ⊂ P be a V -generic filter and let x be a real in V [G ]. We want to show

x ∈ A ⇐⇒ x /∈ p[T̃ ].

Assume thatx ∈ A. Then clearly we havex /∈ p[T̃1] andx /∈ p[T̃2,	 ] for all	 < �V1 .
By the definition of A we have x = x	 for some 	 in the range of f. Now let
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� ∈ [�V1 , �). As previously noted, the order type of a g�-closed set � ∈ P�1(�)V

cannot be in the range of f, so we have x /∈ p[T̃3,�] in V and equivalently in V [G ].
Therefore x /∈ p[T̃ ].

Conversely, assume that x /∈ A. If 〈�;Ex〉 is not a wellordering then we have
x ∈ p[T̃1]. If 〈�;Ex〉 is a wellordering of order type less than �V1 then let 	 be
its order type and note that x ∈ p[T̃2,	 ]. If 〈�;Ex〉 is a wellordering of order type
greater than or equal to �V1 then let � be its order type. Note that � < � because
� was chosen to be large enough that forcing with P does not collapse it to be
countable. Therefore � ∈ [�V1 , �) and we have x ∈ p[T̃3,�] because 〈�;Ex〉 ∼= 〈�;∈〉
and the set � ∈ P�1(�)V [G ] is trivially g�-closed. In every case we have shown the
desired conclusion that x ∈ p[T̃ ]. �

Finally, we show that if statement 6 holds then statement 1 holds in L:

Lemma 5.4. Assume that for every functionf : �1 → �1 there is an ordinal � > �1

such that for a stationary set of � ∈ P�1(�) we have � ∩ �1 ∈ �1 and o.t.(�) ≥
f(� ∩ �1). Then �V1 is VSS in L.

Proof. Let κ = �V1 . First we will show that κ is inaccessible in L. Because κ
is regular in V it is regular in L, so by GCH in L it remains to show that κ is a
limit cardinal in L. Suppose toward a contradiction that there is a cardinal � < κ of
L such that (�+)L = κ and define the function f : κ → κ in L such that for every
ordinal α < κ, f(α) is the least ordinal 	 > max{α, �} such that L	 |= |α| ≤ �.
(Note that 	 < κ by Gödel’s condensation lemma.)

By our assumption there is an ordinal � > κ such that for a stationary set of
� ∈ Pκ(�) in V we have � ∩ κ ∈ κ and o.t.(�) ≥ f(� ∩ κ). Because the set of all
X ∈ Pκ(L�) such thatX ≺ L�,X ∩ κ ∈ κ, and � ∪ {�} ⊂ X is club inPκ(L�), there
is such a set X with the additional property that �̄ ≥ f(κ̄) where κ̄ = X ∩ κ and
�̄ = o.t.(X ∩ �). Note that

� < κ̄ < f(κ̄) ≤ �̄ < κ < �.

By the condensation lemma, X is the range of an elementary embedding

j : L�̄ → L� with crit(j) = κ̄ and j(κ̄) = κ.

By the definition of f we haveLf(κ̄) |= |κ̄| ≤ �, and becausef(κ̄) ≤ �̄ it follows that
L�̄ |= |κ̄| ≤ �. Then we have L� |= |κ| ≤ � by the elementarity of j, contradicting
the fact that κ is a cardinal in V.

Now because κ is inaccessible in L it follows that L	 = VL	 for a cofinal set
of ordinals 	 < κ. We will use this fact to show that L satisfies statement 2 of
Proposition 2.5, which is an equivalent condition for κ to be VSS.

Let f : κ → κ be a function in L and define the function g : κ → κ in L where
for every ordinal α < κ, g(α) is the least ordinal 	 ≥ max{f(α), α + 1} such that
L	 = VL	 . Applying our assumption to the function g + 1, we obtain an ordinal
� > κ such that for a stationary set of � ∈ Pκ(�) in V we have � ∩ κ ∈ κ and
o.t.(�) > g(� ∩ κ). By increasing � if necessary, we may assume that L� = VL� .

Because the set of all X ∈ Pκ(L�) such that X ≺ L�, X ∩ κ ∈ κ, and f ∈ X is
club in Pκ(L�), there is such a set X with the additional property that �̄ > g(κ̄)
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where κ̄ = X ∩ κ and �̄ = o.t.(X ∩ �). By the condensation lemma, X is the range
of an elementary embedding

j : L�̄ → L� with crit(j) = κ̄ and j(κ̄) = κ.

Define 	̄ = g(κ̄) and 	 = j(	̄) and f̄ = j–1(f). Note that

κ̄ < 	̄ < �̄ < κ < 	 < �.

We have L	̄ = VL
	̄

because 	̄ is in the range of the function g. Therefore L�̄ |= L	̄ =

V	̄ and it follows by the elementarity of j that L� |= L	 = V	 . Because L� = VL� ,
this implies L	 = VL	 . For the elementary embedding j1 = j � VL

	̄
we have

j1 : VL
	̄
→ VL	 and crit(j1) = κ̄ and j1(κ̄) = κ and j1(f̄) = f.

