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Summary

There is increasing evidence that closely related species contain many polymorphisms that were
present in their common ancestral species. Use of a more distant relative as an outgroup increases
the ability to detect such ancestral polymorphisms. We describe a method for further improving
estimates of the fraction of polymorphisms that are ancestral, and illustrate this with reference to
data on Drosophila pseudoobscura and D. miranda. We also derive formulae for the proportion of
fixations arising from ancestral polymorphisms and new mutations, respectively. The results should
be useful for tests of selection based on the levels of expected and observed ancestral polymorphisms.

1. Introduction

Inferences concerning the evolutionary histories of
closely related species are often complicated by the
existence of shared polymorphisms, inherited from
their common ancestors, as well as possible ongoing
gene flow between them (reviewed in Arbogast et al.,
2002). Differences between observed and expected
levels of shared polymorphisms may also provide
evidence for selection (Clark, 1997; Wiuf et al., 2004;
Asthana et al., 2005). The application of population
genetic models has greatly enhanced our understand-
ing of this problem (Takahata & Nei, 1985; Clark,
1997; Wakeley & Hey, 1997; Wang et al., 1997;
Nielsen & Wakeley, 2001; Wiuf et al., 2004).

It has recently been pointed out that the use of
an outgroup to distinguish ancestral from derived
variants increases the information on shared and an-
cestral polymorphisms (Ramos-Onsins et al., 2004).
However, there is still a problem in that not all
ancestral polymorphisms can be identified, so that
estimates of the fraction of all polymorphisms that are
ancestral are biased downwards (Ramos-Onsins et al.,
2004). In this paper, we describe a method for
estimating the true fraction of all polymorphisms in
one species that are inherited from an ancestral

population, following a speciation event that created
complete isolation from a sister species. We also
present results on the relative numbers of fixations
of mutations within one species that are due to
mutations that arose after the split between the two
species, and those that come from pre-existing poly-
morphisms.

This investigation was originally motivated by
work on the population genetics of Drosophila mir-
anda (Yi et al., 2003; Bartolomé et al., 2005), but the
methods can be applied to any suitable set of related
species. D. miranda is a close relative of D. pseudo-
obscura, a classic subject for studies of evolutionary
genetics (Powell, 1997). D. miranda provides a model
system for the evolution of Y chromosomes, because
it has a neo-Y chromosome that was recently formed
by the fusion of the homologue of chromosome 3 of
D. pseudoobscura with the true Y chromosome,
allowing detailed studies of the effects of the resulting
suppression of crossing over on the neo-Y
(Steinemann & Steinemann, 1998; Bachtrog, 2003). It
has recently been pointed out that the existence of
polymorphisms inheritedbyD.miranda andD. pseudo-
obscura from their common ancestor with D. miranda
may create biases in estimates of the intensity of
selection on codon usage and GC content (Bartolomé
et al., 2005). It is therefore important to determine the
extent to which contemporary polymorphisms in
these two species were present before their split (these
constitute ancestral polymorphisms). This is also of
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interest in connection with the history of speciation in
the group of species comprising D. pseudoobscura and
its relatives (Wang et al., 1997). For this purpose, we
assume that D. miranda and D. pseudoobscura have
been completely isolated for some period of time. This
assumption is based on the sterility of all viable
hybrids formed between them (Dobzhansky & Tan,
1936).

2. Materials and methods

(i) Nature of the problem

We assume that we have a pair of related species, A
and B, for which nucleotide site polymorphism data
are available for a set of loci, and an outgroup species,
C, for which a single sequence is known for each locus
used in the polymorphism studies. Using parsimony,
the status of a variant can be inferred by the following
reasoning (Ramos-Onsins et al., 2004). Assume that
we detect a polymorphism at a given nucleotide site
in species A, for example C and T. If the outgroup
species has a given nucleotide, say T, at the site in
question, whereas both A and B have C and T, we

