H. Tamura
Nagoya Math. J.
Vol. 155 (1999), 95-151

MAGNETIC SCATTERING AT LOW ENERGY
IN TWO DIMENSIONS

HIDEO TAMURA

Dedicated to Professor Kiyoshi Mochizuki on his 60th birthday

Abstract. We study the asymptotic behavior at low energy of scattering ampli-
tudes in two dimensional magnetic fields with compact support. The obtained
result depends on the total flux of magnetic fields. It should be noted that mag-
netic potentials do not necessarily fall off rapidly at infinity. The main body
of argument is occupied by the resolvent analysis at low energy for magnetic
Schrodinger operators with perturbations of lang-range class. We can show that
the dimension of resonance spaces at zero energy does not exceed two. As a
simple application, we also discuss the scattering by magnetic field with small
support and the convergence to the scattering amplitude by J-like magnetic
field.

§1. Introduction

In the present work we consider the low-energy scattering for Schro-
dinger operators with magnetic fields compactly supported in two dimen-
sions. We study the asymptotic behavior at low energy of scattering am-
plitudes. As a direct application, we also discuss the behavior of scattering
amplitudes for scattering by magnetic fields with small support. The re-
sults obtained strongly depend on the total flux of magnetic fields under
consideration.

Throughout the entire discussion, we work in the two dimensional space
R? with generic point x = (21, 22). Let b(z) : R?> — R be a given magnetic
field. We assume that b € C$°(R?) is a smooth function with compact
support, and we denote by

o= (2m)7! / b(x) dx

the total flux of field b, where the integration with no domain attached
is taken over the whole space. This abbreviation is used throughout. We
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also assume that 0 < a < 1. The argument below extends with a natural
modification to the case that a ¢ Z is not an integer. We now define

(1.1)  Aa(z) = (a10(2), a20(2)) = (=020(), O1p(z)), 05 = 0/0x;,

where p(z) = (2m)~! [log |z — y| b(y) dy. Then we have V x A, = d1azq —
0sa1, = A = b and hence A, becomes the magnetic potential associated
with field b(z). As is easily seen, A,(x) behaves like

(12)  Aa(w) = Ba(e) + O(|27%),  Ba(z) = a(~a2/|z*, x1/lal?),

as |x| — oo. The magnetic potential A(x) : R? — R? associated with field
b(x) is not uniquely determined, but the scattering operator is invariant
under the gauge transformation A — A + Vg. Thus we may fix one of such
magnetic potentials, which behaves like (1.2) at infinity. It should be noted
that magnetic potentials never decays faster than O(|z|™!) at infinity, even
if b(x) is assumed to be of compact support. In section 2, we will specify the
more precise form of magnetic potential A(x), which coincides with B, (z)
for |z| > 1.

Let A(x) = (a1(w),a2(x)) be as above and let V € C°(R?) : R?> = R
be a given electric potential. We consider the Hamiltonian

2
H=H(AV)=(=iV—-AP?+V =) (~id; —a;)* + V.
j=1

The operator H formally defined above has a unique self-adjoint realization
in L?(R?). We denote by the same notation H this realization with domain
D(H) = H%(R?) (Sobolev space). By (1.2), the difference H— Hy between H
and the free Hamiltonian Hy = —A belongs to the long-range perturbation
class. Nevertheless we know ([8], [10]) that the ordinary wave operators

W (H, Hy) = s — lim _exp(itH)exp(—itHy) : L*(R?) — L*(R?)
— =00
exist and are asymptotically complete
Ran(W_(H, Hy)) = Ran(W,.(H, Hy)).

Hence the scattering matrix S(\; H, Hg) : L?(S') — L%(S!) at energy
A > 0, S! being the unit circle, can be defined as a unitary operator. Let
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S(w',w;A), (W,w) € S* x S, denote the integral kernel of S(\; H, Hy).
Then the scattering amplitude f(w — w’;\) for scattering from incident
direction w into final one w’ at energy A > 0 is defined by

flw—=uw'A) =c) (S, w;A) = §(w —w))

with ¢(A) = (27/iv/A)}/2. The precise representation for f(w — w’;\) is
given in section 3 (see Proposition 3.1). It is represented through the resol-
vent

R(A+i0; H) = lim R(X + ie; H), R(z) = (H - z)7h
E—

The first aim of the present work is to study the behavior as A — 0
of scattering amplitude f(w — w’;A). The main theorem is formulated
as Theorem 7.1 in section 7. We here mention it somewhat loosely. The
behavior depends on the resonance space & at zero energy of H = H(A, V).
Roughly speaking, &£ is defined as

& = {u e L} (R?) : u(z) is bounded, Hu = 0}/&,

with the zero eigenspace & = {u € L?*(R?) : Hu = 0}. If the flux « of field
b is not an integer, then it is shown that dim &; < 2. If dim & = 0, then we
can prove that

flw— W5 A) =c(N) (fa(w’ —w;A) + 0(1)) , A—0,
where
fa(w —w) = (cosar —1)6(w —w) — (isinar/7)Fy(w —w)

with Fp(0) = v.p.e? /(" — 1), and the coordinates over S' are identified
with the azimuth angles from the positive x1 axis. The leading term just
coincides with the scattering amplitude calculated by [1] (see [11] also) for
the Hamiltonian

(1.3) Ha = (—’LV - Ba)2

with domain

D(H,) = {u € L*(R?) : Hyu € L*(R?), lim u = o} :

|z|—0

where Hoyu = (—iV — By)?u is understood in D’ (in the distributional
sense). If, in particular, V' (z) = 0, then we can show that dim&; = 0 and
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the above asymptotic formula is obtained. When dim & = 2, &; is spanned
by a pair (pg, p1) of functions taking the form

p[(iﬂ) :r_yeiw"i_glv v= ’l_a‘7

with some g; € L?(R?), where (r, ) denotes the polar coordinates over R?,
and f(w — w'; ) is shown to behave like

flw— 5N =c(N) (fa(w’ —w) + (i/m)sin mr(l - ei(“’/f“’)> + 0(1)) .
On the other hand, if dim & = 1, then & is spanned by a linear combination
p(x) = cor ® +er e g g e L2(R?),

and the asymptotic formula as A — 0 of f(w — w'; \) takes various forms
according to the value o and the ratio ¢ = ¢1/¢p.

In section 8, we discuss the scattering by magnetic fields with small sup-
port as a simple application of the low-energy scattering. Let b(x), V(x) €
C§°(R?) and A(x), V x A = b, be as above. We set

be(x) = e ?b(x/e), Ve(ax) =e?V(z/e), Acla)=c"Alx/e)
for 0 < € < 1, and we consider the Hamiltonian
H.=H(A.,V.) = (—iV — A)? + V..

As is easily seen, V x A, = b, and the field b, preserves the flux

(2m)~! / bo(z) dz = o

We further have A.(x) — B, (z) and b.(x) — 2mad(z) in D' as ¢ — 0. Thus
H_ is formally convergent to the Hamiltonian

(1'4) Hyo = (—’LV - Ba)27 D(HOa) - C(()X)(]':{'2 \ {0})7

with d-like magnetic field at the origin. Let f:(w — w’; \) be the scattering
amplitude for the pair (H., Hp). The second aim is to analyse the behavior
as ¢ — 0 of fo(w — W';\) for energy A > 0 fixed. By making a change
xz/e — x of variables, f.(w — w';\) can be easily shown to satisfy the
relation

felw =W N) = Vef(w— w';)\52)
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and hence the problem is reduced to the study on the asymptotic behavior of
the scattering amplitude f(w — w'; Ae?) for the pair (H, Hy), H = H(A,V),
at low energy Ae?. This problem is motivated by the recent work [2], where
the self-adjoint extension of Hy, is discussed in detail and the scattering
amplitude for such a self-adjoint operator is calculated (see [14] also). Ac-
cording to the result there, the operator Hy, has the deficiency indices
(2,2), and there exists a family of self-adjoint extensions parameterized by
2 x 2 unitary mapping U from one deficiency subspace to the other one. The
operator H, defined by (1.3) is one of such self-adjoint extensions. The uni-
tary mapping specifies the boundary condition at the origin for the domain
of self-adjoint extensions. We are concerned with the boundary condition
realized in the limit ¢ — 0. The result obtained again strongly depends on
the structure of the resonance space &; at zero energy of H = H(A, V). The
precise result is formulated as Theorems 8.1 and 8.2 in section 8.

