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Abstract

We derive factorization identities for a class of preemptive-resume queueing systems, with
batch arrivals and catastrophes that, whenever they occur, eliminate multiple customers
present in the system. These processes are quite general, as they can be used to
approximate Lévy processes, diffusion processes, and certain types of growth–collapse
processes; thus, all of the processes mentioned above also satisfy similar factorization
identities. In the Lévy case, our identities simplify to both the well-known Wiener–Hopf
factorization, and another interesting factorization of reflected Lévy processes starting at
an arbitrary initial state. We also show how the ideas can be used to derive transforms for
some well-known state-dependent/inhomogeneous birth–death processes and diffusion
processes.
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1. Introduction

The Wiener–Hopf factorization is a classical result in both the theory of random walks and
the theory of Lévy processes. For a Lévy process X, the factorization allows us to write the
position ofX at an independent exponential time eq , i.e.X(eq), as the sum of two independent
random variables: inf0≤s≤eq X(s) andX(eq)− inf0≤s≤eq X(s), with the latter random variable
representing the reflection ofX at a random time eq . In principle, the distribution of the reflected
process at time eq can be derived if and only if the distribution of the infimum ofX over [0, eq ]
is known as well.

We show that a similar type of property is also found in processes that may not necessarily
be expressible as a reflection of a simpler process. To do this, we introduce the preemptive-
resume production system, or PRP system, and we show that it satisfies a factorization identity.
Technically, for an arbitrary PRP system the identity is not a true factorization, but it is in some
cases: when X is a Lévy process, for instance, our factorization identity is equivalent to the
Wiener–Hopf factorization. The notion of a PRP system may appear at first to be somewhat
contrived, but this is not the case: such systems can be used to approximate many types
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of important processes found in the probability literature, such as Lévy processes, diffusion
processes, and even Markovian growth–collapse models.

Our factorization results also provide insight into the time-dependent behavior of a number
of important birth–death processes, with birth/death rates that may depend on the state of the
system. For instance, our Wiener–Hopf identity shows how the probability mass function of
the M/M/s queue length at an independent exponential time eq can be expressed entirely in
terms of quantities from an M/M/1 queue and an M/M/∞ queue. Similarly, an M/M/s/K
queue (assuming that s < K , and trivial otherwise) can be expressed in terms of an M/M/∞
queue and an M/M/1/(K − s) queue, and a similar observation may be made for Markovian
queues with reneging. In particular, the probability mass function (PMF) for the M/M/s/K
queue can be quickly derived from the solutions to the M/M/∞ queue and the M/M/1/(K−s)
queue, without having to make use of the Kolmogorov forward equations corresponding to the
M/M/s/K queue. Similar expressions can also be derived for diffusions that can be expressed
as limits of birth–death processes.

Readers wondering why we are interested in studying the distribution of X(eq) should
note that P(X(eq) = k) can be expressed as q times the Laplace transform of the function
P(X(t) = k) evaluated at q, where q is a positive real number. Hence, having knowledge of
X(eq) yields insight into the behavior ofX(t) for each t ≥ 0. Even though we restrict ourselves
to the case where q is real and positive, it is possible to derive similar transform expressions
for the function P(X(t) = k) at complex numbers with positive real part: readers will find
explanations of how to make such extensions at various places throughout the paper, whenever
they are needed.

The factorization results we present here seem to be somewhat related to those found in [29].
The main result of [29] establishes that, for a Markov process X satisfying suitable regularity
conditions, the distribution of the path of X from the time at which a functional of it attains a
minimum is independent of the behavior ofX before having attained this minimum. Contrary to
[29], our factorization results are valid for processes that are not necessarily Markovian, and our
results also show how various transforms associated with some processes can be decomposed
into computable transforms associated with other types of simpler stochastic processes, as
previously mentioned.

2. Model description

We now define what we refer to as a preemptive-resume production system, or PRP system.
At time 0 there are a countably infinite number of customers present, which are labeled n0,

n0 − 1, n0 − 2, n0 − 3, . . . . The system then begins to process the work of the customer that
possesses the highest label, or number, which at time 0 is customer n0. The server processes
jobs in accordance to the last-come–first-served preemptive-resume discipline. All customers
possess a random, generally distributed amount of work, and the amount of work possessed by
a given customer is independent of the amounts of work of all other customers that will visit, or
have visited the system. We are interested in studying the process Q := {Q(t); t ≥ 0}, where
Q(t) represents the label of the customer being served by the server at time t : for example,
Q(0) = n0.

There are two sets of Poisson processes governing arrivals to the production system. The first
set governs single arrivals to the system, and consists of an independent collection of Poisson
processes {A0,j }j∈Z, where A0,j has rate λ0,j . At an arbitrary time t , when Q(t−) = j , we
say that A0,j is active: in other words, if a point of A0,j occurs at time t while Q(t−) = j ,
then Q(t) = j + 1, and the new arrival is immediately given label j + 1. Otherwise, the point
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of A0,j occurring at time t is ignored if Q(t−) = k �= j , so no new customer arrives to the
system at that time. Once the server finishes with the customer having label j + 1, it begins
serving customer j , returning to where it left off before previously departing.

The second set of Poisson processes govern batch arrivals of customers to the system (we
allow batches to be of size 1). This second set consists of an independent collection of Poisson
processes {A1,j,k}j,k∈Z, where A1,j,k has rate λ1,jP(Z1,j = k− j). Again, whileQ(t−) = j ,
we say that the subcollection {A1,j,k}k∈Z is active, so a point of A1,j,k at time t pushes Q
from level j to level k, the k − j customers in the batch are instantaneously assigned labels
j + 1, j + 2, …, k, and the server immediately begins processing customer k. Here Z1,j is a
generic random variable representing the jump size of the Q process from level j : we allow
the distribution of these jumps to depend on the current level.

We further assume that catastrophes occur according to a modulated Poisson process D :=
{D(t); t ≥ 0}, with rate δQ(t−). At the time of a catastrophe, a random number of customers
are removed from the system: in particular, if Q(t−) = n, and a catastrophe occurs at time t ,
which eliminates k customers, then customers n, n− 1, n− 2, . . . , n− k + 1 are immediately
removed from the system, and at time t the server begins to process the remaining amount of
work possessed by customer n − k, and so Q(t) = n − k. We assume that the distribution
function of the number of removals at time t depends on Q(t−), so that the downward jump
distribution of the process may depend on the level of the process, immediately before a jump.

Readers may wonder why we chose to use an infinite collection of independent Poisson
processes to govern arrivals to our queueing system, while not modeling catastrophes in the
same manner. The answer lies in the proof of our main result, as modeling the arrival processes
in this way allows us to derive a linear system of equations in a most efficient manner. Indeed,
catastrophes can be modeled in the same way, but these will not play as important a role in our
proofs. Our use of collections of Poisson processes to model the arrival process was inspired by
Brémaud [12, Chapter 9], who made use of such a framework when constructing continuous-
time Markov chains. Readers wishing to rigorously construct our PRP systems in the same
manner can follow the procedure given there, by expanding the state space of the PRP system
to include the residual service time of each customer in the system, thus making it a stochastic
recursive system, and Markovian: readers should note that customers in the system possess
generally distributed amounts of work, meaning that {Q(t); t ≥ 0} is not a Markov process
unless the state space is expanded to include the residual service times.

Later we will use these processes to approximate Lévy processes: arrivals from the {A0,j }j
collection and service completions of the server will be used to construct Brownian motion,
while batch arrivals and catastrophe processes will be used to construct compound Poisson
processes.

Finally, we also consider a ‘reflected’ PRP system {Ql(t); t ≥ 0}, where l is a fixed integer.
This system behaves in a similar manner as Q, with the following exception: whenever Ql is
in a state i, and a catastrophe occurs which, in the original system, would place Q at a level
at or lower than l, Ql instead makes a transition from state i to state l. When Ql is at level l,
the server stops working until the next arrival; hence, customer l is in the system for all time.
Finally, upward jumps of Ql behave the same as upward jumps of Q. We refer to Ql as a
reflected PRP system with reflection at level l.