infer that the common ancestor of A and B was
polymorphic for C and T, with T being the ancestral
state (in this case, a shared polymorphism has been
detected: we designate this as a type 1 event) (see
Fig. 1). If the sequences from species B contain only C
at this site, either the polymorphism exists in B but
was missed due to small sample size (a type 2 event).
or C is truly fixed in B (a type 3 event) (see Fig. 1).
Clearly, type 2 and 3 events are indistinguishable
empirically, but both correspond to a polymorphism
that existed in the ancestral population. If species B
contains only T, we similarly cannot distinguish
between two possible events. First, there may be a
shared polymorphism, with T being present by chance
in all alleles sampled from B (a type 4 event ; see
Fig. 1). Second, a de novo polymorphism may have
arisen in species A as a result of a mutation from T to
C after the split between A and B (a type 5 event ; see
Fig. 1).

The same reasoning can obviously be applied to
polymorphisms detected in speciesB. For both species,
we can attempt to correct for misclassification of
ancestral polymorphisms as de novo polymorphisms
by estimating the fraction of ancestral polymorphisms
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Fig. 1. The most parsimonious interpretations of the three observable patterns of polymorphism and divergence for two
species (A and B) where polymorphism data are available, and an outgroup species (C) for which only a single sequence
is known. Note that type 4 and 5 events are observationally indistinguishable, but involve different states of the ancestral
population. The example assumes T to C transition mutations, but similar principles hold for other types of single
nucleotide mutations.
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that are identified as such i.e. as events of types 1–3.
The observed frequency of these can then be adjusted
by dividing by this fraction.

Inferences based on parsimony are subject to
errors ; corrections for these are discussed in the
Appendix.

(ii) Source of data

We used data on polymorphisms in the two close
relatives D. miranda and D. pseudoobscura, with the
more distant species D. affinis as an outgroup. The
D. pseudoobscura data were obtained from GenBank
accessions, with sources of the alleles described by
Schaeffer & Miller (1992) and Schaeffer (2002) (Adh),
Machado et al. (2002) (bcd), and Riley et al. (1992)
and Begun & Whitley (2002) (rosy). Alleles from the
incipient species D. pseudoobscura bogotana were
excluded from the analysis. The D. miranda and
D. affinis sequences were obtained from the studies by
Yi et al. (2003) and Bartolomé et al. (2005). Sequences
were aligned and analysed using SeAl (http://evolve.
zoo.ox.ac.uk/) and DnaSP (Rozas et al., 2003),
respectively. We restricted our analyses to synony-
mous variants rather than all silent variants, in order
to avoid errors due to misalignment of non-coding
sequences. For the purpose of determining whether a
synonymous polymorphism observed in a sample
from D. pseudoobscura is ancestral, we compared the
state of the nucleotide site in D. pseudoobscura with
those in a sample of 11–13 alleles from D. miranda
and a single allele sampled from D. affinis, a more
distantly related outgroup (Yi et al., 2003; Bartolomé
et al., 2005). A similar procedure was applied to
polymorphisms in D. miranda.

3. Results

(i) Nucleotide polymorphisms

We have only three genes for which there are poly-
morphism data for both D. pseudoobscura and
D. miranda, as well as a sequence from D. affinis. The
results of the determination by parsimony of the status

of the polymorphisms in the two species are shown in
Table 1. Overall, we inferred 4 of 119 D. pseudo-
obscura polymorphisms to be shared with D. miranda
(type 1), 13 type 2 or 3 polymorphisms, and 102 type 4
or 5 polymorphisms. For D. miranda, there are 4 type
1, 4 type 2 or 3, and 15 type 4 or 5 polymorphisms.
Taken at face value, this implies that a fraction 17/
119=0.143 of all D. pseudoobscura polymorphisms,
and 8/23=0.348 of D. miranda polymorphisms, are
ancestral.