A lot of works ([3], [4], [7], [9], [12]) have been already done on the
behavior at low energy of scattering amplitudes and on the approximation
to point interactions in the case of short-range potential scattering. An ex-
tensive list of related literatures can be found in the book [3]. We basically
follow the idea developed in Jensen-Kato [7], althogh several technical im-
provements are required at many stages of the proof. The standard way to
analyse the behavior of resolvents at low energy is based on the relation

(1.5)  R(A+10; H) = (Id+R(\ +i0; Ho)(H — Hy)) " R(\ +i0; Hp)

obtained from the resolvent identity, where Id stands for the identity oper-
ator. For the case of scattering by magnetic fields, the difference H — Hj is
not necessarily of short-range class even for the field b(x) compactly sup-
ported, as previously stated. The resolvent identity does not work for the
pair (H, Hy). On the other hand, H — H, becomes a perturbation of short-
range class for the Hamiltonian H, defined by (1.3), but the domain D(H,,)
does not coincide with that of H. It should be noted that even the form
domains of these operators are different. This makes it difficult to use the
resolvent identity for the pair (H, H,) also. Thus we take a slightly different
approach. We introduce a certain auxiliary operator K, = (—iV — Yoo Ba)?,
where xoo(r), r = |z|, is a smooth real function vanishing near the origin
and taking the value o, = 1 for 7 > 1 large enough. By definition, K,
has the same domain as H, and the difference W = H — K, belongs to the
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short-range class. In addition, K, admits the partial wave expansion in an-
gular momentum. This enables us to expand R(\ +i0; K ) asymptotically
in A, 0 < A < 1, small enough and to analyse the behavior at low energy of
resolvent R(A+1i0; H) in question through relation (1.5) applied to the pair
(H, K,). The main body of the present work is occupied by the low-energy
analysis for resolvents of magnetic Schrodinger operators with long-range
perturbations. Such an analysis is also important in showing the resolvent
convergence in norm of the scaled Hamiltonian H. to some self-adjoint ex-
tension of Hy,. The matter will be discussed in detail elsewhere.

§2. Magnetic Schrodinger operator

In this section we fix the magnetic Schrodinger operator H = H(A, V)

to be analysed throughout the entire discussion. We always assume that
b,V € C°(R?) : R? — R are real smooth functions with support in the
unit ball
(2.1) suppb, suppV C {z € R? : |z| < 1}.
We further assume that the total flux o, o € Z not being an integer,
of the field b(z) satisfies 0 < a < 1. The magnetic potential A,(z) =
(a10(x), a24(z)) defined by (1.1) is easily shown to have the following prop-
erties.

LEMMA 2.1.  Let Bo(z) = a(—x2/|x?, 21/|2]?) be again as in (1.2).
Then one has:

(1) An(z) is smooth and obeys 9% Ay (z) = O(|lz|~=181) as |z| — oo.

(2) Ao(z) behaves like

07 Aa(@) = 07 Ba(@) + O(2|>771), Ja] = ox,
and, in particular,
92 (r1010(7) + Taa9a(x)) = O(|z| 717141,

The lemma above enables us to define ay(x) as

aq(z) = — /100 (r1a14(sT) + 2024 (57)) ds.

LEMMA 2.2.  Let an(x) be as above. Then one has:
(1) an(z) is smooth in R%\ {0}, and it obeys the bound

0Jaa(z) = O(lz|7),  |z| — oo,
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(2) An(z) is represented as
An(z) = Bo(x) + Vag(z) + Eo(z), = #0,

where Eq(x) = (e1(x),e2(x)) is given by

e1(x) = / swob(sx)ds, es(x) = —/ sz1b(sx) ds
1 1
and has support in the unit ball.

Proof. (1) This follows from Lemma 2.1 at once. (2) To prove this, we
set
b]k(ﬂf) = aja’k‘a(m) - akaja(SU), 1 S ka] S 27

so that b(z) = bia(x) = —bo1(x). A simple calculation yields
D00 (x) = — / (aja(s2) + 5(d/ds)aza(sz) + sarby(se)) ds
1
for k # j and hence we obtain

Oja(x) = aju(x) —/ sxibji(sx)ds — lim Rajo(Rx)
1

R—o0

by partial integration. By Lemma 2.1 again, RA,(Rz) — By(x) as R — oo.
This proves (2) and the proof of the lemma is completed. 0

We here introduce a basic cut-off function x € C3°(]0,00)) such that
X(s) is nonnegative and

(2.2) x(s)=1 for0<s<1, x(s) =0 for s> 2.

We set xo(z) = xo(r) = x(r), r = |z|, and xoo(x) = 1 — x(r). Then
XooFo = 0 for Ey(z) in Lemma 2.2, and hence A,(x) is decomposed into

Ay = (Xoo + XO)Aa = A(x) + V(Xooaa)
by Lemma 2.2, where
A(z) = Xoo(#)Ba() + B(x)

with B = aqVxo + X0Aa. By definition, A(z) has still the magnetic field
b(x) and satisfies
(2.3) A(z) = Bo(z)
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for |x| > 2. We now fix
(2.4) H=H(AV)=(—iV-A?+V

as the Hamiltonian with magnetic field b(x) and electric potential V(z), and
we denote by the same notation H the self-adjoint realization in L?(R?).
The scattering operator is invariant under the gauge transformation A —
A+Vg, provided that g(x) falls off at infinity. The above magnetic potential
A(z) is written as A = A, + Vg with ¢ = —Xoo@a, and g(x) — 0 at infinity
by Lemma 2.2. Hence both the pairs (H(A,V), Hy) and (H(As, V), Ho)
have the same scattering operator. The remaining sections are devoted to
the analysis on the behavior at low energy of the scattering amplitude for
the pair (H, Hyp).

§3. Scattering amplitude

The aim here is to represent the scattering amplitude for the pair
(H,Hy), Hy = —A, with H = H(A,V) defined as above. This is done
in a rather formal way. The rigorous justification can be found in [13].

Let @o(z;\,w) = exp(iv Az -w), A > 0, w € S, be the generalized
eigenfunction of the free Hamiltonian Hy, Hypg = A@g, where the notation
- denotes the scalar product in R?. As is well known, ¢ is expanded as

(81 woleshw) = 3 exp(illlm/2) exp(ilb(a; ) Jy (VAlal)
leZ

in terms of the Bessel functions J,(z), where §(z;w) is the azimuth angle
from direction w € S1. Let Fy : L?(R?) — L?((0,00);d\) ® L%(S!) be the
unitary mapping defined by

Fou(h,w) = 2-Y2(27)~1 / o (22 M, w)u() da.
Then Hj is diagonalized in such a way that
FoHoFo =X x on L?((0,00);d\) ® L?(S!).

We work in the polar coordinates (r,6) over R? and write L?(R. ) for
L?((0,00); dr). If we denote by A;, | € Z, the eigenspace of operator —i 9/
acting on L?(S!) with eigenvalue I, then we have the decomposition

PRy LX) =D a(L’Ry)aA).
leZ
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We further define the unitary mapping
(3.2) (Uu)(r,0) = r/?u(r0) : L*(R*) — L*(Ry) ® L*(S1).

Let By(z) = a(—xa/|z|?, 21 /|7|?) be as in (1.2) and let H, = (—iV — B,)?
be again defined by (1.3) with domain
D(H,) = {u € L*(R?) : Hou € L*(R?), lim u = 0} .

This operator is rotationally invariant and the unitary mapping U yields
the partial wave expansion. We formally write its expansion as

Hy ~UHU* =Y @ (Hyg ®1d),
leZ

where Hj, is given by
Hyp =TT 40272 = =02 + (V* = 1/4)r™2%, =0, —1/2r,

with v = |l — a|. The operator Hj, is self-adjoint in L?(R, ) with domain
D(H,,) = {u € LA(Ry) : Hiu € L3(Ry), lim 1™ 2u(r) = 0}

and hence H, also becomes self-adjoint in L?(R?) with domain D(H,,) as
above. Since the magnetic potential B, (z) has a strong singularity at the
origin, D(H,) does not necessarily coincide with the domain of operators
H and Hj. Nevertheless it is known ([11]) that the wave operators

Wi (Ha, Ho) = 5 — lim exp(itHo) exp(—itHp) : L*(R?) — L%*(R?)

exist and are asymptotically complete Ran W4 (H,, Hy) = L*(R?).