3. Main results

Our main result establishes that the process {Q(t); t ≥ 0} from the PRP system satisfies a
factorization identity, which we now give.
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Theorem 3.1. Let eq be an exponential random variable with rate q > 0, independent of Q.
For any two integers k, l, where k ≥ 0 and l ≤ n0 = Q(0),

P(Ql(eq) = k + l | Ql(0) = l) = P

(
Q(eq) = k + l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

= P

(
Q(eq)− inf

0≤u≤eq
Q(u) = k

∣∣∣ inf
0≤u≤eq

Q(u) = l
)
.

Proof. To help readers understand the proof, we break it up into three steps.
Step 1. We begin by presenting the following identity, which is satisfied by the sample paths

of our PRP system: for each t ≥ 0, we see that, for any two integers k, l with k ≥ 1 and
l ≤ n0 = Q(0),

1
(
Q(t) ≥ k + l, inf

0≤u≤t Q(u) = l
)

=
∫ t

0
1
(
Q(s−) = k − 1 + l, inf

0≤u<s Q(u) = l
)

1
(

inf
u∈[s,t]Q(u) ≥ k + l

)
A0,k−1+l (ds)

+
k−1∑
j=0

∞∑
m=k

∫ t

0
1
(
Q(s−) = j + l, inf

0≤u<s Q(u) = l
)

× 1
(

inf
u∈[s,t]Q(u) ≥ k + l

)
A1,j+l,m+l (ds). (3.1)

Identity (3.1) says that, in order that Q(t) ≥ k + l, exactly one of two things must happen: if
the infimum of the process over [0, t] is l, either (i) there exists a time point s ≤ t such that
Q(s−) = k − 1 + l, Q(s) = k + l (due to the arrival of a customer from A0 at time s), and
the process stays at or above level k + l in [s, t], giving the first term; or (ii) there exists a time
point s ≤ t such that, due to a batch of customers arriving at time s (which is contributed by
A1), the process crosses level k + l, reaching some level at or above k + l at time s, and stays
at or above k + l during [s, t], giving the second term.

After taking expected values of both sides of (3.1), we obtain

P

(
Q(t) ≥ k + l, inf

0≤u≤t Q(u) = l
)

= E

[∫ t

0
1
(
Q(s−) = k − 1 + l, inf

0≤u<s Q(u) = l
)

× 1
(

inf
u∈[s,t]Q(u) ≥ k + l

)
A0,k−1+l (ds)

]

+
k−1∑
j=0

∞∑
m=k

E

[∫ t

0
1
(
Q(s−) = j + l, inf

0≤u<s Q(u) = l
)

× 1
(

inf
u∈[s,t]Q(u) ≥ k + l

)
A1,j+l,m+l (ds)

]
. (3.2)

We can use the Campbell–Mecke formula (see Appendix A) to evaluate the expected values
found on the right-hand side of (3.2). Note first that

E

[∫ t

0
1
(
Q(s−) = k − 1 + l, inf

0≤u<s Q(u) = l
)

1
(

inf
u∈[s,t]Q(u) ≥ k + l

)
A0,k−1+l (ds)

]

= λ0,k−1+l
∫ t

0
Ps

(
Q(s−) = k − 1 + l, inf

0≤u<s Q(u) = l, inf
u∈[s,t]Q(u) ≥ k + l

)
ds,

where P represents the Palm kernel induced by A0,k−1+l . Furthermore, since the server
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processes work in a preemptive-resume manner, we can also use the Campbell–Mecke formula
to establish that

Ps
(

inf
u∈[s,t]Q(u) ≥ k + l, Q(s−) = k − 1 + l, inf

0≤u<s Q(u) = l
)

= P(τk+l,k+l > t − s)Ps
(
Q(s−) = k − 1 + l, inf

0≤u<s Q(u) = l
)
,

where τk,j is the amount of time it takes the PRP system to go below state j , starting from
state k, j ≤ k, where all customers labeled j, j + 1, . . . , k have not yet received any attention
from the server. Moreover, if we let {Ft ; t ≥ 0} represent the minimal filtration induced by
Q and our arrival and catastrophe processes, we see that the event {Q(s−) = k − 1 + l,

inf0≤u<s Q(u) = l} ∈ Fs−, and so Proposition A.1 in Appendix A yields

Ps
(
Q(s−) = k − 1 + l, inf

0≤u<s Q(u) = l
)

= P

(
Q(s) = k − 1 + l, inf

0≤u≤s Q(u) = l
)
.

An analogous argument can be used to evaluate the second type of expectation found in (3.2).
Plugging these expressions into (3.2) gives

P

(
Q(t) ≥ k + l, inf

0≤u≤t Q(u) = l
)

= λ0,k−1+l
∫ t

0
P

(
Q(s) = k − 1 + l, inf

0≤u≤s Q(u) = l
)
P(τk+l,k+l > t − s) ds

+
k−1∑
j=0

∞∑
m=k

λ1,j+lP(Z1,j+l = m− j)

×
∫ t

0
P(τm+l,k+l > t − s)P

(
Q(s−) = j + l, inf

0≤u≤s Q(u) = l
)

ds. (3.3)

After integrating both sides of (3.3) with respect to an exponential density with rate q > 0, we
obtain

P

(
Q(eq) ≥ k + l, inf

0≤u≤eq
Q(u) = l

)

= λ0,k−1+l
1 − φk+l,k+l (q)

q
P

(
Q(eq) = k − 1 + l, inf

0≤u≤eq
Q(u) = l

)

+
k−1∑
j=0

∞∑
m=k

λ1,j+lP(Z1,j+l = m− j)
1 − φm+l,k+l (q)

q

× P

(
Q(eq) = j + l, inf

0≤u≤eq
Q(u) = l

)
,

where φm+l,k+l represents the Laplace–Stieltjes transform of τm+l,k+l (0) (withQ(0) = m+ l).
Dividing by P(inf0≤u≤eq Q(u) = l) finally yields

P

(
Q(eq) ≥ k + l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

= λ0,k−1+l
1 − φk+l,k+l (q)

q
P

(
Q(eq) = k − 1 + l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)
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+
k−1∑
j=0

∞∑
m=k

λ1,j+lP(Z1,j+l = m− j)
1 − φm+l,k+l (q)

q

× P

(
Q(eq) = j + l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)
. (3.4)

Step 2. We now show that the system of equations (3.4) has a unique solution. Note that,
for a fixed integer l, these equations can be iteratively solved, since

∞∑
k=0

P

(
Q(eq) = k + l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

= 1.

Indeed, note that

1 − P

(
Q(eq) = l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

= P

(
Q(eq) ≥ l + 1

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

= λ0,l
1 − φl+1,l+1(q)

q
P

(
Q(eq) = l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

+
∞∑
m=1

λ1,lP(Z1,l = m)
1 − φm+l,1+l (q)

q
P

(
Q(eq) = l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)
,

which allows us to determine P(Q(eq) = l | inf0≤u≤eq Q(u) = l), and all other probabilities
can be determined in a similar, iterative manner. Hence, there is a unique probability measure
on the integers that satisfies these equations.

Step 3. By precisely the same arguments, we see that the Ql process satisfies the same
system of equations. Indeed, when Ql(0) = l,

P(Ql(eq) ≥ k + l)

= λ0,k+l−1
1 − φk+l,k+l (q)

q
P(Ql(eq) = k − 1 + l)

+
k−1∑
j=0

∞∑
m=k

λ1,l+jP(Z1,l+j = m− j)
1 − φm+l,k+l (q)

q
P(Ql(eq) = j + l).

Thus, we see that

P(Ql(eq) = k + l | Ql(0) = l) = P

(
Q(eq) = k + l

∣∣∣ inf
0≤s≤eq

Q(s) = l
)
,

completing the proof.