(ii) Theoretical analysis of ancestral polymorphisms

The extent of the bias in this estimate because of fail-
ure to recognize ancestral polymorphisms can be
investigated as follows, using the principle outlined in
Section 2. We assume that the polymorphisms whose
nature is to be determined are ascertained in a sample
of size m from species A ; a sample of size n is taken
from species B for the purpose of comparison. We
also assume that use of the outgroup species C has
enabled the mutant and ancestral states of each
polymorphism to be determined. In the present case,
parsimony may well have produced substantial biases
in these determinations (see the Appendix), and the
results of correcting for these are presented in the
Discussion.

For ease of calculation, we also assume that
synonymous mutations are neutral, although this is
known not to be true for mutations altering codon
usage in Drosophila (Akashi et al., 1998; Bartolomé
et al., 2005). However, if weak selection acts on syn-
onymous mutations, polymorphisms present in the
ancestral population are expected to be enriched in
mutations from P to U, where P represents the selec-
tively favoured state and U represents the selectively
disadvantageous state (Akashi et al., 1998). This
increases the probability that the mutant state will be
lost from species B. The action of selection thus de-
creases our ability to detect ancestral polymorphisms.

We use the formula derived by Kimura (1955),
discussed by Crow & Kimura (1970, pp. 383–387), for
the probability density of frequency x of an allele at a
time t after its frequency was p, in a population with

Table 1. Shared and ancestral synonymous polymorphisms in D. pseudoobscura and D. miranda

Locus

D. pseudoobscura D. miranda

n
‘Shared’
(type 1)

‘Ancestral ’
(2/3)

‘De novo ’
(4/5) n

‘Ancestral ’
(2/3)

‘De novo ’
(4/5)

bcd 21 1 1 22 11 1 3
rosy 10 3 7 32 12 3 10
Adh 139 0 5 48 13 0 2

Total 4 13 102 4 15
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effective size Ne. For convenience, we scale time to be
measured in units of 2Ne generations. In our case, p
corresponds to the frequency of the mutation at a
given site in the ancestral population at the time of the
split between the lineages leading to species A and B,
and t represents the scaled time since divergence of the
two species.

The general version of this formula (equation 8.4.6
of Crow & Kimura, 1970) is a complicated infinite
series involving Gegenbauer polynomials (Korn &
Korn, 1968); however, when time t is equal to 0.5 or
more, the first two terms of the series dominate. (This
was confirmed by detailed evaluation of the contri-
butions of the next two higher-order terms, involving
exp (x6t) and exp (x10t), to the quantities derived
below. The relative errors from these terms are a few
per cent at most for to0.5.)

Ignoring the higher-order terms, we have

w(x, p, t) � 6p(1xp) exp (xt)

+30p(1xp)(1x2p)(1x2x) exp (x3t) (1)

(Crow and Kimura, 1970, equation 8.4.7 [a misprint
has been corrected]).

The restriction to to0.5 may seem somewhat of a
limitation on the method, but species which are less
diverged than this are likely to share a good deal of
their polymorphism, so that corrections of the kind
described below are then largely unnecessary.

The probability that this polymorphism is present
in a sample of size m from species A is

Pm(p)=
Z1

1=(2N)

{1xxmx(1xx)m} w(x, p, t)dx (2a)

where N is the number of breeding adults.
Substituting from (1) into (2) into (3) and carrying

out the integration (noting that, for most natural
populations, 1/(2N) can be replaced by 0 in the
integrals to a high level of accuracy), we find that the
contribution from the second term in equation (1)
vanishes, and so we have

Pm(p) � 6p(1xp)(mx1) exp (xt)=(m+1): (2b)

If the ancestral population is in drift-mutation
equilibrium, we can assume that the probability den-
sity of p is given by the standard neutral formula i.e. it
is proportional to 1/p (Ewens, 1979, p.238). We can
then ask: What is the probability density Qm(p) that
an ancestral polymorphism in the sample from A had
a frequency p of the mutant variant in the ancestral
population? By Bayes’ theorem, we have

Qm(p)=
px1Pm(p)R 1

1=(2=N)
px1Pm(p)dp

(3)

and we obtain the simple expression

Qm(p) � 2(1xp) (4)

where the approximation indicates the use of the same
number of terms in the series expansion of w as in
equation (1).