Let G ⊂ Col(�,V L
	̄

) be a V -generic filter. Then by the absoluteness of elementary
embeddability of countable structures there is an elementary embedding j2 ∈ L[G ]
such that

j2 : VL
	̄
→ VL	 and crit(j2) = κ̄ and j2(κ̄) = κ and j2(f̄) = f.

Because f(κ̄) ≤ g(κ̄) = 	̄ , this elementary embedding j2 witnesses statement 2 of
Proposition 2.5 for κ in L with respect to the function f. �

This completes the proof of Theorem 1.2. The following question remains open.

Question 5.5. What is the consistency strength of the theory ZFC+ “every set of
reals in L(R, uB) has the Baire property”?

An upper bound for the consistency strength is ZFC+ “there is a VSS cardinal”
by Proposition 5.2. We do not know any nontrivial lower bound.

§6. Proof of Theorem 1.3. When forcing with the Levy collapse over L, the VSS
property can be used to limit the complexity of the universally Baire sets of reals in
the generic extension:

Proposition 6.1. Let κ be a VSS cardinal in L and let G ⊂ Col(�,<κ) be an
L-generic filter. Then L[G ] |= uB ⊂ Δ1

2.

Proof. Let A be a universally Baire set of reals in L[G ]. Then by Lemma 5.1
there is an ordinal α < κ and a κ-universally Baire set of reals A0 in L[G � α] such
that A = AL[G ]

0 . Increasing α if necessary, we may assume that it is a successor
ordinal, so G � α is countable in L[G � α] and therefore L[G � α] = L[z] for some
real z ∈ L[G ]. Take a Col(�,<κ)-absolutely complementing pair of trees 〈T, T̃ 〉 in
L[z] such that p[T ]L[z] = A0 and therefore p[T ]L[G ] = A. Define the sets of reals

B0 = p[T̃ ]L[z] = R
L[z] \ A0,

B = p[T̃ ]L[G ] = R
L[G ] \ A.

We claim that for every real x ∈ L[G ] we have x ∈ A if and only if there is a tree
T ′ ∈ L[z] such that x ∈ p[T ′] and p[T ′] ∩ B0 = ∅. To prove the forward direction
of the claim, note that if x ∈ A then we can simply let T ′ = T .
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To prove the reverse direction of the claim, let x be a real inL[G ] and assume that
x ∈ p[T ′] for some treeT ′ ∈ L[z] such that p[T ′] ∩ B0 = ∅. Because p[T ′] ∩ B0 = ∅
and B0 = p[T̃ ]L[z] we have

L[z] |= p[T ′] ∩ p[T̃ ] = ∅.

The statement p[T ′] ∩ p[T̃ ] = ∅ is absolute between L[z] and L[G ] by the
absoluteness of wellfoundedness of the tree of all triples 〈r, s1, s2〉 such that
〈r, s1〉 ∈ T ′ and 〈r, s2〉 ∈ T̃ , so because x ∈ p[T ′] we have x /∈ p[T̃ ] and therefore
x ∈ p[T ] = A.

We can use the claim to define A in L[G ] without reference to T. Because the
class L[z] is Σ1(z) and the statement y /∈ p[T ′] (where y is a real) is witnessed by the
existence of a rank function for the section tree Ty , it follows from the claim that
A is Σ1(z, B0). Because HC ≺Σ1 V , this implies that A is ΣHC

1 (z, B0) and is therefore
Σ1

2(z, b) where b is a real coding B0. A symmetric argument shows that B is Σ1
2 in

L[G ], so A and B are both Δ1
2 in L[G ]. �

Proposition 6.1 is not useful as a relative consistency result because the theory
ZFC+ “uB ⊂ Δ1

2” is equiconsistent with ZFC by the theorem of Larson and Shelah
mentioned in the introduction. However, we can combine Proposition 6.1 with the
theorem of Feng et al. mentioned in the introduction to obtain an equiconsistency
result at the level of a Σ2-reflecting VSS cardinal:

Proof of Theorem 1.3. Assume that there is a Σ2-reflecting VSS cardinal κ.
Then κ is clearly Σ2-reflecting in L and moreover it is VSS in L by Lemma 2.4.
Let G ⊂ Col(�,<κ) be an L-generic filter. Because κ is Σ2-reflecting in L we have
Δ1

2 ⊂ uB in L[G ] by the proof of Feng et al. [2, Theorem 3.3]. On the other hand,
because κ is VSS in L we have uB ⊂ Δ1

2 in L[G ] by Proposition 6.1.
Conversely, assume uB = Δ1

2. Because Δ1
2 ⊂ uB, the cardinal �V1 is Σ2-reflecting

in L by the proof of Feng et al. [2, Theorem 3.3]. Also because Δ1
2 ⊂ uB, every Σ1

2
set of reals has the perfect set property by Feng et al. [2, Theorem 2.4]. Combining
this with the assumption that uB ⊂ Δ1

2 shows that every uB set has the perfect set
property, so �V1 is VSS in L by Lemmas 5.3 and 5.4. �
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