Remark 3.1. It is worth noting, from the point of view of numerical transform inversion [4],
that a similar result can be derived when we consider complex-valued q, i.e. expressions of the
form ∫ ∞

0
P

(
Q(t) = k + l, inf

0≤s≤t Q(s) = l
)
qe−qt dt

for complex q with positive real part, i.e. those q satisfying Re(q) > 0, as opposed to
P(Q(eq) = k + l, inf0≤s≤eq Q(s) = l) for real q > 0. First note that, for q = x + iy
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satisfying Re(q) = x > 0, with ex being exponential with rate x, independent of Q,∫ ∞

0
P

(
Q(t) = k + l, inf

0≤s≤t Q(s) = l
)
qe−qt dt

=
∫ ∞

0
P

(
Q(t) = k + l, inf

0≤s≤t Q(s) = l
)
(x + iy)e−iyte−xt dt

= x + iy

x
E

[
1
(
Q(ex) = k + l, inf

0≤s≤ex
Q(s) = l

)
e−iyex

]
.

Using this observation, we can mimic the proof of Theorem 3.1 in a straightforward manner to
determine that

E

[
1(Q(ex) = k + l)e−iyex

∣∣∣ inf
0≤s≤ex

Q(s) = l, Q(0) = n0

]

= E[e−iyex1(inf0≤s≤ex Q(s) = l) | Q(0) = n0]E[1(Ql(ex) = k + l)e−iyex | Ql(0) = l]
P(inf0≤s≤ex Q(s) = l | Q(0) = n0)

× x + iy

x
,

which contains quantities that are given in terms of either the reflection Ql reflected at l, or
hitting-time transforms associated with the original processQ. To see why only these types of
transforms need to be computed, note that letting τl = inf{t ≥ 0 : Q(t) ≤ l} yields

E

[
e−iyex1

(
inf

0≤u≤ex
Q(u) = l

) ∣∣∣ Q(0) = n0

]

= E

[
e−iyex1

(
inf

0≤u≤ex
Q(u) ≤ l

) ∣∣∣ Q(0) = n0

]

− E

[
e−iyex1

(
inf

0≤u≤ex
Q(u) ≤ l − 1

) ∣∣∣ Q(0) = n0

]

= E[e−iyex1(τl ≤ ex) | Q(0) = n0]
− E[e−iyex1(τl−1 ≤ ex) | Q(0) = n0]

= x

x + iy
E[e−iyτl1(τl ≤ ex) | Q(0) = n0]

− x

x + iy
E[e−iyτl−1 1(τl−1 ≤ ex) | Q(0) = n0]

= x

x + iy
[E[e−qτl | Q(0) = n0] − E[e−qτl−1 | Q(0) = n0]].

This gives
E

[
1(Q(ex) = k + l)e−iyex

∣∣∣ inf
0≤s≤ex

Q(s) = l, Q(0) = n0

]

= E[e−qτl | Q(0) = n0] − E[e−qτl−1 | Q(0) = n0]
E[e−xτl | Q(0) = n0] − E[e−xτl−1 | Q(0) = n0]
× E[1(Ql(ex) = k + l)e−iyex | Ql(0) = l],

implying that ∫ ∞

0
P

(
Q(t) = k + l, inf

0≤s≤t Q(s) = l

∣∣∣ Q(0) = n0

)
qe−qt dt

= [E[e−qτl | Q(0) = n0] − E[e−qτl−1 | Q(0) = n0]]
×

∫ ∞

0
P(Ql(t) = k + l | Ql(0) = l)qe−qt dt,
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which is clearly the complex analogue of the formula given in Theorem 3.1. All other types of
transform that we will need can be computed in a similar manner for complex q.

We now show that the reflected process {Q0(t); t ≥ 0} exhibits a similar type of factorization
identity.

Theorem 3.2. Suppose that Q is a PRP system with Q(0) = n0, and let Q0 be the reflected
version ofQ at level 0, withQ0(0) = n0. Then, for each integer l ≥ 0 and each integer k ≥ 1,

P

(
Q(eq)− inf

0≤u≤eq
Q(u) = k

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

= P

(
Q0(eq)− inf

0≤u≤eq
Q0(u) = k

∣∣∣ inf
0≤u≤eq

Q0(u) = l
)
.

Proof. Note that a sample path identity that is completely analogous to (3.1) can be
established for Q0: for each l ≥ 0 and k ≥ 1,

1
(
Q0(t) ≥ k + l, inf

0≤u≤t Q0(u) = l
)

=
∫ t

0
1
(
Q0(s−) = k − 1 + l, inf

0≤u≤s Q0(u) = l
)

1
(

inf
u∈[s,t]Q0(u) = k + l

)
A0,k−1+l (ds)

+
k−1∑
j=0

∞∑
m=k

∫ t

0
1
(
Q0(s−) = j + l, inf

0≤u<s Q0(u) = l
)

× 1
(

inf
u∈[s,t]Q0(u) ≥ k + l

)
A1,j+l,m+l (ds).

Applying the same steps found in step 1 of the proof of Theorem 3.1 yields

P

(
Q0(eq) ≥ k + l

∣∣∣ inf
0≤u≤eq

Q0(u) = l
)

= λ0,k−1+l
1 − φk+l,k+l (q)

q
P

(
Q0(eq) = k − 1 + l

∣∣∣ inf
0≤u≤eq

Q0(u) = l
)

+
k−1∑
j=0

∞∑
m=k

λ1,j+lP(Z1,j+l = m− j)
1 − φm+l,k+l (q)

q

× P

(
Q0(eq) = j + l

∣∣∣ inf
0≤u≤eq

Q0(u) = l
)
. (3.5)

For our fixed l, we note that the equations that form system (3.4) are the same as the equations
found in (3.5). Hence, by the uniqueness result proven in step 2 of Theorem 3.1 we have

P

(
Q(eq) ≥ k + l

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

= P

(
Q0(eq) ≥ k + l

∣∣∣ inf
0≤u≤eq

Q0(u) = l
)
,

which completes the proof.

Two interesting factorization results can be derived, when the batch and catastrophe sizes of
both Q and Q0 have distributions that are state independent. Clearly, in this case we see that,
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for each k ≥ 0 and l, P(Ql(eq) = k + l | Ql(0) = l) = P(Q0(eq) = k | Q0(0) = 0), and
since Q0 is the reflection of Q at level 0, we also find that

Q0(eq)
d= Q(eq)− inf

0≤u≤eq
Q(u),

which follows since customers are processed in a last-come–first-served preemptive-resume
manner. Hence, Theorem 3.1 yields, for each k ≥ 0 and l ≤ 0 = Q(0),

P

(
Q(eq)− inf

0≤u≤eq
Q(u) = k

)
= P

(
Q(eq)− inf

0≤u≤eq
Q(u) = k

∣∣∣ inf
0≤u≤eq

Q(u) = l
)
.

In other words, the following corollary holds.

Corollary 3.1. Suppose that {Q(t); t ≥ 0} represents a PRP system, with state-independent
jumps, and let eq be an exponential random variable with rate q > 0, independent ofQ. Then,
for each ω ∈ R,

E0[eiωQ(eq)] = E0[eiω inf0≤u≤eq Q(u)]E0[eiω(Q(eq)−inf0≤u≤eq Q(u))].
Here Ex is the expectation corresponding to Px , where Px is a probability measure under the

condition that our process starts at level x. This notation will be used in many places throughout
the rest of the paper.

This factorization has been well known for Lévy processes since the late 1960s, due to
Percheskii and Rogozin [31], and the first probabilistic proof of this result was given by
Greenwood and Pitman [23].