We can then determine the probability P1 that a
sample of n alleles from species B segregates for a
polymorphism present in the ancestral population,
given that this polymorphism was detected in the
sample from species A (a type 1 event, in the above
terminology). This is given by

P1=
Z1

1=(2N)

Z1

1=(2N)

{1xxnx(1xx)n}w(x, p, t)Qm(p)dx dp

� (nx1)

(n+1)
exp (xt) (5)

(in this case, t is scaled by the effective population size
for species B).

Similarly, the probability P2 that the sample from
species B is fixed for a mutation that was polymorphic
in the ancestral population, and which is still poly-
morphic in species B (a type 2 event), is

P2=
Z1

1=(2N)

Z1

1=(2N)

xnw(x, p, t)Qm(p)dx dp

� 1x
n

(n+2)
exp (x2t)

� �
exp (xt)

(n+1)
:

(6)

The probability P3 that species B is fixed for a
mutation that was polymorphic in the ancestral
population (a type 3 event) is

P3=
Z1

1=(2N)

u(p, t)Qm(p)dp (7)

where u(p, t) is the probability that a variant present
at frequency p is fixed in the population by time t.

From equation (8.4.12) of Crow & Kimura (1970),
u(p, t) is given to the same order of approximation as
equation (1) by

u(p, t) � px3p(1xp) exp (xt)+5p(1xp)

r(1x2p) exp (x3t) (8)

so that

P3 �
1

3
x

1

2
exp (xt)+

1

6
exp (x3t): (9)

The probability that an ancestral polymorphism
present in species A is classified as an ancestral

B. Charlesworth et al. 152

https://doi.org/10.1017/S0016672305007743 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672305007743


polymorphism by the criteria defined above is simply
the sum of the Pi from 1 to 3, Pd.

If t �1, then we have

P1 � 0, P2 � 0, P3 �
1

3
: (10)

The asymptotic value of Pd is thus one-third. The
more general expression is

Pd �
1

3
+

(nx1)

2(n+1)
exp (xt)

+
{(n+1)(n+2)x6n}

6(n+1)(n+2)
exp (x3t): (11a)

For moderate to large sample sizes, this can be
approximated further by

Pd �
1

3
+

1

2
exp (xt)+

1

6
exp (x3t): (11b)

(iii) Estimation of the frequency of ancestral
polymorphisms

These formulae can be used to estimate the frequency
of ancestral polymorphisms from the net probability
of detecting type 1, 2 and 3 events (Pd), together with
the observed proportion of polymorphisms that are in
this category, as explained in section 2 (i). To do this,
we need to have an estimate of t. One way to obtain
this is to use the ratio of the frequency of events of
type 1 to that of events of types 2 and 3. For t>1, the
dominant term controlling the frequencies of type 2
and 3 events is given by the sum of the first terms on
the right-hand sides of equations (6) and (9), so we
have

P1

(P2+P3)
� (nx1)

1+ (n+1)
3

exp (t)
� � : (12)

The value of t can therefore be estimated by
equating the left-hand side of equation (12) and the
ratio of the observed number of type 1 events to the
observed number of (indistinguishable) type 2 or 3
events. If this ratio is denoted by rs, we have

t̂ � In
3([nx1]xrs)

(n+1)rs

� �
: (13)

In the case of D. pseudoobscura (species A) and
D. miranda (species B), we have rs=0.308¡0.219 for
the pooled data, and n=12 on average, so that the
estimate of t is 2.08. Given the rather small total
number of events, the confidence interval on this
(derived from the exact binomial distribution confi-
dence interval for the proportion of type 1 events) is
wide: 1.52–3.34. This method of obtaining confidence
intervals assumes independence among sites, which is
a reasonable approximation given the low levels

of linkage disequilibrium found in these species
(Schaeffer & Miller, 1992; Yi et al., 2003).