The generalized eigenfunction ¢+ (z;\,w) of H, is formally defined as
o+ = Wi(Hqa, Ho)po by making use of the intertwining property of wave
operators. However this definition does not have the rigorous meaning, be-
cause g is not in L?(R?). To give the precise definition, we make use of the
expansion formula (3.1) for ¢po(x; A, w) and of the well known asymptotic
formula of Bessel functions

(3.3) Jp(r) = (2/m)2r V2 cos(r — (2p + 1)m/4) (1 + g (7)) + O(r™™)
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as r — oo for any m > 1 large enough, where g,,,(r) obeys (d/dr)* g, (r) =
O(r=1=F). If we set

e(r) = exp(:l:i]l]w/2)J|l|(r) — exp(Livm/2)J,(r)
with v = |l — a| again, then it follows from (3.3) that
ex1(r) = exp(Fir) (Cﬂr_lﬂ + O(r_3/2)) + exp(:l:ir)O(r_?’/Q)

for some constant Cy;. Hence e_;(r) satisfies the incoming radiation con-
dition €’ ; +ie_; = O(r~*/2) at infinity, while e;;(r) satisfies the outgoing
radiation condition ¢/ ; —iey; = O(r—3/2). Thus, if we make use of the
simple relation

exp(ilf(z; —w)) = exp(i|l|7 + ilf(z;w))

between azimuth angles 0(z;w) and (z; —w) and if we take account of the
expansion formula (3.1), then the eigenfunction ¢+ is defined by

(34)  px(mdw) =) exp(divm/2) exp(ilf(x; w))J, (Vz]).
leZ

As is easily seen, this series converges locally uniformly and ¢ satisfies the
equation H,p+ = A\p.

As stated previously, the ordinary wave operators Wy (H, Hyp) exist and
are asymptotically complete, although H — Hj is a perturbation of long-
range class. Hence the scattering operator

S(H, Hy) = Wi(H, Ho)W_(H, Hp) : L*(R*) — L*(R?)

can be defined as a unitary operator and it has the direct integral decom-
position

S(H. Ho) = FaS(H, Ho)Fy = [ @S(\ H, Ho) d
0

where the fibre S(\; H, Hy) : L?*(S') — L2(S') is called the scattering
matrix at energy A > 0 and it acts as

(FoS(H, Ho)u) (A;w) = (S(X; H, Ho)(Fou) (A, -)) (w)
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for u € L%(R?). By the chain rule of wave operators, we have
Wy(H,Hy) =Wy (H,Hy)Wi(H,, Hp)
and hence
(3.5) S(H,Hy) = Wi(Hy, Ho)S(H, Hy)W_(H,, Hy),

where S(H,H,) = W{(H,H,)W_(H,H,). The existence and complete-
ness of wave operators Wy (H, H,) follow from those of Wy (H,, Hy) and
Wi (H, Hp) at once.

We shall derive the integral kernel of scattering matrix S(A\; H, Hyp).
Before doing this, we make a brief review on the spectral properties of H,
which are required in the argument below. The operator H is known to
have the following spectral properties ([6]): (1) H has no positive bound
state energies; (2) The resolvents R(\ +ig; H) = (H — A Fie)™ !, ¢ > 0,
have the boundary values to the positive axis

R(A+i0;H) = lin(l)R()\:i:is;H), A >0,

as an operator from the weighted L? space L?(R?) = L?(R?; (x)?*dx) into
L% (R?) for s > 1/2, where (z) = (1 + |z|?)"/2.

We now denote by (, )or (, )r2(re) the L? scalar product in L?(R?).
To represent the scattering kernel, we consider the quantity

S(wla wj )‘,7 )‘) - 2_1(27)_2(5(117 HO)(PO( S )‘7 w)a 900( E )\/7 w/))7
which is a formal representation for the integral kernel of the operator
FoS(H, Ho)F; - L*((0,00);d)\) ® L*(S') — L2((0,00);d)\) ® L*(Sh).

If we make use of the formal relation p+ = W4.(H,, Ho)po, then it follows
from (3.5) that S(w',w; N, \) is decomposed into the sum of two terms

S(Wwi N ) = So(w,w; N A) + S, w; NN,
where Sy =271 (27) (¢ (-3 A\, w), o (3N, w')) and

S1= 271 (2m) 2 ((S(H, Ha) — 1) (-3 M, w)s o (-1 N, )).
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We often identify the coordinates over S' with the azimuth angles from
the positive 1 axis in the argument below. We first calculate So(w’, w; X', A).
Recall the representation (3.4) for ¢+ (z;\,w). If we take account of the
simple relation

exp(il(0(z; —w) — 0(x;w"))) = exp(il(w' — w + 7)),
then we have

So=2" Zexp (I —v)m) exp(il(w' — w))
leZ

x/ rJ, (VAT (VN ) dr.
0
The integral on the right side equals

/OO rJ, (VAT T, (VN 1) dr = XTV25(VN = V) = 26(N — \)

0

(see [5, p.73]), and hence
So = (2m)~ <Z exp(i(l — v)m) exp(il (W' — w))) SO\ = N).
leZ

We can further show ([11]) that

Z exp(i(l — v)m) exp(ilf) = 27 (cosam 6(0) — (isinamw/m)Fy(0))

for o, 0 < a < 1, where Fy(#) is again defined by F(0) = v.p. e /(e —1).
Thus we obtain

So = (cosam d(w' — w) — (isinam/m)Fo(w' —w)) 6(X — X).

Next we calculate the second term S; (o', w; X, X). Let x(s) € C§°([0,00))
be the basic cut-off function with property (2.2). We set Xoons (%) = Xoor (1) =
— x(r/M) for M > 2, M being fixed. The function x~ops has support in
|z| > M and take the value xoonsr = 1 for |z| > 2M, so that H = H, on the

support of xoops by (2.1) and (2.2). Since

”(1 — XooM) exp(—itH)W_(H, Ha)u||L2(R2) — 0, t— :|:OO,

https://doi.org/10.1017/50027763000007017 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007017

MAGNETIC SCATTERING IN TWO DIMENSIONS 107

for u € L*(R?), we have

t=00
S(H,H,) —Id = exp(itHy) Xoom exp(—it H)W_(H, H,)

t=—00

= i/exp(itHa)DMW(H, H,)exp(—itH,)dt
by the intertwining property, where

(3'6) Dy = HOéXooM - XooMH = HaXooM - XooMHa = [HomXooM]-

If we further make use of relation exp(—itH,)p+ = exp(—itA)p+ and of
formula

/exp(it()\' —A))dt =275\ = N),
then we obtain
S1(w,wi NS A) = (ifdm) (W', w; N A)S(N — )
by a formal computation, where
(W' wi N A) = —(W_(H, Ha)p+ (5 Aw), Dyp— (3 X, ')

because of relation D}, = —Djs. The wave operator W_(H, H,) is written
in the integral form

0
W_(H,Hy,) = XooM — 2/ exp(itH ) Dy exp(—itH,,) dt.

—0o0
Hence it follows again by a formal computation that
Sy = (i/4m) (W', w; N)S(N — ),
where I(w',w; \) is given by
I(W',wi A) = ((=Xoorr + R(A+140; H)Dar) o1 (-3 A, w), Darp—(-5A,0")) -

We combine the two representations above to obtain that the integral
kernel S(w’,w;\) of scatterimg matrix S(\; H, Hy) : L*(S) — L2?(S?!) is
represented as

S(Wwi\) = So(w,w; ) + S1(w,w; N),
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where Sy = cosarm §(w — w) — (isinan/7)Fy(w — w) and
S = (i/47) ((=Xoom + R\ +140; H)Dpsr) ¢+ (-3 M, w), Dayp— (-3 M, 0')) -

The scattering amplitude f(w — w’;\) in question for the pair (H, Hp) is
now defined by

flw—=w' X)) =c) (S, w;A) — 6w —w))

with ¢(\) = (27/iv/A)Y/? again. By (3.4), (Dare_)(x; M, w) = o(1) as A — 0
and hence

(XOOM()D-I—(';Aaw)aDM@—(';)\vw/»_>0a A —0.
Thus we obtain the following proposition.

PROPOSITION 3.1. Let the notations be as above and let, in particular,
¢()\) denote ¢(N) = (21 /iv/A)/2. Then the scattering amplitude f(w—w'; \)
behaves like

flw =o' 2) =c\) (falo —w) + galw = 50) +0(1)), A =0,
where
fale —w) = (cosam — 1) 8(s — w) — (isin am/7) Fo(! — w)
with Fo(0) = v.p.e? /(e — 1), and
ga(w — W3 A) = (i/47)(R(A +90; H) Darps (5 A w), Darp— (-3 A, w").