We can also conclude from Theorem 3.2 that, for l ≥ 0, when Q0(0) = Q(0) = n0,

P

(
Q0(eq)− inf

0≤u≤eq
Q0(u) = k

∣∣∣ inf
0≤u≤eq

Q0(u) = l
)

= P

(
Q(eq)− inf

0≤u≤eq
Q(u) = k

)

= P

(
Q0(eq)− inf

0≤u≤eq
Q0(u) = k

)
,

where the second equality follows from the simple fact that the reflection of Q0 at its infimum
is equal in distribution to the reflection of Q at its infimum. Hence, we see that Q0(eq) −
inf0≤u≤eq Q0(u) is actually independent of inf0≤u≤eq Q0(u), which gives us another interesting
corollary.

Corollary 3.2. Suppose that {Q0(t); t ≥ 0} is a reflected version of our PRP system, reflected
at 0. Then, for each ω ∈ R, and each integer n0 ≥ 0,

En0 [eiωQ0(eq )] = En0 [eiω inf0≤u≤eq Q0(u)]E0[eiωQ0(eq )].
Such a factorization result is useful when studying reflected processes starting in an arbitrary

initial state. Corollary 3.1 shows that, since inf0≤u≤eq Q(u) is independent of Q(eq) −
inf0≤u≤eq Q(u), the transforms ofQ(eq) and inf0≤u≤eq Q(u) can be used to derive the transform
ofQ(eq)−inf0≤u≤eq Q(u), which represents the distribution of the reflected process, starting in
level zero. Theorem 3.2 can then be used to find the distribution of the reflected process, starting
in any initial state, since it is clearly equal in distribution to a convolution of the distribution of
the reflected PRP system Q0 starting in level zero, and the distribution of a truncated version
of inf0≤u≤eq Q(u).

We are now ready to see how the Wiener–Hopf factorization for Lévy processes follows as a
consequence of our factorization identities for PRP systems, whose arrival rates, service rates,
and jump distributions do not depend on the level of the process.
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3.1. The Wiener–Hopf factorization

We begin with establishing the well-known version of the Wiener–Hopf factorization for
Lévy processes.

Theorem 3.3. Suppose thatX is a Lévy process, and let eq be an exponential random variable,
independent of X, with rate q > 0. Then inf0≤s≤eq X(s) and X(eq) − inf0≤s≤eq X(s) are
independent.

Proof. Suppose first that X̃ is a Lévy process that consists of only a Brownian component
and a compound Poisson component. In this case, there exists a sequence of PRP systems
{X̃n}n≥1 such that X̃n converges uniformly on compact sets to X̃: in fact, each X̃n process
is also a Lévy process. We omit the details on constructing the {X̃n}n sequence as they are
somewhat standard: interested readers can also find them in a previous online version [21] of
the paper.

From Corollary 3.1, we see that the Wiener–Hopf factorization is valid for each PRP
system with state-independent jumps. Applying the Lévy continuity theorem yields, for each
(ω1, ω2) ∈ R

2,

E[ei(ω1 inf0≤s≤eq X(s)+ω2(X(eq )−inf0≤s≤eq X(s)))]
= lim
n→∞ E[ei(ω1 inf0≤s≤eq X̃n(s)+ω2(X̃n(eq )−inf0≤s≤eq X̃n(s)))]

= lim
n→∞ E[eiω1 inf0≤s≤eq X̃n(s)]E[ei(ω2(X̃n(eq )−inf0≤s≤eq X̃n(s)))]

= E[eiω1 inf0≤s≤eq X̃(s)]E[eiω2(X̃(eq )−inf0≤s≤eq X̃(s))],
proving independence. To derive this result for an arbitrary Lévy process, use this result in
conjunction with the proof of the Lévy–Itô decomposition: again, finer details of this procedure
can be found in [21].

Our idea of proving a factorization result for a special type of process, then taking limits is
similar to the older approaches of proving the Wiener–Hopf factorization, along with related
results; see, for instance, [31], along with [24]. Our approach differs in the fact that we use a
discrete state space in continuous time: this allows us to state a simple sample path identity, from
which we derive a linear system of equations that has a unique solution. Moreover, our limiting
argument makes use of classical heavy-traffic results from queueing theory. Readers interested
in learning more about classical approaches towards proving the Wiener–Hopf factorization are
referred to the recent paper of Kuznetsov [27].

3.2. An analogous factorization for the reflection

We now show how to use Corollary 3.2 to deduce an analogous factorization for reflected
Lévy processes, with an arbitrary initial state.

Theorem 3.4. Suppose thatX represents a Lévy process, and let eq be an exponential random
variable with rate q > 0, independent of X. Moreover, let R := {R(t); t ≥ 0} represent the
reflection of X, with a reflected barrier at state 0. Then, assuming that X(0) = x ≥ 0,

Ex[eiωR(eq)] = E0[eiωR(eq)]Ex[eiω inf0≤u≤eq R(u)].
Proof. The proof of this result is completely analogous to the proof of Theorem 3.3. First,

we use Corollary 3.2 to establish that it holds for a Lévy process X that consists of only a
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Brownian and compound Poisson part. The general statement then again follows as before,
from the proof of the Lévy–Itô decomposition.

Theorem 3.4 can also be derived directly from theWiener–Hopf factorization. HereX(0) = x,
and, for each t ≥ 0,

R(t) = X(t)− inf
0≤s≤t min(X(s), 0)

and so

R(t)− inf
0≤s≤t R(s) = X(t)− inf

0≤s≤t min(X(s), 0)− inf
0≤s≤t

(
X(s)− inf

0≤u≤s min(X(u), 0)
)
.

Let τ0 = inf{t ≥ 0 : X(t) = 0}. If τ0 > t then

R(t)− inf
0≤s≤t R(s) = X(t)− inf

0≤s≤t X(s)

since min(X(s), 0) = 0 for 0 ≤ s ≤ τ0. Next, if τ0 ≤ t , we also see that

R(t)− inf
0≤s≤t R(s) = X(t)− inf

0≤s≤t X(s)− inf
τ0≤s≤t

(
X(s)− inf

τ0≤u≤s
X(u)

)

= X(t)− inf
0≤s≤t X(s)

since infτ0≤s≤t (X(s) − infτ0≤u≤s X(u)) ≥ 0, and X(τ0) − infτ0≤u≤τ0 X(u) = 0. Moreover,
for each t ≥ 0,

inf
0≤s≤t R(t) = max

(
inf

0≤s≤t X(s), 0
)
.

Thus, for an exponential random variable eq with parameter q > 0, independent ofX, we have

Ex[eiω(R(eq )−inf0≤s≤eq R(s))eiω inf0≤s≤eq R(s)]
=

∫ ∞

0
Ex[eiω(R(t)−inf0≤s≤t R(s))eiω inf0≤s≤t R(s)]qe−qt dt

=
∫ ∞

0
Ex[eiω(X(t)−inf0≤s≤t X(s))eiωmax(0,inf0≤s≤t X(s))]qe−qt dt

= Ex[eiω(X(eq)−inf0≤s≤eq X(s))eiωmax(0,inf0≤s≤eq X(s))]
= Ex[eiω(X(eq)−inf0≤s≤eq X(s))]Ex[eiωmax(0,inf0≤s≤eq X(s))],

where the last step follows from the Wiener–Hopf factorization, i.e. Theorem 3.3.
Theorem 3.4 does not seem to be explicitly known; direct computations of Ex[eiωR(eq)],

however, have appeared in various places; see, e.g. Theorem 9.1 of [1], Theorem 2.1 of [3], [10],
[9], and Theorem 3.10 of [6, Chapter 9], where all of these references address the factorization
in the case where X is spectrally positive, i.e. X has only positive jumps. Theorem 3.4 is also
implicitly stated in Example 3 of [30], in terms of the steady-state distribution of a reflected Lévy
process that experiences catastrophes at times forming a homogeneous Poisson process. Their
result, like previous references, considers only the spectrally positive case, but their arguments
can also be used to establish Theorem 3.4 as well. Other results similar to Theorem 3.4 can
also be found in the recent work of Dȩbicki et al. [16] and Kella and Mandjes [26].
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4. Applications to birth–death processes, and diffusions

We now apply our factorization identities, i.e. Theorems 3.1 and 3.2, to the study of birth–
death processes, which form another interesting subclass of PRP systems. It will also be
possible to apply our identity to the study of diffusion processes as well, as these are often weak
limits of birth–death processes.