An alternative method of estimating t is to use the
ratio of the mean divergence at silent sites between the
two species (KS) to the within-species silent nucleotide
site diversity (pS) for D. miranda (Hudson et al.,
1987). Bartolomé et al. (2005) provide estimates of
mean KS and pS of 0.032 and 0.0041, respectively.
This gives a considerably higher t value of 7.80. The
reason for this discrepancy is not clear, but may either
reflect errors in the parsimony assignments (see
Appendix), or a recent reduction in population size in
D. miranda. This would reduce pS but would have
little effect on the Pi values, which are controlled by
the long-term evolutionary process. In support of this
interpretation, the mean silent site diversity in
D. pseudoobscura is approximately 0.020, much higher
than in D. miranda (Yi et al., 2003; Bartolomé et al.,
2005). but it should be noted that D. pseudoobscura
shows signs of a population expansion (Machado
et al., 2002), so that it is likely that its high diversity is
in part of recent origin.

With the lowest of these t values (1.52), the
frequency of ancestral polymorphisms detected in
D. pseudoobscura (the total fraction of type 1, 2 and
three polymorphisms) is about 0.44 times the true
value, using equation (11b). With t=2.08, it is 0.392,
for t=3.34 it is 0.368, and for t=7.8, it is 0.333. It
thus seems likely that the frequency of ancestral
polymorphisms in D. pseudoobscura is at least twice,
and more probably around three times, the apparent
frequency of 0.143 (see above). Using the latter value,
the estimate of the fraction of all polymorphisms in
D. pseudoobscura that are ancestral becomes 0.43,
with approximate 95% confidence limits of ¡0.19.
With t=2.08, the adjusted estimate for D. miranda
is about 2.53 times the observed value, yielding an
estimate of 0.88¡0.49. These estimates need, how-
ever, to be corrected for possible errors in assigning
the status of variants by parsimony, as outlined in the
Discussion.

(iv) Fixations of ancestral polymorphisms

Similar questions can also be asked about fixations
that are detected on a given branch of the phylogeny
connecting the two species A and B. A proportion F1

of these fixations will be due to mutations that arose
after the split, and F2=1xF1 to polymorphisms
present at the time of the split between the two
species. The theoretical values of these proportions
can be evaluated as follows. The expected number E1

of fixations due to mutations arising after the split is
approximated by the sum of u(p, t) from t=0 to t=t
at p=1/(2N), multiplied by the number of new
mutations entering the population per unit time. The
latter is equal to (2Ne)(2Nkv) on the time-scale of 2Ne
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generations, where k is the number of sites and v is the
mutation rate per site.

Using equations (8.4.6) and (8.4.12) of Crow &
Kimura (1970), neglecting second and higher order
terms in the expansion of u with respect to p, and
using the recursion relation for generating
Gegenbauer polynomials (Korn & Korn, 1968), it
follows by induction that E1 is given by the following
infinite series

E1 � 2Nekv t+g
1

i=1
(x1)i

2(2i+1)

i(i+1)

�

r 1x exp x
i(i+1)

2
t

� �� ��

which simplifies to

E1 � 2Nekv tx2x g
1

i=1
(x1)i

2(2i+1)

i(i+1)

�

r exp x
i(i+1)

2
t

� ��
: (14)

From standard neutral theory (Wright, 1938;
Kimura, 1968), the expected total number of fixations
occurring over a time period t is equal to 2Nekvt,
so that the expected number of fixations arising
from ancestral polymorphisms, E2, is simply
2Nekvt – E1, i.e.

E2 � 4Nekv 1+ g
1

i=1
(x1)i

(2i+1)

i(i+1)

�

r exp x
i(i+1)

2
t

� ��
: (15)

This can be verified by the more laborious pro-
cedure of evaluating the integral of the fixation
probabilities of polymorphic variants over their
stationary frequency distribution, using equations
(8.4.6) and (8.4.12) of Crow & Kimura (1970). Exact
matrix calculations for population sizes of the order
of 100 show that equations (14) and (15) provide
excellent approximations.