For later reference, we here discuss the relation between the scattering
at low energy and the scattering by magnetic fields with small support. Let
b(x), V(z) € C§°(R?) be the same electric and magnetic fields as above and
let A(z) be also the same magnetic potential associated with field b(z). We
consider

be(z) = e 2b(z/e), Vi(z)=e2V(z/e), 0<e<1,

as magnetic and electric fields with small support, respectively. If we further
set A.(r) = e tA(x/e), then V x A. = b. and hence A. becomes the
magnetic potential associated with b.(x). We now define the Hamiltonian
H. by

(37) H. = H(Asa Vs) = (_iv - As)2 + Ve
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and denote by f.(w — w’; \) the scattering amplitude for the pair (H., Hp).
The eigenfunction of H, satisfies the invariance relation p+(z/e;Ae?,w) =
o (z; A\, w). If u = u(z) obeys the equation Hou — Au = f, then u.(x) =
u(ex) solves the equation Hu. — \e?u. = €2 f. with f.(x) = f(ex), so that

(RO\ +i0; Ho) f)(2) = 2 (R(A\e? +i0; H) f.) (z/¢)

for f € C$°(R?). If we take these facts into account and if we make a change
x/e — x of variables, we have the relation

few = W5 A) = Vef(w — w'; Ae?)
and hence Proposition 3.1 yields the behavior as e — 0 of f.(w — w'; A).

COROLLARY 3.1.  Assume that X\ > 0 is fived. Let fo(w — w) and
ga(w — W' ) be as in Proposition 3.1. Then f.(w — w'; \) behaves like

few = W5 A) = c(N) (fa(w' — w) + galw — W5 Ae?)) +0(1), € —0.

84. Preliminaries for resolvent estimate I

The problem is now reduced to analysing the behavior at low energy of
the resolvent R(A +i0; H). To do this, we introduce the auxiliary operator

(4'1) Ko = (—’LV - XooBa)Qa

as stated in section 1, where Xoo = Xoo(7) = 1 — x(7). The function x has
support in r > 1 and takes the value xo, = 1 for r > 2. The operator K,
has the same domain as the original operator H, and it follows from (2.3)
that the difference W = H — K|, is a first order differential operator having
smooth coefficients with support in {z € R? : |z| < 2}. In addition, K,
admits the partial wave expansion

Ko~ UKJU* =Y & (K, ®1d)
leZ

by the unitary mapping U defined by (3.2), where
(4.2) Ko = 4 (I — axoo)®r ™2, Tl =d/dr —1/2r,
is self-adjoint in L?(R4) = L?((0,00);dr) with domain

D(Kia) = {u € L*(Ry) : Kjou € L*(R), lim Y 2u(r) < oo} .
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If I # 0, then the above limit vanishes lim, o7~ "2u(r) = 0.

As preliminary steps, the present and next sections are devoted to the
study on the behavior at low energy of R(A+1i0; K, ). We now fix an integer
lp > 1 large enough, and we further introduce another auxiliary operators
X;, 1 € Z, acting on L?(R,). We define X; as

X, = IT*TL + ¢
for | with |I| < lp, where
qr) =032 foro<r<1, q(r) =v*r~? forr>1
and v again denotes v = |l — a|. On the other hand, if |I| > Iy, then we

define
X, = II*1 + vr 2,

Each operator X; is self-adjoint in L?(R. ) with the same domain as Kj,.
This holds true even for [[| > Iy > 1. In fact, we have

D(Kia) = D(X;) = {u € L*(Ry) s u € H*(Ry), 7 *u € L*(Ry)}
for |I| > lo > 1. Hence R(k? +i0; K;o), A = k?, is represented as
R(K? +i0; Kio) = R(K* +i0; X;) (1d + (Ko — X)) R(K? +i0; X)) "

by use of the resolvent identity.

As the first step, we here study the behavior as k — 0 of R(k%+i0; X;).
Throughout the section, we work in L?(R,), and we denote by ( , ) or
( , )R, the L? scalar product and by || || the L? norm. The same
notation || || is often used to denote the operator norm of bounded operators
acting on L?(R,). We further introduce several new notations required in
the argument below. Let L > 1 be fixed large enough. We write Ij, for
the interval [0,2L), and denote by B(L2,,(I1) — L2 (Ry)) the class of

loc

all operators T such that ygT : L2, (I1) — L*(Ry), xg = x(r/R), is

com

bounded for any R > 0, when it is restricted to the subspace

L?}om(IL) = {f € LQ(RJr) :supp f C [0)2‘[’)}

We say that T'(k) € B(L%,,,(I) — L _(Ry)) is of class Op(O(kY)), if it

obeys the bound ||xrT(k)|| = O(kY) as k — 0. We sometimes use the same
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notation 7'(k) € Op(O(k”)) for bounded operator T'(k) € B(X — ) from
O(K™).

Hilbert space X to ), when T'(k) obeys the bound ||T'(k)| =

4.1. The argument is divided into the two cases |l| < Iy and [I| > .
We first deal with the case |I| < ly. We consider the homogeneous equation
Xju = 0. This equation has the following pair (u;,v;) with the Wronskian

normalized by W (u;,v;) = —1 as linearly independent solutions: If [ = 0,
then
v 1/2p1/2 r<1,
uO(T) - %1/_1/2 (r”+1/2 + T—u+1/2) r>1,

v1/2 (r1/2 —vrl/? logr) r<1,
UO(T) - V_I/QT_V+1/2 r>1,

with v = |l —a| = a for [ =0, and if |I| <y, | # 0, then

—1/2,.l|+1/2
ul(r):{ (U] +v)~=r

L+ v)" V2 (@ + [t w7+ Y2 4+ (1= 1] fp)rv+1/2)
[ ()T = /)Y 4 (1wl E2)
=1

|l| + V)—1/2,r—l/+1/2

Let Ejg be defined by

(4.3) (B f)(r / Eo(r,p) f(p) dp,

where

111

r <1,
r>1,
r<1,
r > 1.

EIO(TJ)) = ’U,l(T /\p)vl(r \/p), r A p = min (T7p)7 rV p = max (rap)‘

Then u(r) = Ejof(r) yields a unique solution to

Xiu = f, }ig(l)rilﬂu(r) < 00,

for given f € L

corn(

Ir). If, in particular, I # 0,1, then it follows that

Epf € L*(Ry). The kernel Ejy(r, p) is symmetric with respect to (r, p) and

hence Ejq is formally self-adjoint Ej, = Ejg in the sense that

(ElOfa g) = (fa Elog)a f: g€ Lgom(IL)‘

The proposition below plays an important role in the analysis at low energy

of the resolvent R(A + i0; H).
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PROPOSITION 4.1.  Assume that |I| < lo. Then one has:
(1) The resolvent R(k* £i0; X;), k > 0, has the following asymptotic
(R4)): If L =0 or 1, then

expansion in B(L2,,(I1) — L%

R(K* 4 i0; X;) = Eig + Ep (k) + k*Epp + Op(o(k?)), k — 0,
and if | # 0,1, then
R(K® £1i0; X}) = Eyo + k*Eps + Op(o(k?)), Kk — 0.

(2) Ejp and Ej are formally self-adjoint in the above sense.
(3) Let (ug,v;) be as above. Then Ejy(k), 1 = 0,1, belongs to Op(O(k?"))
and satisfies E}\ (k) = Ej(—k). This operator acts as

(4.4) Epn (k) f(r) = m(k)(f, w)w(r)
for f € Lgom(IL), where

(4.5) (k) = 2v(l = v) " By(k) (L + By(R)) ™
with

Bi(k) == (1 =)A= v)/(+ )01+ v)) e (k/2)*.

Remarks. (1) The argument below does not require the explicit rep-
resentation for the integral kernel of operator FEjs. (2) The proposition
remains true for R(¢;X;) with Im+/C > 0. (3) Since 7;(k) = ~v(—k),
E} (k) = Ej(—k) and hence the formal self-adjointness of Ejp follows at
once.

We proceed with the argument, accepting this proposition as proved.
We will prove it in the last section (section 9). The proof is direct but rather
lengthy, using the asymptotic formulas of Bessel functions.

4.2. Next we consider the case |l|] > lp. The homogeneous equation

Xju = 0 has the following pair (u,v;) normalized by W(u;,v;) = —1 as
linearly independent solutions:
(4.6) ul('r) — (21/)*1/2,r1/+1/27 Ul(’l“) _ (2V)71/2,r71/+1/2'

The integral operator Ejy defined as in (4.3) yields a unique solution to

Xu=f, }i_r)r(l)r_l/Qu(r) =0,

for given f € L2, (I1), and the solution Ejpf belongs to L*(R.).

com
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LEMMA 4.1. 1 2Ejy: L?

com

(Ir) — L2 .(Ry) is defined and it satisfies
Ixrr2Ewl = O(U72), Il — .