Readers should note that the transforms derived below can also be modified so that the
domain is complex valued, as we noted in the remark following Theorem 3.1.

4.1. Birth–death processes

Suppose that Q := {Q(t); t ≥ 0} represents a birth–death process on the integers, with
birth rates {λn}n∈Z and death rates {µn}n∈Z. Let eq represent an exponential random variable
with rate q > 0, independent of Q. Throughout we assume that Q is ergodic, and we let π
represent its stationary distribution. Our object of study is now the PMF ofQ(eq). We remind
readers that Q can easily be related to a PRP system: units arrive according to a collection of
independent Poisson processes {A0,j }j∈Z, where A0,j has rate λj , each customer brings to the
system a unit exponential amount of work, and the server processes work at a rate µn whenever
the system is in state n for n ∈ Z.

By Corollary 4.1.1 of [3], we see that, for each n ∈ Z,

P0(Q(eq) = n) = πnEn[e−qτ0 ]∑
k∈Z

πkEk[e−qτ0 ] ,

where Pn is meant to represent a conditional probability givenQ(0) = n. This expression also
holds in the absence of ergodicity, and also for complex q when P0(Q(eq) = n) is interpreted
as a Laplace transform, multiplied by q.

Suppose that we would like to change the initial condition. While the same method will tell
us that

Pn0(Q(eq) = n) = πnEn[e−qτn0 ]∑
j∈Z

πjEj [e−qτn0 ]
for an arbitrary n0, we must be careful: how do we know that En[e−qτn0 ] is tractable? This is
a very legitimate question, as there are many instances where En[e−qτn0 ] will be tractable for
some choices of n0, but not for others.

The key to computing these probabilities is thus to choose the appropriate reference point,
i.e. the point found in the hitting-time Laplace–Stieltjes transforms given in the PMF ofQ(eq).
This is where our factorization identities become useful: they allow us to use whatever reference
point we like, regardless of the initial value.

We illustrate our approach by computing the PMF of the number of customers in an M/M/s
queueing system at an independent exponential time eq . The reader will see that our expressions
will be given in terms of an M/M/1 model and an M/M/∞ model, which are much simpler.

4.1.1. The M/M/s queue. Recall that the M/M/s queue is a birth–death process on {0, 1, 2, . . . }
with birth rates λn = λ for n ≥ 0, and death rates µn = min{n, s}µ for n ≥ 1. A classical
reference on the time-dependent behavior of the M/M/s queue is [32], which makes use of the
approach found in [8].

Assume first that Q(0) = s. In this case, for each n ≥ 0,

Ps(Q(eq) = n) = πnEn[e−qτs ]∑
j≥0 πjEj [e−qτs ] .
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This is a nice expression: note that if k < s, Ek[e−qτs ] is the Laplace–Stieltjes transform
of the amount of time it takes an M/M/s queue to go from level k to level s, but this is the
same as the Laplace–Stieltjes transform of the amount of time it takes to go from k to s in an
M/M/∞ queue, with arrival rate λ and service rate µ. Similarly, for k > s, Ek[e−qτs ] is just
the Laplace–Stieltjes transform of the amount of time it takes to go from level k to level s in an
M/M/1 queue, with arrival rate λ and service rate sµ. Hence, all of the terms in our expression
for Ps(Q(eq) = k) can theoretically be derived from two simpler models, the M/M/1 queue
and the M/M/∞ queue.

For k > s, we already have a closed-form expression for Ek[e−qτs ]: letting ψ(q) =
Es+1[e−qτs ] be the busy period of an M/M/1 queue with arrival rate λ and service rate sµ, we
see that

Ek[e−qτs ] = ψ(q)k−s .
We now focus on the case where k < s. Letting {QM/M/∞(t); t ≥ 0} represent the queue-
length process of an M/M/∞ queue (including the customers in service), we use a classical
argument found in [15] to find that

Pk(QM/M/∞(eq) = s) = Pk(QM/M/∞(eq) = s, τs ≤ eq)

= Ps(QM/M/∞(eq) = s)Ek[e−qτs ],
giving

Ek[e−qτs ] = Pk(QM/M/∞(eq) = s)

Ps(QM/M/∞(eq) = s)
. (4.1)

To compute Pk(QM/M/∞(eq) = s), we need to use the following known lemma. The µ = 1
case was observed in [17], but we repeat it here for convenience.

Lemma 4.1. For a positive real number q,∫ ∞

0
qe−(qt+ρ(1−e−µt )) dt = M

(
1,
q

µ
+ 1,−ρ

)
,

where M is Kummer’s function, i.e.

M(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!
with (a)0 = 1, and, for n ≥ 1, (a)n = (a)(a + 1) . . . (a + n− 1).

Proof. Applying partial integration gives∫ ∞

0
e−ρ(1−e−µt )qe−qt dt = 1 − ρµ

∫ ∞

0
e−(q+µ)te−ρ(1−e−µt ) dt.

After repeatedly applying partial integration and taking limits, we get the result.

Lemma 4.2. For each k ≤ s,

Pk(QM/M/∞(eq) = s) =
k∑
j=0

k+s−2j∑
m=0

(
k

j

)(
k + s − 2j

m

)
(ρ)s−j (−1)m

(s − j)!
q

q + (j +m)µ

×M

(
1,
q

µ
+ j +m+ 1,−ρ

)
.
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Proof. This identity can be derived from the known fact that, at a fixed time t ≥ 0, Q(t)
is the sum of a binomial random variable with parameters (k, e−µt ) and a Poisson random
variable with parameter ρ(1 − e−µt ). The result then follows by integrating the PMF of Q(t),
and applying Lemma 4.1.

By making use of this lemma in (4.1), we arrive at the following result.

Lemma 4.3. For each k ≤ s, we see that

Ek[e−qτs ] =
∑k
j=0

∑k+s−2j
m=0

(
k
j

)(
k+s−2j
m

)
(ρ)s−j (−1)m

(s−j)!
q

q+(j+m)µM(1, q/µ+ j +m+ 1,−ρ)∑s
j=0

∑2(s−j)
m=0

(
s
j

)(2(s−j)
m

)
(ρ)s−j (−1)m
(s−j)!

q
q+(j+m)µM(1, q/µ+ j +m+ 1,−ρ)

.

Remark 4.1. As discussed in the remark following Theorem 3.1, Lemmas 4.1, 4.2, and 4.3
can be modified so that q is allowed to take on complex values.

Our next step is to use the Wiener–Hopf identity to compute probabilities of the form
Pk(Q(eq) = n) for arbitrary k, n ≥ 0. Note that we already have a nice expression for
such a PMF when k = s.