We have F2=E2/(E1+E2). As expected, as t
increases, F2 approaches zero, and tends to one as t
tends to zero. Even for t>2, it is surprisingly high,
reflecting the fact that E1 is asymptotically 2Nekv
(tx2) and E2 tends to 4Nekv. With t=2, we have
F2=0.799/(0.799+0.209)=0.796; for t=5 it is 0.200.

These results ignores the possibility that a poly-
morphic mutation is misclassified as a fixation on the
branch in question, due to its presence in all sampled
alleles. The expected number of such events in a
sequence of length k is E3=4Nekv/n for sample size n.
This follows from the fact that the expected number
of polymorphisms with a mutation present at

frequency x is 4Nekvx
x1 (Ewens, 1979, p.276), and the

chance that a sample of size n is fixed for such a
variant is xn. Given that diversity per site is 4Nev
(whose estimated value is at most 1.75% for the
D. miranda genes used here), and n is 11–13, this term
can be neglected in the present case. In general, how-
ever, the fraction of apparent fixations that represent
new mutations that have truly gone to fixation after
the population split is E2/(E1+E2+E3).

4. Discussion

Our methods indicate that the frequency of poly-
morphisms in a species that were present in its
common ancestor with a close relative may be much
higher than is indicated by the fraction of poly-
morphisms that are directly inferred to be ancestral,
using information on an outgroup (section 3(iii)). We
can also use data on polymorphism and divergence
for two related species, without considering an out-
group. In this case, we employ equation (2) to calcu-
late the expected number of ancestral polymorphisms
at k sites in a sample of size m from one of these
species. This uses the fact that the expected number of
such polymorphisms at frequency p in the population
is 4Nekvp

x1 (see section 3(iii) above) ; integrating the
equivalent of Pm over p, as in the denominator of
equation (3), yields the expected number of ancestral
polymorphisms as 12Nekv(m – 1) exp(–t)/(m+1). The
expected total number of polymorphisms in the
sample is 4NekvSm, where Sm 1+1/2+1/3+… 1/
(m – 1) (Ewens, 1979, p.276). The ratio of these is
3(m – 1) exp (–t)/{(m+1) Sm}, which is the a priori
probability that a polymorphism is ancestral, given t.

A more accurate expression, which is useful when t
is smaller than 0.5, can be obtained by evaluating two
higher order exponential terms in the expression for
the probability density w, additional to those
displayed in equation (1) (the net contribution from
terms in exp (–10t) is found to be zero) :

3(mx1)

(m+1)
exp (xt)+

7

6
1x

12(m2+1)

(m+1)(m+2)(m+3)

� ��

r exp (x6t)

�
=Sm: (16)

For D. pseudoobscura polymorphisms, t for diver-
gence from D. miranda is about 1.6, as estimated from
the ratio of divergence to diversity in D. pseudo-
obscura (see 3 (iii) above). In the case of rosy, the
expected proportion of ancestral polymorphisms is
0.175, slightly but not significantly lower than the
fraction actually observed (0.200) and much smaller
than the proportion estimated after the corrections
described in section 3(iii) (more than 0.400). This may
well reflect biases in the identification of ancestral
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polymorphisms by the use of parsimony, as discussed
in the Appendix. The likelihood of such error is quite
large when the divergence of A and B from the out-
group species C is as high as it is here (a mean value of
Ks of 0.22; Bartolomé et al., 2005). If the inferred
number of types 1 and type 2/3 polymorphisms is only
8 after correcting for parsimony errors, as suggested
by the analysis in the Appendix, the final estimate
of the net frequency of ancestral polymorphisms
after using the corrections proposed in section 3(iii)
becomes approximately 0.186, which is not signifi-
cantly different from the a priori value of 0.147 for the
three loci pooled (weighting the value for each gene by
the number of polymorphic sites). This suggests that
our estimates for D. pseudoobscura are moderately
reliable. Too few data are available for D. miranda
polymorphisms to make this procedure worthwhile.