Proof. As stated above, u = Ejof is a L? solution to X;u = f for f €
L2,..(I1). By the density argument, we may assume that f € C§°((0,2L)).
Then v € C®(Ry) behaves like u(r) = O(r*+1/2) as r — 0, and hence
r~2u € L?>(R,). We take the scalar product between the equation X;u = f
and r—2u. If |I| > 1, a simple calculation using integration by parts shows
that |1)? ||r=2u|| < c||f]| for ¢ > 0 independent of I. This proves the lemma.

0

If we take account of the relation W(J,, H,)(z) = 2i/mz, then the
integral kernel R;(r,p; k) of R(k? +1i0;X;), k > 0, is given by

Ry(r,p; k) = (im/2)r2p" 2 J, (k(r A p))H, (k(r V p)),

where H,(z) = H,El)(z) is the first kind of the Hankel function of order v.
The Hankel function H),(z) is represented by the formula

(4.7)  H,(2) = J,(2) +iN,(z) = (i/sinvm) (e" " J,(2) — J_,(2))

in terms of the Bessel functions Ji,(z), while the Bessel functions Ji,(2)
are expanded as

a\Er & (=)™ (z/2)"
Jru(2) = (5) z;) C(n+1(n+1+v)

Since I'(1 + v)I'(1 — v) = v/ sinvm, Ry(r,p; k) is expanded in the form
Ri(r,p; k) = Eyo(r,p) + k* Epa(r,p) + Ega(r,p; k)
by use of the above formulas, where Ejs(r,p) and Ej3(r,p; k) obey
|Eia(r,p)| = O 2p! 2 (r A p)” (r v p)*™
as |l| — oo, and
| i (r, p k)| = U1 2p1 2 (e A ) (O(K)(r v p)” + O(K")(r v p)* ™)

as k — 0, the order estimates being locally uniform in r and p.
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LEMMA 4.2. Let Ejp and Ej3(k) be the integral operators with kernels
Ey(r,p) and Ej3(r,p; k), respectively. Then one has:
(1) T_2El2 Lgom(IL) - Lloc( +) obeys

Ixrr =Bl = O(U™Y), I — oo
(2) r2E;3(k) : L2, (IL) — L ~(Ry) is of class Op(o(k?)) and
Ixrr= 2B (k)| = 1|7 o(k?), k=0,
uniformly in |l| > 1.

Proof. If we use the above estimate for Ej(r,p), then the Schwarz
inequality implies that

P2 (B f)(r)] < el =) £

for f € L2,,(I5). This proves (1). The second statement is verified in a
similar way. 0

We combine Lemmas 4.1 and 4.2 to obtain the following proposition.

PROPOSITION 4.2.  Assume that |l| > lyp > 1. Then one has:
(1) R(k? £i0; X)), k > 0, has the asymptotic expansion

R(k? £i0;X;) = Ejg 4+ k*Ej;p + Ej3(k), k—0,

in B(Lcom(IL) - L?OC(RJr))

(2) Eyo is formally self-adjoint and || xrr=2E| = O(||7?).
(3) Eyp is also formally self-adjoint and ||xrr—2E;| = O(|]|71).
(4) Euz(k) is of class Op(o(k®)) and |[xrr~*Eis(k)|| = U]~ o(k?).

4.3. We conclude the section by stating several important properties
of Fjg and Ej5 as a series of lemmas.

LEMMA 4.3. Assume thatl =0 or 1. Let f, g € L2,,,(I) and let u; =
w(r) be as above. If f satisfies (f,u;) =0, then (Epf,9) = (Ewnf, Eng).
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Proof. We write R;(+k) for R(k®>£i0; X;). If f satisfies the assumption
in the lemma, then Eyof € L2, (I5) and Ejj(£k)f(r) = v(£k)(f, w)w(r)
= 0. Thus we have

(Einf,g9) = ]ligtl)k_Q((Rz(—k) = Ei)f,9) = lim (Eio f, Ri(k)g)-
This proves the lemma. 0

LEMMA 4.4. Assume that | # 0,1. Let Im+/C > 0 strictly and let
u € L?(Ry) be a solution to Xju — (u = f with f € L2, (I5). Then u(r)
obeys the bound

u(r) = O(I¢)"/*)r' 21, (\/Cr), ¢l =0,
uniformly in r > 1.

If |I| > lo, then

u(r) = (im/2)r' 2 H,(\/Cr) /OOO 29, (\/Cp) f (p) dp

for » > 1, and hence the lemma is obtained in the case [l| > lp. When
|I| <lp with ! # 0,1, we will prove the lemma in section 9. This is implicitly
shown in the course of the proof of Proposition 4.1.

LEMMA 4.5.  Assume that | # 0,1. Let f, g € L2, (I.). Then

(Ewnf,9) = (Eof, Ewng)-

Proof. If I # 0,1, then both Ejf and Ejgg belong to L?(R.), and
hence the relation in the lemma makes sense. As previously stated, Propo-
sitions 4.1 and 4.2 remain true for R(¢; X;) with Im /¢ > 0. Hence we
obtain

(Ewnf,g) = glig})(Ezoﬂ R(¢;X1)g)

by use of the same argument as in the proof of Lemma 4.3. We divide the
scalar product on the right side into the sum of three integrals

[°S) R 1/k [°S)
0 0 R 1/k

= LK)+ I(k) + I(k),  k=]|c['2,
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for R > 1 fixed. It is easy to see that

R
lim I, (k) = / (B f)(r) Erog)(r) dr.

k—0

We may assume that f and g have support in [0, R). If » > R, then Ejf
and R((; X;)g take the forms

Eiof(r) = cor™*2, R(C; X1)g(r) = e(Q)r/2H, (V/(r)
for some constants ¢y and ¢(¢). By Lemma 4.4, ¢(¢) obeys the bound |¢(¢)| =
O(|k|") as k = |[¢|'/? — 0, and H, (z) satisfies H,(z) = O(|z|™") as |z| — 0.
Thus we obtain

IR(¢; X)g(r)| < er V2 R<r < 1/k,

for ¢ > 0 independent of k. When [ # 0,1, v = |l — | > 1 and r~2+!
is integrable over [R,c0). Hence it follows by the dominated convergence
theorem that

i (k) = /R " (B f)(r) Buog)(r) dr-

1
k—0
To deal with the third term I3(k), we use the asymptotic formula
H,(z) = (2/m2)"? exp(i(z — (2v + D)7 /4)) (1 + O(|2] 7)), |2 — 0.

A simple computation using integration by parts shows that I3 (k) =
O(k*~2) as k — 0. Thus the proof is completed.

=

LEMMA 4.6. Ejy satisfies X1 Ejp = Eyg on L2, (I1).

com

Proof. Let f € L2, (I1). We have only to show that (Ejsf, X;9) =

(Eif,g) for any g € C3°((0,2L)). If I = 0 or 1, then (X;g,w) = (g9, Xjw)
= 0. Hence it follows from Lemma 4.3 that

(Ewnf,X19) = (Enf, EwXig) = (Enf,9)

Lemma 4.5 enables us to repeat the same argument as above for the case
1 # 0,1 also. Thus the proof is complete. 0

LEMMA 4.7.  Assume that f € L2, (I1). Then one has:

(1) Let I = 0 or 1. Assume that f satisfies (f,u;) = 0. Then Epf €
L*(Ry) and |Enf|l < c|fll. If, conversely, Epnf € L*(Ry), then (f,u;)
=0.

(2) If 1 # 0,1, then || Ewnf|| < c||f|l uniformly in .
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Proof. (1) can be easily verified. We prove (2) only for the case || > 1.
y (46)7 EZO(Tvp) obeys |El0(Tap)| < L/2V for (Tvp) € [OvL] x [O>L] Hence

B f(r)] < /0 "\ Eo(r ) f@) dp = O] JI] — oo,

for 0 < r < L. On the other hand, if r > L, then

L
|Eif(r)] < (2V)_1"”_V+1/2/ P f(p) dp = O L 2 £
0
We combine these two estimates to conclude the proof. 0

§5. Preliminaries for resolvent estimate I1

In this section we study the behavior as A — 0 of R(A+i0; K,,) for the
operator K, defined by (4.1).