Case 1: k > s and n ≤ s. Note that

Pk(Q(eq) = n) = Pk(Q(eq) = n, τs ≤ eq)

= Pk(Q(eq) = n | τs ≤ eq)Ek[e−qτs ]
= Ps(Q(eq) = n)Ek[e−qτs ],

showing, from our previous calculations, that this probability is tractable. Readers should again
note that a similar argument can be made for complex q = x + iy satisfying x > 0. Here
∫ ∞

0
Pk(Q(t) = n)qe−qt dt = x + iy

x
Ek[e−iyex1(Q(ex) = n)]

= x + iy

x
Ek[e−iyex1(Q(ex) = n)1(τs ≤ ex)]

= x + iy

x
Ek[e−iy(ex−τs+τs )1(Q(ex − τs + τs) = n)1(ex ≥ τs)]

= x + iy

x
Es[e−iyex1(Q(ex) = n)]Ek[e−iyτs1(τs ≤ ex)]

= Ek[e−qτs ]
∫ ∞

0
Ps(Q(t) = n)qe−qt dt,

where the fourth equality holds by the strong Markov property.
Case 2: k > s and n > s. This case is much more interesting, since it is possible for our

process to go from k to n, without ever reaching level s in [0, eq ]. Proceeding in the same
manner as in case 1 yields

Pk(Q(eq) = n) = Pk(Q(eq) = n, τs ≤ eq)+ Pk(Q(eq) = n, τs > eq)

= Ps(Q(eq) = n)Ek[e−qτs ]

+
min{n,k}∑
l=s+1

Pk

(
Q(eq) = n

∣∣∣ inf
0≤u≤eq

Q(u) = l
)
Pk

(
inf

0≤u≤eq
Q(u) = l

)
.
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These terms are computable: first note that

Pk

(
inf

0≤u≤eq
Q(u) = l

)
= Pk(τl ≤ eq)− Pk(τl−1 ≤ eq)

= Ek[e−qτl ] − Ek[e−qτl−1 ]
= ψ(q)k−l − ψ(q)k−l+1,

and from Theorem 3.2 we find that, conditional on inf0≤u≤eq Q(u) = l, Q behaves as an
M/M/1 queue on [0, eq ] with arrival rate λ and service rate sµ. Hence,

Pl

(
Q(eq) = n

∣∣∣ inf
0≤u≤eq

Q(u) = l
)

=
(

1 − λψ(q)

sµ

)(
λψ(q)

sµ

)n−l
.

Case 3: 0 ≤ k < s and n ≥ s. This case is analogous to case 1: here

Pk(Q(eq) = n) = Ps(Q(eq) = n)Ek[e−qτs ].
Now we can use Lemma 4.3 to express Ek[e−qτs ] in terms of Kummer functions.

Case 4: 0 ≤ k < s and n < s. As expected, this case is analogous to case 2, but the
expression here is more complicated than the other cases. Here

Pk(Q(eq) = n) = Pk(Q(eq) = n, τs ≤ eq)+ Pk(Q(eq) = n, τs > eq)

= Ps(Q(eq) = n)Ek[e−qτs ]

+
s−1∑

l=max{k,n}
Pk

(
Q(eq) = n

∣∣∣ sup
0≤u≤eq

Q(u) = l
)
Pk

(
sup

0≤u≤eq
Q(u) = l

)
.

However, we again observe that

Pk

(
sup

0≤u≤eq
Q(u) = l

)
= Ek[e−qτl ] − Ek[e−qτl+1 ],

and, conditional on sup0≤u≤eq Q(u) = l, we use Theorem 3.2 to deduce that Q behaves as an
M/M/l/ l queue on [0, eq ], starting at level l. This yields

Pk

(
Q(u) = n

∣∣∣ sup
0≤u≤eq

Q(u) = l
)

= ρnEn[e−qτl ]/(n!)∑l
j=0 ρ

jEj [e−qτl ]/(j !) ,

implying that this final case is tractable as well, in that it can be expressed in terms of Kummer
functions.

There is an important lesson to be learned from our calculations of the PMF ofQ(eq). Given
a proper choice of initial point and reference point, our PMF ofQ(eq) can be expressed in terms
of quantities related to three simpler models: the M/M/1 queue, the M/M/l/ l queue, and the
M/M/∞ queue. Had we chosen another reference point different from s, our hitting-time
transforms would have been much more difficult to compute.

4.1.2. The M/M/s/K queue. Our factorization identities can also be used to derive the PMF
of the M/M/s/K queue-length process at an independent exponential time eq , where s is the
number of servers and K the system capacity. By choosing our reference point to be s, we
mimic the procedure used in the M/M/s case to express the desired PMF in terms of two
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simpler models: the M/M/s/s queue (which is expressible in terms of M/M/∞ hitting-time
transforms), and the M/M/1/(K − s) queue.

Note that the relevant hitting-time transforms for the M/M/1/(K− s) queue can be derived
from the M/M/1 queue, since we can use the PMF of an M/M/1 queue at an exponential time
to derive the Laplace–Stieltjes transform of the time it takes us to go from level j1 to level
j2 in an M/M/1 queue when j1 < j2. Such a result can then be used to derive all of the
corresponding hitting-time transforms for an M/M/1/(K − s) queue.

4.1.3. Time-dependent moments. It is possible to make use of the factorization identities to
derive the moments of Q(eq) as well. To illustrate the main idea, we first suppose that
{Q(t); t ≥ 0} represents an M/M/1 queue-length process, with arrival rate λ and service
rate µ. It has been shown in [2] that, for each t ≥ 0,

E[Q(t) | Q(0) = 0] = ρ

1 − ρ
P(Rτ ≤ t),

where τ represents the busy period of an M/M/1 queue, and Rτ represents the residual busy
period, i.e. for each t > 0,

P(Rτ > t) = 1

E[τ ]
∫ ∞

t

P(τ > x) dx.

Letting eq be an exponential random variable with rate q > 0, independent of Q, gives

E[Q(eq) | Q(0) = 0] = ρ

1 − ρ
E[e−qRτ ] = ρ

1 − ρ

1 − E[e−qτ ]
qE[τ ] = λ(1 − E[e−qτ ])

q
,

which implies that the first moment of Q(eq) is tractable, assuming that we start in state 0.
Our factorization identities can now be used to compute the first moment of Q(eq) for any

initial condition. Suppose that Q(0) = n0 ≥ 0. Then

E[Q(eq) | Q(0) = n0]
= E

[
Q(eq)

∣∣∣ inf
0≤s≤eq

Q(s) = 0, Q(0) = n0

]
P

(
inf

0≤s≤eq
Q(s) = 0

∣∣∣ Q(0) = n0

)

+
n0∑
k=0

E

[
Q(eq)

∣∣∣ inf
0≤s≤eq

Q(s) = k, Q(0) = n0

]
P

(
inf

0≤s≤eq
Q(s) = k

∣∣∣ Q(0) = n0

)

= E[Q(eq) | Q(0) = 0]P
(

inf
0≤s≤eq

Q(s) = 0
∣∣∣ Q(0) = n0

)

+
n0∑
k=0

(E[Q(eq) | Q(0) = 0] + k)P
(

inf
0≤s≤eq

Q(s) = k

∣∣∣ Q(0) = n0

)

= E[Q(eq) | Q(0) = 0] +
n0∑
k=0

kP
(

inf
0≤s≤eq

Q(s) = k

∣∣∣ Q(0) = n0

)

= λ(1 − E[e−qτ ])
q

+
n0∑
k=1

kψ(q)n0−k(1 − ψ(q)).

The key step in this derivation is the second equality: if inf0≤s≤eq Q(s) = k then Theorem 3.2
tells us that Q(eq) is equal in distribution to the queue length of an M/M/1 queue at an
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independent exponential time eq on the states {k, k + 1, k + 2, . . . } with arrival rate λ and
service rate µ. This result agrees with the result given in [3], and also in [19]. With a bit of
patience, higher moments can also be computed through the use of this approach, but there are
better ways to do this for the M/M/1 model; see [19] for details.

An analogous procedure can be used to compute the moments ofQ(eq) for more complicated
processes. Suppose now that {Q(t); t ≥ 0} represents the queue-length process of an M/M/s
queue with arrival rate λ and service rate µ, and s servers. While the transient moments of
the M/M/s queue have been studied in [28], the point here is to show how to construct the
moments from simpler birth–death processes.