Examination of discrepancies between a priori and
estimated frequencies of ancestral polymorphisms in
larger datasets, especially where the use of a closer
outgroup allows more certain identification of the
status of polymorphisms, would provide a means for
testing for the existence of larger amounts of ancestral
polymorphism than expected under neutrality, as
expected with long-terms balanced polymorphism, or
for smaller amounts, as expected with directional
selection. This approach should be more powerful
than the comparison of observed and expected levels
of shared polymorphisms, as has been used pre-
viously (Clark, 1997; Wiuf et al., 2004; Asthana et al.,
2005).

We have also shown that a high proportion of
fixations subsequent to the divergence of two related
species may be contributed by ancestral polymorph-
isms rather than new mutations, even as many as 10Ne

generations since the split (section 3(iv)). This reflects
the long tail in the probability distribution of the time
that variants remain segregating in a population
(Clark, 1997). Identification of fixed differences by
using polymorphism data thus does not guarantee
that the fixed variants represent mutations that arose
since the divergence of the species. This has implica-
tions for estimates of selection on codon usage bias,
or the intensity of biased gene conversion on non-
coding sequences, as noted by Bartolomé et al. (2005).
The standard test for equilibrium with respect to base
composition and/or codon usage is to compare the
numbers of fixations in each direction (e.g. GC to AT
mutations versus AT to GC) over a large number of
sites. These are expected to be the same if base com-
position is in equilibrium. However, this expectation
applies only to mutations arising de novo and not to
fixations derived from polymorphisms present at the
time of the split. From the standard formula for fix-
ation probability under additive selection in a finite
population (Crow & Kimura, 1970, p.426), it is easily
seen that the fixation probability of a deleterious

mutation relative to that for an advantageous
mutation with the same selection coefficient increases
with the initial frequency of the mutation. It follows
that there will be a relative enrichment of selectively
disfavoured mutations among fixations of ancestral
polymorphisms, so that an excess of such events
among closely related species does not necessarily
imply a non-equilibrium situation. The extent of this
bias depends on the strength of selection, and requires
numerical investigation, which we plan to carry out in
a future study.

It is useful to note, however, that the reasoning
leading to equations (14) and (15) implies that the
number of fixed neutral differences between two
species can be used to estimate their divergence time,
even in the presence of a substantial fraction of fix-
ations arising from ancestral polymorphisms, pro-
viding that there have not been radical changes in
population size since divergence. This is because the
result that the number of neutral fixations over a fixed
time interval depends only on the product of time and
mutation rate (Wright, 1938; Kimura, 1968) is inde-
pendent of the time of origination of the mutations in
question. Estimates of mutation rates for truly neutral
mutations from divergence between isolated popu-
lations should therefore be independent of elapsed
time, provided that within-population variability has
been removed. This is relevant to the interpretation of
recent evidence for apparent dependence of estimated
mutation rates on divergence time (Ho et al., 2005),
suggesting that these must reflect the effects of selec-
tion, population bottlenecks, or failure to correct for
within-population variability.
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Society to BC. We thank an anonymous reviewer for
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to equation (14), and Jody Hey and both reviewers for
suggestions for improving the manuscript.

Appendix

Here we examine the likely errors resulting from
the use of parsimony in inferring the status of poly-
morphisms, as represented in Fig. 1.