5.1. We begin with the following proposition on the uniqueness of so-
lution to equation K,w = 0.

PROPOSITION 5.1.  Let w € L2 (R?) be a solution to Kow = 0. If w
satisfies
lim sup R_Q/ lw(z)|? de < oo,
R—oo R<|z|<2R

then w = 0.

Remark. The proposition above remains true for magnetic Schrodinger
operators with fields not indentically vanishing.

Proof. The proposition is easy to prove. We write K, in the form
K, = TI2 + 13, so that the magnetic field b, of K, is expressed as the
commutator b, = i[lly,II;]. We note that b, does not indentially vanish.
Let xr(z) = x(|z|/R). Then we have

[\

(Kaw7XRw) = Z(XRij7ij) - ((AXR)w7w)7
j=1

where ( , ) denotes the L? scalar product in L?(R?). By assumption, the
second term on the right side is bounded uniformly in R > 1 and hence it
follows that II;w € L*(R?). This also implies that

2
ZHwHw (Kqw,w) =0,
7j=1
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so that ITjw = 0. Since byw = i [Il, I} ]Jw = 0, w vanishes on the support of
the field b,. This, together with relation II;w = 0, proves the proposition.
O

If w(z) is bounded or if it belongs to the weighted L? space L%, (R?),
then the assumption in Proposition 5.1 is fulfilled. The proposition is used
for such solutions in the later application. As an immediate consequence of
the above proposition, we obtain the following lemma.

LEMMA 5.1.  Let Kj, be defined by (4.2) and let w; € L2 (Ry) be a

loc
solution to Kjow; = 0. If w; satisfies

2R
lim sup R2/ lwy (r)|? dr < oo
R

R—o0
and the boundary condition lim, _or~'/?w(r) < oo, then w; = 0.
We now set W; = K;, — X;. Then W; takes the form

_ [ U= axeo(r)?r= —q(r) for [I] <1y,
Wir) = { ((l — aXoo(T))? — VQ)IT*Q for |I] > lg.

By definition, W;(r) vanishes in r > 2 for all [ € Z. If |I| < ly, then Wi(r)
is bounded and if |I| > Iy, then W;(r) obeys the bound |[W;(r)| < c|l|r—2

uniformly in [.

LEMMA 5.2.  If we regard 1d + W, Ey as an operator from L2 (I1)

com
into itself, then it has an inverse for all | € Z and the inverse

(5.1) Ty = (Id + WiEyp) ™"+ L2(I) — Lin(IL)

com

s bounded uniformly in .

Proof. 1If |l| > lp, then the lemma follows from Lemma 4.1 at once. We
consider the case || < ly. Since W Ey : L2, (IL) — L2, (I1) is a compact

com com
operator, it suffices to show that

w e Lgom(IL)a w+ WEjw=0 = w=0.

To see this, we set v = Ejgw. Then v satisfies X;v = w, so that K;,v =
Xv 4+ Wiw = 0. As is easily seen, v behaves like v(r) ~ r~vt1/2 at infinity
and it satisfies the assumptions in Lemma 5.1. Thus we can conclude that
v = 0 and hence w = 0. []
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By Proposition 4.1, Ej(+k) : L2,.(Ir) — L%_(Ry) is of class
Op(O(k*)). Hence we can define

(5.2)  Ti(Ek) = (d + LW En(£k) ™ T 2 Lo (IL) — Liom(IL)
for | =0, 1. By definition, T;(+k) is expanded as

Ty(+k) = (=1 (W, Ep (+k)) T)
§=0

and hence
(5.3) En(£k)Ty(£k)f =0, fe L, (1),

com

provided that (7} f,u;) = 0. We also have the relation
(5.4)  Ti(Ek) =T} — TIW By (£k)T} (k) = T) + Op(O(k™))
in B(L2,,,(IL) — L2,,.(I1)).

com com

5.2. We first study the behavior as k — 0 of R(k? + i0; K;,). By the
resolvent identity,

(5.5)  R(k*+1i0; Kjo) = R(K* +i0; X;)(Id + Wi R(k* + i0; X)) .
Hence Lemma 5.2 implies that there exists a limit

Fio = lim R(k* +i0; Kiq) = BT : L

com

(IL) - Ll2oc(R+)

and that it is bounded uniformly in [ as an operator in B(LZ,,(I1) —
L2 (Ry)). We can easily show that

loc

(5.6)  Ti=(Id+WiEy) ™" =1d = WiFlg : Lo (IL) — Lo (IL)-
Hence the formal adjoint of 7; is defined by

T =1d — FioWi : Lipo(Ry) — Lic(R+).
If |I| <o, then W; is bounded and hence we have

(5.7) (TiW)* = TiW.
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Even for |I| > Iy, we can define
CTZ*EZ2CTZ = (Id - EOVW)ElQE : Lzom(IL) - LIQOC(R+)

as an operator bounded uniformly in I, which follows from Lemma 4.2.

We now expand the inverse
(Id + W R(k?* +0; X;)) "t : L2, (IL) — L2, (I1)

com com

in B(L2,,,(I1) — L2%,,,(IL)). By Propositions 4.1 and 4.2, we can show that:
If I =0or 1, then

(5.8)  (Id+ WiR(K* +i0; X;)) ! = T (k) — K*T,W, EoTi + Op(o(k?))
and if [ # 0,1, then

(Id + Wi R(K? +i0; X;)) ™" = T} — K*TiW EpT} + Op(o(k?))
uniformly in |/| > 1. A similar expansion remains true for R(k? —i0; X;).

LEMMA 5.3. (1) The resolvent R(k® +i0; K;,) has the following ez-
pansion in B(L%,,(I1) — L2 (Ry)): If I=0 or 1, then

com loc
R(k? +i0; K1) = Fio + Fi(£k) + k*Fio + Op(o(k?))
and if | # 0,1, then
R(k* £i0; K1) = Fio + k*Fiz + Op(o(k?))
uniformly in |l| > 1, where

Fio = EpT;, Fu(k) =T En(k)Ti(k), Fpo =1 ET.

(2) Fio and Fy3 are formally self-adjoint and are bounded uniformly in
l| > 1 as operators in B(LZ,,,(Ir) — L2 (R4)).

(3) Fiu(k), 1 = 0,1, belongs to Op(O(k*")) and satisfies F} (k) = Fy1(—k).

This acts as

Fn(k)f(r) = (k) (Ti(k) f,w) 2wy (T w) (7)

for f € L2,,.(I1), w(k) being as in Proposition 4.1.
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Proof. (1) If I = 0,1, then it follows from (5.5) and (5.8) that
R(k® +i0; Kio) = Fio + Fi (k) + k*Fiz + Op(o(k?)),
where Fjg = Ej1;, and

Fiu (k) = Ew(Ti(k) = T7) + En(k)Ti(k),
Fio = —E o TiW EpT) + EpT.

If we further make use of relations (5.4) and (5.6), then we have

Fi1(k) = (Id — EypTiWy) En(k)T(k)
= (Id — FioW) En(k)Ti(k)
=T En (k)Ti(k).

We can show in the same way that Fjp = T;"EpT;. A similar argument
applies to the case [ # 0,1 and we can obtain the asymptotic expansion
with remainder operator Op(o(k?)) bounded uniformly in |I| > 1. Thus
(1) is verified. (2) As already stated, Fjp and Fjy are uniformly bounded
in B(L%,,(I) — L:.(R4)), and it is easy to see that these operators
are formally self-adjoint. (3) Since Ej (k) € Op(O(k*)) satisfies Ej; (k) =
Ej1(—k), Fj1(k) also belongs to € Op(O(k?")), and it follows from (5.7) that

Fi(k) =17 (k) En(—k)T) =17 <Z(_1)j(Ell(_k)TlVVl)j> En(=k)T
=0
=1, En(—k) (Z(—l)j(ﬂwflﬂl(—k))j)ﬂ = F(—k).
=0

Thus Fj;(k) preserves the same properties as Ejj (k). It can be easily seen
from Proposition 4.1 that Fj;(k) acts as in the lemma. U

The operators Fjg and Fjs have the same properties as Ejg and Ejs.