The key to computing the moments of Q(eq) for an arbitrary initial condition is to first
compute the moments, while assuming that Q(0) = s, since we will want to again use s as a
reference point when we apply Theorem 3.2. Again, since Q is a reversible process, we can
say that

E[Q(eq) | Q(0) = s] = π0(q)

s∑
k=0

kEk[e−qτs ]ρ
k

k! + π0(q)
ρs

s!
∞∑

k=s+1

kEk[e−qτs ]
(
ρ

s

)k−s

with

π0(q) =
[ s∑
k=0

Ek[e−qτs ] (ρ)
k

k! +
∞∑

k=s+1

(ρ)s

s!
(
ρ

s

)k−s
Ek[e−qτs ]

]−1

being the normalizing constant. There are a few observations here worth noting. First, note
that

π0(q)

s∑
k=0

kEk[e−qτs ]ρ
k

k! = Ps(Q(eq) ≤ s)Es[QM/M/s/s(eq)],

where QM/M/s/s represents an M/M/s/s loss model with arrival rate λ, service rate µ, and s
servers, and this is a known expected value; see [5] for details. Second, we see that

π0(q)
ρs

s!
∞∑

k=s+1

kEk[e−qτs ]
(
ρ

s

)k−s

= π0(q)
ρs

s!
∞∑

k=s+1

(k − s)Ek[e−qτs ]
(
ρ

s

)k−s

+ π0(q)
ρs

s!
∞∑

k=s+1

sEk[e−qτs ]
(
ρ

s

)k−s

= Ps(Q(eq) ≥ s)E0[QM/M/1(eq)] + sPs(Q(eq) ≥ s)P0(QM/M/1(eq) ≥ 1),

where QM/M/1 represents the queue-length process of an M/M/1 queue with arrival rate λ
and service rate sµ. Thus, we conclude that E[Q(eq) | Q(0) = s] is a quantity that can be
computed.

To get E[Q(eq) | Q(0) = i] for an arbitrary i ≥ 0, we now invoke Theorem 3.2. Suppose
first that i < s. Then

E[Q(eq) | Q(0) = i]

=
s−1∑
j=i

E

[
Q(eq)

∣∣∣ sup
0≤s≤eq

Q(s) = j, Q(0) = i
]
P

(
sup

0≤s≤eq
Q(s) = j

∣∣∣ Q(0) = i
)

+ E[Q(eq) | Q(0) = s]P(τs ≤ eq),
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and we observe from Theorem 3.2 that, conditional on sup0≤s≤eq Q(s) = j , Q(eq) is equal in
distribution to the queue length of an M/M/j/j queue at an independent exponential time eq ,
meaning that

E

[
Q(eq)

∣∣∣ sup
0≤s≤eq

Q(s) = j, Q(0) = i
]

= Ej [QM/M/j/j (eq)].

All of the other terms in the sum are, for similar reasons, also tractable. A similar argument
can be used to derive E[Q(eq) | Q(0) = i] for i > s; we omit the details.

We also point out that a similar argument can be used to derive moment expressions for
the M/M/s queue with exponential reneging, i.e. the M/M/s − M queue, which is the model
studied in [22]. Such moments would be decomposed into components from an M/M/s/s
queue and an M/M/1 − M queue, and the M/M/1 − M queue moments have recently been
studied in [18].

4.2. Diffusion processes

The factorization identities can also be used to establish similar expressions for diffusion
processes. We illustrate how the procedure works by applying it to a classical reflected diffusion:
regulated Brownian motion.

4.2.1. Regulated Brownian motion. Suppose that {B(t); t ≥ 0} represents a Brownian motion
with driftµ = −1 and volatility σ 2 = 1. We are interested in understanding the time-dependent
behavior of {R(t); t ≥ 0}, where

R(t) = B(t)− inf
0≤u≤t min(B(u), 0),

i.e. R is the one-sided reflection of B. Granted, since B is a Lévy process, we can already use
the Wiener–Hopf factorization to derive the Laplace–Stieltjes transform of R(eq). However,
we will instead be interested in showing how our factorization identities can also be used to
derive the probability density function (PDF) of R(eq).

To derive this PDF, we will need to know a bit about the distribution of the hitting times
associated with a Brownian motion. Following the classical argument of applying the optional
sampling theorem to the Wald martingale, we see that

Ex[e−qτ0 ] = e−(−1+√
1+2q)x .

Moreover, R has a unique stationary distribution π , where π(dx) = 2e−2x dx.
We will now compute the density of R(eq), given R(0) = x0; we denote this density at the

point x as fR(eq)(x; x0). Again, we will need to break the calculation up into cases. Considering
first the case where x > x0, we may use Theorem 3.2, along with a weak-convergence argument
to show that

Px0(R(eq) > x) = Ex0 [e−qτ0 ]
∫ ∞
x

Ey[e−qτ0 ]π(dy)∫ ∞
0 Ey[e−qτ0 ]π(dy)

+
∫ x0

0

∫ ∞
x

Ey[e−qτ0 ]π(dy)∫ ∞
z

Ey[e−qτ0 ]π(dy) dP

(
inf

0≤u≤eq
R(u) ≤ z

)
.

Careful readers will note that this identity is valid for a large class of reflected diffusion processes
(namely, those processes that are expressible as a scaling limit of a sequence of birth–death
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processes), not just for regulated Brownian motion. Success in using this identity for a given
diffusion depends on both the tractability of the hitting-time transforms, and the integrals
containing them.

For x ≥ 0, we can use our expressions for both the hitting-time Laplace–Stieltjes transform
and the stationary distribution to show that

∫ ∞

x

Ey[e−qτ0 ]π(dy) =
∫ ∞

x

e−(−1+√
1+2q)y2e−2y dy

= 2

1 + √
1 + 2q

e−(1+√
1+2q)x .

Also, for 0 < z < x0,

Px0

(
inf

0≤u≤eq
R(u) ≤ z

)
= Px0(τz ≤ eq)

= Ex0 [e−qτz ]
= Ex0−z[e−qτ0 ]
= e−(−1+√

1+2q)(x0−z),

so, for positive z, we find that the density of inf0≤u≤eq R(u) is just

dP

(
inf

0≤u≤eq
R(u) ≤ z

)
= (−1 + √

1 + 2q)e−(−1+√
1+2q)x0 e(−1+√

1+2q)z dz.

Plugging everything in, we can now say that

Px0(R(eq) > x)

= e−(−1+√
1+2q)x0 e−(1+√

1+2q)x

+
∫ x0

0
e−(1+√

1+2q)xe(1+√
1+2q)z(−1 + √

1 + 2q)e−(−1+√
1+2q)x0 e(−1+√

1+2q)z dz

= e−(−1+√
1+2q)x0 e−(1+√

1+2q)x
[

1 + −1 + √
1 + 2q

2
√

1 + 2q
[e2

√
1+2qx0 − 1]

]
,

and so after taking derivatives and multiplying by −1, we find that the transient density of
R(eq), for x > x0, is just

fR(eq)(x; x0) = (1 + √
1 + 2q)e−(−1+√

1+2q)x0 e−(1+√
1+2q)x

+ q√
1 + 2q

e−(−1+√
1+2q)x0 e−(1+√

1+2q)x[e2
√

1+2qx0 − 1].

We now focus on computing fR(eq)(x; x0) for x < x0. After applying our weak-convergence
results, we see that

Px0(R(eq) > x) = 1 − Ex0−x[e−qτ0 ] + Ex0 [e−qτ0 ]
∫ ∞
x

Ey[e−qτ0 ]π(dy)∫ ∞
0 Ey[e−qτ0 ]π(dy)

+
∫ x

0

∫ ∞
x

Ey[e−qτ0 ]π(dy)∫ ∞
z

Ey[e−qτ0 ]π(dy) dPx0

(
inf

0≤u≤eq
R(u) ≤ z

)
.
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Evaluating this quantity, then taking derivatives shows that the transient density ofR(eq) is just

fR(eq)(x; x0) = (−1 + √
1 + 2q)e−(−1+√

1+2q)x0 e−(1−√
1+2q)x

+ (1 + √
1 + 2q)e−(−1+√

1+2q)x0 e−(1+√
1+2q)x

+ (1 − √
1 + 2q)(−1 + √

1 + 2q)e−(−1+√
1+2q)x0 e−(1−√

1+2q)x

− q√
1 + 2q

e−(−1+√
1+2q)x0 e−(1+√

1+2q)x

= (−1 + √
1 + 2q)(2 − √

1 + 2q)e−(−1+√
1+2q)x0 e−(1−√

1+2q)x

+
√

1 + 2q + 1 + q√
1 + 2q

e−(−1+√
1+2q)x0 e−(1+√

1+2q)x .