(i) Errors in inferring type 1 polymorphisms

The alternative to an observed type 1 polymorphism
being a true shared polymorphism is that independent
mutations causing the same polymorphisms arose in
species A and B. Since we are conditioning on having
observed a polymorphism at a given site in one species
(e.g. A), we need to consider the chance that this
polymorphism arose de novo, and that an independent
de novo mutation of the same type also is observed
at that site in the other species. Unless the site in
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question is exceptionally mutable, the chance that a de
novo polymorphism exists at this site in species B is the
product of the complement of the a priori probability
that a polymorphism in species B is ancestral, and 4Ne

vSn (see sections 3(iii) and 4). In the case ofD. miranda
as species B, the maximum nucleotide site diversity is
for rosy (0.0175), which can be equated to 4Nev, and
Sn=3.02 An upper bound estimate of the chance that
an independent de novo polymorphismwas established
in B at rosy is provided by 3.02r0.0175=0.053, so
that, out of a total of 42 polymorphisms at rosy in
D. pseudoobscura, we expect less than 2.06 indepen-
dent de novo polymorphisms at the same sites in
D. miranda. This should be weighted by the a priori
probability that theA polymorphism is de novo, which
was estimated to be approximately 0.825 in section 4
above, reducing the number to 1.70.

In addition, we need to include the probability
that the two independent mutations are identical.
Examination of the pattern of polymorphism in these
genes in D. miranda and D. pseudoobscura shows that
98/122 independent polymorphisms are transitions,
so that the chances that two independent mutations
are transitions or transversions are 0.64 and 0.04, re-
spectively. The overall probability that two mutations
derived from the same ancestral state are identical is
thus approximately 0.64+0.02=0.66, so that the final
estimate of the expected number of shared poly-
morphisms is 1.70r0.66=1.12. Similar calculations
for bcd and Adh suggest that the total expected
number of spurious type 1 polymorphisms in the
pooled set for D. pseudoobscura may be as high as
1.76, compared with the 4 observed.

(ii) Errors in inferring type 2/3 and 4/5
polymorphisms

Here, the most likely alternative to the parsimonious
interpretation shown in Fig. 1 is that the common
ancestor was C, that the lineage leading to species C
experienced a C to T mutation, and that C mutated in
species A to give the C, T polymorphism. (We will
ignore the much less likely case of dual events on the
lineages leading to species A and B from their com-
mon ancestor.) The above estimate of the chance of
identical mutations at the same site (0.66) will be used.
If the site in question is not unusually mutable, the
chance of the substitution along the C lineage being
the same as a mutation generating a de novo poly-
morphism in A is thus approximately 0.33Ks, where
Ks is the divergence between species A or B and C (see
Table 3 of Bartolomé et al., 2005 for the values of Ks

for each locus). Again, this should be weighted by the
a priori probability that the polymorphism in A is de
novo. For rosy, the expected number of false type 2/3
polymorphisms among the total of types 2/3 and 4/5
is thus 39r0.099r0.825=3.18, compared to the 7

inferred. For the pooled set of 3 loci, the value is 7.67,
compared with an inferred total of 13.

However, a similar argument also applies to type
4/5 polymorphisms; the most likely alternative to the
parsimonious interpretation of the example in Fig. 1
is that a C to T mutation occurred in the lineage
leading to species C, and in the common ancestor of
A and B. In this case, the probability that the sample
of alleles from B is fixed for an ancestral polymorph-
ism present in A is given by P2+P3 in equations (6)
and (9). For large t, this is approximately 0.33. This is
discounted by the product of 0.33Ks and the a priori
probability that the C to T polymorphism in A is
ancestral. The expected number of false 4/5 poly-
morphisms for the pooled set of loci is the product of
this and the total number of apparent 2/3 and 4/5
polymorphisms; the sum of this over each locus is
0.50, which should be deducted from the above
number of false 2/3 polymorphisms, leading to an
overall estimate of an expected number of 7.17 false
2/3 polymorphisms.

The use of parsimony is thus likely to produce a
substantial bias in favour of overestimation of the
frequency of type 2/3 polymorphisms, working in
the opposite direction to the correction proposed in
section 3(iii). The extent of this bias would clearly be
greatly reduced by the use of a closer outgroup
species, which unfortunately is hard to obtain in the
present case.
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