LEMMA 5.4. Let f, g € L?,,.(I). Then one has:

(1) Assume that 1 = 0 or 1If (Tuf ) = 0, then (Finf,g) = (Fiof, Fiog).
(2) Assume that | 7& O’ 1. Then (EQf7 g) = (E0f7 ﬂog)
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Proof. (1) If f satisfies the assumption in the lemma, then Fjof =
EpTif € L2, (I) and it follows from (5.3) that Fjy (k) f = T Ep (k)T (k) f

com
= 0. This enables us to repeat the same argument as in the proof of

Lemma 4.3 and we get the desired relation. (2) Since T;f € L2,,(I1) for

com
f e L2,.(I), this is an immediate consequence of Lemma 4.5. In fact, we
have
(Fizf, 9) = (ETif, Tig) = (EwTif, EwTig) = (Fuof, Fiog)-
Thus (2) is verified. 0

LEMMA 5.5. o satisfies KioFig = Fig on L2, (I1).

com
Proof. By (5.6), ui(r), L = 0,1, satisfies
(5.9) Kio T = Ko (up — FoWyw) = Xy = 0.

This yields that (77Kjn9,u;) = 0 for g € C§°((0,2L)). Hence the lemma is
proved in exactly the same way as in the proof of Lemma 4.6, if we make
use of Lemma 5.4. []

The next lemma is obtained from Lemma 4.7. We skip the proof.

LEMMA 5.6.  Assume that f € L2, (I1). Then one has:

(1) Assume that 1 = 0 or 1. If f satisfies (Tjf,u;) = 0, then Fyof €
L*(RY) and |Fiof| < cllfIl. If; conversely, Fiof € L*(R%), then (T,f,w)
=0.

(2) If 1 £ 0,1, then || Fyof|| < c||f| uniformly in l.

5.3. We proceed to the study on the behavior at low energy of R(A +
i0; K,). We use similar notations L2, (X1), B(L%,(21) — L .(R?)) and

Op(O(kY)) with natural modifications for the domain ¥ = {z € R? :
|z| < 2L} with L > 1 fixed again. Let Uj, | € Z, be defined by

27 )
D) = () 2[R 0)e 00 L (R — LB (R,
0
If f, g € L*(R?), then

(f,9)r2me) = Y (U, Uig)r2me)
lez
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and the formal adjoint operator U is calculated as

We now define the following operators:

Go =Y UiFoU; =Y U'EgTU,

leZ lEZ
Gy=) U'FpUi=Y U'T ExTU
leZ leZ

and G1(£k) = Zy(£k) + Z1(£k), where

Zy(+k) = Ul Fiu (£k)U; = U'T] En (£k) T (£k) Uy
We further define
(5.10) () = (UTw) (x), 1=0,1.

By (5.9), @ (x) solves the equation Kyt = U} Ko T]'u; = 0. The next lemma
is obtained as an immediate consequence of Lemma 5.3.

LEMMA 5.7. (1) R(k* £i0; K,) has the asymptotic expansion
R(k* +1i0; Ko) = Go + G1(£k) + E*Ga + Op(o(k?))

in B(Liom(3r) — Li(R?)).
(2) Gy and Go are formally self-adjoint.
(3) Zi(k), 1 = 0,1, belongs to Op(O(k?")) as an operator in B(L2,,(X1)
— L% (R?)). It satisfies Z} (k) = Zi(—k) and acts as
Zi(k) f(x) = n(k)(Ti(K)ULf, w) L2 (R, )t (2)
for f € L2,,.(21), vi(k) being again as in Proposition 4.1.
The following two lemmas also follow from Lemmas 5.4 and 5.6 at once.

LEMMA 5.8. Let @ be as above. Assume that f, g € L2 (Xr). If

com

f satisfies (f,4;) = 0 (and hence Zj(k)f = 0 by (5.3)), then (Gaf,g) =
(Gof,Gog)-
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LEMMA 5.9.  Assume that f € L2, (X1). Then Gof takes the form

1

Gof =) U'FoUif +g, g€ L*(R?).
=0

If f satisfies (f,@) = 0 for I = 0,1, then Gof € L*(R?) and obeys

IGofll < cl|lfll for ¢ > 0 independent of f. If, conversely, Gof € L*(R?),
then (f,u;) = 0.

We conclude the section by proving the following lemma.

LEMMA 5.10. (1) VGq and VGs belong to B(L2,,,
and V Z1(£k) is of class Op(O(k?")).
(2) VG(£k) € Op(o(k?)), where

(L) = L (R?)),

G(£k) = R(K* £i0; K,) — Gy — G1(£k) — k*Gh.

Proof. The lemma follows by elliptic estimate. We prove (2) only. We
first note that Ko Fjg = Id on L2, (X1). By Lemma 5.5, K;o Fi3 = Fo, and

com

by (5.9), KioF11(k) = 0. These relations yield
KoGo=1d, KoaGi(k) =0, KaGy=Gy

2
on LZ

(31). Hence G(k) obeys
(Ko — K)G(E) = kK2G1(k) + kGo.

Since G (k) € Op(o(k?)) by Lemma 5.7, (2) is obtained by elliptic estimate.
[

§6. Resolvent estimate at low energy

In this section we study the behavior as A — 0 of R(A 4+ i0; H). Recall
that W = H — K,, W* = W, is a first order differential operator having
smooth coefficients with support in {z € R? : |z| < 2}. We may assume
that L > 1 is chosen so large that

(6.1) XxeW =Wxr =W, xr(z) = x(|z|/L).
By the resolvent identity, we have

XL R(K* +i0; H)xr, = x. R(k* + i0; K) (Id — Wx R(k* +i0; H)) x1,
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and hence
XLR(E> +i0; H)xp, = (Id + x R(K? 4 i0; Ko)W) ™ XL R(K® + i0; Ko) X1,
provided that the inverse
(6.2) (1d + x L R(K® + i0; K,)W) " : L*(R?) — L*(R?)

exists. Thus the problem is reduced to analysing the behavior as k — 0 of
the inverse on the right side. To do this, we follow the idea due to Jensen-
Kato [7], although technical details are different in many aspects. We often
use the following proposition in the argument below.

PROPOSITION 6.1.  Let Xj, Vj, j = 0,1, be vector spaces and let A :
X1 — V1. Assume that B : Xy — Xy is surjective and C : Y1 — Yy is
injective. Define A= CAB : Xy — Y. If A~' exists, then A= = BA™1C.

Proof. The lemma is due to [7, Lemma 3.12]. We repeat the argument
there. Let D = BA™'C' : Yy — X;. Then

CAD = CABA™'C = AA7'C =C.
Since C' is injective, it follows that AD = Id. On the other hand, we have
DAB =BA'CAB=BA'A=B.

Since B is surjective, we obtain DA = Id. This proves the proposition. []

6.1. Let Gp = K;! be as in Lemma 5.7. We define the subspace M of
L*(R?) by
M = {ue L*R?) : Id+ x.GoW)u = 0}.

Since x1,GoW : L*(R?) — L?(R?) is compact, the dimension of the space

M is finite dim M < co. We further introduce another subspace of L? ; (R?).

Since GoW : L? | (R?) — L?{(R?) is well defined, we can define
E={uel? (R?:(Id+GyW)u=0}.

LEMMA 6.1. Ifv = GoWu for u € C*°(R?), then GoKov = v.
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Proof. By assumption, K,v = Wu € C§°(R?). We set w = GoK,v—0.
Then w belongs to L?;(R?) and it solves the equation Kow = K (GoKav—
v) = 0. However such a solution identically vanishes by Proposition 5.1. This
proves the lemma. O

LEMMA 6.2.
(1) GoW : M — & is injective and surjective.
(2) xr : € — M is also injective and surjective.

Proof. (1) Let u € M and set v = GoWwu. We assert that v € €. If
u € M, then u € C§°(R?) by the regularity property for solutions to elliptic
equations. Since v satisfies K,v = Wu € C§°(R?), we have K v + Wv =
W (u+ xGoWwu) =0 by (6.1). Hence it follows from Lemma 6.1 that

v+ GoWo = Gy (Kv + Wo) =0.

This proves that v € £. If GoWwu = 0 for u € M, then u = —x GoWu =
0 and hence GoW is shown to be injective. We shall show that GoW is
surjective. Let v € £. We set u = —xv. Then u belongs to L*(R?) and
satisfies

(Id + xLGoW)u = —(Id + xLGoW)xrv = —xL(v + GoWwv) = 0.
Hence © € M and we have
v=—-GogWuv=—-GyWxrv=GyWu.

This proves that GoW is surjective. (2) By (1), dim& = dim M < oo. We
have already shown that xr : £ — M is well defined. It is easy to see that
X1 is injective. This proves (2). 0

Let @; be defined by (5.10). We further define the following two sub-
spaces:

Mo={ueM:(u,Wi)=0,1=0,1}, & ={uc&:ue L*R?)}.

Obviously u € & means that u is a bound state of H associated with zero
eigenvalue.