Appendix A. Palm measures

Throughout this paper, we have assumed that all of our random elements reside on a
probability space (
,F ,P), where 
 represents a complete, separable metric space, F the
Borel σ -field generated by the open sets of the metric, and P a probability measure on F .
These additional restrictions will be needed in order to properly define a collection of Palm
measures, which are used to derive our main result. The reader should not be alarmed by such
restrictions, as the space D[0,∞) endowed with the proper choice of Skorokhod metric is a
complete, separable metric space, and many queueing processes (and stochastic processes in
general) can reside on such a space. Moreover, R+ is used to represent the nonnegative real
line, and B the Borel σ -field generated by the open sets of R+.

Let N := {N(t); t ≥ 0} represent a point process on the nonnegative real line, with mean
measure µ, where µ(A) = E[N(A)] < ∞ for all bounded A ∈ B. Under such assumptions,
it is known that N induces a µ-a.e. unique probability kernel P : R+ × F → [0, 1], where,
for each fixed E ∈ F , Ps(E) is a Borel measurable function in s, and, for each fixed s ∈ R+,
Ps is a probability measure on F . The probability distributions of this kernel are referred to
as the Palm measures of N , and these are defined to be the measures that satisfy the following
condition: for each B ∈ B and each A ∈ F ,

E[N(B)1A] =
∫
B

Ps(A)µ(ds). (A.1)

An important consequence of (A.1) is the Campbell–Mecke formula; see, e.g. [25, p. 84]. The
proof of this formula follows from applying a monotone class argument to (A.1).

Theorem A.1. (Campbell–Mecke formula.) For any measurable stochastic process {X(t); t ≥
0}, we find that

E

[∫ ∞

0
X(s)N(ds)

]
=

∫ ∞

0
Es[X(s)]µ(ds),

where Es represents the expectation, under the probability measure Ps .

Throughout, we say that a stochastic process is measurable if it is measurable with respect
to the σ -field A, which is generated by sets of the form A × C, where A ∈ B and C ∈ F ,
i.e. if, for each B ∈ B, {(t, ω);X(t, ω) ∈ B} ∈ A.

The Campbell–Mecke formula is a very important, fundamental result in the theory of Palm
measures, and is typically the main tool used when applying Palm measures to a given problem.
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Readers wishing to consult a rigorous treatment of such measures are referred to Chapters 10–12
of [25]; other classical references on point process theory include the series of textbooks by
Daley and Vere-Jones [13], [14].

A collection of sub-σ -fields {Fs; s ≥ 0} of F is said to be a filtration if, for each s < t ,
Fs ⊂ Ft . We say that a stochastic process {X(t); t ≥ 0} is adapted to the filtration if, for
each t ≥ 0, X(t) is measurable with respect to Ft . Associated with a filtration is a collection
of σ -fields {Fs−; s > 0}, where Fs− is the smallest σ -field containing all σ -fields Fr for
r < s. These are standard concepts within stochastic calculus, and can be found in virtually
any textbook on the subject. Some examples of textbooks that focus on point processes, and
include such concepts, are [11] and [7].

We are now ready to quote a result that was used to derive the main result of this paper.
Suppose that N := {N(t); t ≥ 0} represents a point process on [0,∞), and suppose that
{Ft ; t ≥ 0} represents a filtration, to whichN is adapted. Within this framework, we say thatN
is an Ft -Poisson process if (i) N is adapted to the filtration, and (ii) the distribution of N(a, b],
conditional on Fa , is Poisson with rate

µ(a, b] =
∫
(a,b]

λ(s) ds

for some deterministic function λ : [0,∞) → [0,∞) (i.e.N(a, b] is independent of Fa). Under
these conditions, we can apply the following result, which is a corollary of a time-dependent
analogue of Papangelou’s lemma for point processes; see [20] for details.

Proposition A.1. If N is an Ft -Poisson process then Pt = P on Ft− for almost all t (with
respect to the Lebesgue measure).
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[16] Dȩbicki, K., Kosiński, K. and Mandjes, M. (2012). On the infimum attained by a reflected Lévy process.
Queueing Systems 70, 23–35.

[17] Flajolet, P. and Guillemin, F. (2000). The formal theory of birth-and-death processes, lattice-path
combinatorics and continued fractions. Adv. Appl. Prob. 32, 750–778.

[18] Fralix, B. H. (2013). On the time-dependent moments of Markovian queues with reneging. To appear in
Queueing Systems.

[19] Fralix, B. H. and Riaño, G. (2010). A new look at transient versions of Little’s law, and M/G/1 preemptive
last-come–first-served queues. J. Appl. Prob. 47, 459–473.

[20] Fralix, B. H., Riaño, G. and Serfozo, R. F. (2007). Time-dependent Palm probabilities and queueing
applications. EURANDOM Rep. 2007–041. Available at http://www.eurandom.nl/reports/index.htm.

[21] Fralix, B. H., van Leeuwaarden, J. S. H. and Boxma, O. J. (2011). A new Wiener–Hopf identity for a
general class of reflected processes. EURANDOM Rep. 2011–024.Available at http://www.eurandom.nl/reports/
index.htm.

[22] Garnett, O., Mandelbaum, A. and Reiman, M. (2004). Designing a call center with impatient customers.
Manufact. Service Operat. Manag. 4, 208–227.

[23] Greenwood, P. and Pitman, J. (1980). Fluctuation identities for Lévy processes and splitting at the maximum.
Adv. Appl. Prob. 12, 893–902.

[24] Gusak, D. V. and Korolyuk, V. S. (1968). On the first passage time across a given level for processes with
independent increments. Theory Prob. Appl. 13, 448–456.

[25] Kallenberg, O. (1983). Random Measures, 3rd edn. Akademie, Berlin.
[26] Kella, O. and Mandjes, M. (2013). Transient analysis of reflected Lévy processes. Statist. Prob. Lett. 83,

2308–2315.
[27] Kuznetsov, A. E. (2010). An analytical proof of the Pecherskii–Rogozin identity and the Wiener–Hopf

factorization. Theory Prob. Appl. 55, 432–443.
[28] Marcellán, F. and Pérez, G. (2003). The moments of the M/M/s queue-length process. Queueing Systems

44, 281–304.
[29] Millar, P. W. (1978). A path decomposition for Markov processes. Ann. Prob. 6, 345–348.
[30] Palmowski, Z. and Vlasiou, M. (2011). A Lévy input model with additional state-dependent services. Stoch.

Process. Appl. 121, 1546–1564.
[31] Percheskii, E. A. and Rogozin, B. A. (1969). On the joint distribution of random variables associated with

fluctuations of a process with independent increments. Theory Prob. Appl. 14, 410–423.
[32] Saaty, T. L. (1960). Time-dependent solution of the many-server Poisson queue. Operat. Res. 8, 755–772.

https://doi.org/10.1239/jap/1378401227 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401227

	1 Introduction
	2 Model description
	3 Main results
	3.1 The Wiener--Hopf factorization
	3.2 An analogous factorization for the reflection

	4 Applications to birth--death processes, and diffusions
	4.1 Birth--death processes
	4.1.1 The M/M/s queue.
	4.1.2 The M/M/s/K queue.
	4.1.3 Time-dependent moments.

	4.2 Diffusion processes
	4.2.1 Regulated Brownian motion.


	A Palm measures
	Acknowledgement
	References