LEMMA 6.3.
(1) GoW : My — &y is injective and surjective.
(2) xr : & — My is also injective and surjective.
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Proof. (1) We set v = GoWwu for u € My. Since (Wu, @) = (u, W)
= 0, it follows from Lemma 5.9 that v € L?(R?), and v obeys Hv = 0. Thus
GoW : Mg — & is well defined. It is easy to see that GoW is injective.
To prove that it is surjective, we again set u = —xrv for v € &. Then
v is represented as v = GoWu € L?(R?). Hence it follows again from
Lemma 5.9 that (Wwu, ;) = 0 for [ = 0,1. This implies that u € M and
GoW is shown to be surjective. (2) This is verified in the same way as used
to prove Lemma 6.2 (2). [

LEMMA 6.4. The geometric null space M coincides with the algebraic
null space of the operator Id + x,GoW acting on L?*(R?).

Proof. To prove the lemma, it suffices to show that: If v = (Id +
xLGoW)uy € M for some u; € L*(R?), then u = 0. To see this, we
calculate

(u, Wu) = ((Id + xL.GoW)ur, Wu) = (ur, W(Id + x.GoW)u) = 0.

Since u € M satisfies Wu = —WGoWu, we have (Wu, GoWu) = 0. Set v =
GoWu € L?{(R?). Then K,v = Wu and hence (K,v,v) = 0. This enables
us to repeat the the same argument as in the proof of Proposition 5.1. We
can show that v = 0, which implies that © = —xyGoWwu = —x v = 0. Thus
the proof is complete. []

As a consequence of Lemma 6.4, we obtain that: (1) There exists a
projection (not necessarily orthogonal) @ : L2(R?) — M, Q? = Q, on the
space M. (2) There exists a bounded operator Y3 : L?(R?) — L?(R?) such
that

(6.3) (Id+xrGoW)Y3 =Y3(Id + x GoW) =1d — Q, QY3 =Y3Q =0.

Let
Py:L*R* — &, P}=P),, P=P

be the orthogonal projection onto the zero eigenstate & of H.
LEMMA 6.5. Let Gy be as in Lemma 5.7. Then PoW Gy W Py = F.

Proof. Since Pof = —GoWPyf € L*(R?) for f € L*(R?), we obtain
by Lemma 5.9 that (WPyf,4;) = 0 for [ = 0,1. Hence it follows from
Lemma 5.8 that

(POW G W P f, g) = (G2W Ry f, W Pog) = (Pof, 9)
for any f, g € L?(R?). This proves the lemma. 0
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LEMMA 6.6. Let Dy : L?*(R?) — L?*(R?) be defined by Dy =
XLPoW G2 W Q. Then Dy has the following properties:

D§ =Dy, DoQ =Dy, QD= D.

Proof. We first note that QxrFPy = xrFo, which is an immediate con-
sequence of Lemma 6.3. Hence a simple calculation using Lemma 6.5 yields
the relations in the lemma. []

The above lemma enables us to define the family of projections as
(6.4) 't =(Id—-Dy)Q, TI'y=DyQ, T'3=1d-Q
with the properties
(6.5) ' +Ty+T3=1d, IiI'; =d;1,

8;; being the Kronecker notation. We see that 'y : L*(R?) — My is the
projection on M. This follows from Lemma 6.3, because xr, Py = DoxrPo
by Lemma 6.5. We decompose M and £ as M = M@ M and £ = EgP &y,
where M; =T'1(M) and & = GoW (M;). By Lemma 6.3 again, dim M; =
dim&; < 2, and the mappings GogW : My — & and x1 : & — M,y
are injective and surjective. An element u € &1, u ¢ L?*(R?), is called a
resonance state at energy zero of H.

LEMMA 6.7.
(1) (Id + XLG()W)Fl =0, (Id + XLGOW)FQ =0.
(2) FTW(Id—I—XLG()W) =0, F;W(Id—i—XLGoW) =0.

Proof. (1) is obvious by definition, and (2) easily follows by adjoint, if
(6.1) is taken into account. U

LEMMA 6.8. Let Gi(t+k) = Zo(+k) + Z1(£k) be as in Lemma 5.7.
Then one has TSW Z;(£k)WTe =0 and

TiW Zy(£k)WTy = 0, T3WZ(£k)WTy =0,
TsW Zy(£k)WTy =0, T3WZ(£k)WTs = 0.

Proof. If u € Mo, then (IUWu,w)r2r,) = (u, Wiy)r2gr2) = 0.
This, together with (5.3), implies that

Z(£k)Wu = U Fyy (£k)UWu = U T} Epy (k) Ty (k) UWu = 0

and hence Z;(£k)WTy = 0. Since Z/(k) = Z;(—k), we have I'sW Z;(£k)
= 0 by adjoint. Thus all the relations in the lemma follow at once. 0
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LEMMA 6.9.
SWGE,WT =0, TiWGE,WTy =0.

Proof. The second relation follows from the first one by adjoint. To
prove the first relation, we calculate:

(WGWT 1 f,Tag) =

WGWT1f, x1 PoW GaW Qg)
XL PoW GaWT' f, WG W Qg)
DoQT1 f, WG2WQg)

Lol'y f, WG WQg) = 0

o~~~ o~

for any f, g € L?(R?). This completes the proof. 0
LeEMMA 6.10. (1) I's(Id + xGoW)I's has the bounded inverse
Y3 = (T3(Id + xGoW)I'3) "' : RanT's — RanT'.
(2) T5WG2WTy has the bounded inverse
Yy = (T3WGoWTy) ™! : RanT5 — RanTs.

Proof. (1) This is nothing but (6.3). (2) Since dimRanI'y = dim RanT%
< 00, it is enough to show that: If T§W GoWTau = 0 for u € L*(R?), then
Fou = 0. Since I'yu € My, (WTqu, ;) = 0 for [ = 0,1. Hence it follows
from Lemma 5.8 that

(G()WFQU, G()WFQU) = (GQWPQU, WFQU) = 0,
so that GoWTou = 0. By Lemma 6.3, GoW : My — & is injective. This
yields I'su = 0 and the proof is complete. 0

6.2. We analyse the inversion of I'{WG;(k)WT; : RanI'y — RanI'j.
This is separately done according as dim & = 0,1 or 2. We first discuss the
case dim&; = 2. Let P, : L2(R?) — M be the orthogonal projection on
My, dim My = 2. We set

(6.6) Y= PiWu, € My, 1=0,1,

for u; defined by (5.10). Then 1 and 11 are linearly independent and span
M. We further introduce n; € My, I = 0,1, with property (v5,n;) = d;;
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for 0 <4,5 <1, and we define the projection @, I = 0,1, as Q; = (-, 7 )m,
where 77 € L?(R?) denotes the basis dual to 7, such that (n;, ;) = 6ij and
nf L RanTy @ RanT3, Ranly = M.
The projection Q, I = 0, 1, is easily shown to have the following properties:
Qo+@1 =TI, QiQ;=0;0Q;, 0<i,j<1
LEMMA 6.11. Ifi£j,0<14,j <1, then
Zi(£R)WQ; =0, QW Z;(+k) = 0.

Proof. If i # j, then

(GUWnj, i) 2w,y = (05, W) p2mey = (05, AW ) = (5, ;) = 0.
This, together with (5.3), implies that E;; (£k)T;(£k)U;Wn; = 0, and hence

ZUERYWQ;f = (£, U T By (k) Ty(k)UsWn, = 0

for f € L?(R?). Thus the first relation is obtained. The second one follows
by adjoint at once. 0

LEMMA 6.12. QW Z(k)WQ;, | = 0,1, takes the form
QYW Zi (k)W Qr = m(k)(1 + O(K*) (-1 )i
and it has the inverse of the form
QW Zi(k)WQ)™ = k(14 O(K™))Y : Ran Qj — Ran @,
where Y; = ry(-,m)m with
k= — ((1+v)D(A +v)/20T(1 —v)) 2%e¥™, 1=0,1.
Proof. By (5.4), we have
(T(R)UWm,w) 2w,y = (GUWLw) 2w, ) + O(K*)
= (m, 1) 2(r2) + O(K*) = 14+ O(K™).
This, together with Lemma 5.7 (3), yields that
QIW Zi(k)YWQuf = (k) f,m) )(Ti(R)UW o, wp) 2 m, ) (Wi, m)n/
= (k) (L + OK*))| (W, m) > (f, )y

for any f € L?*(R?). Thus Q;W Z,(k)WQ, takes the desired form. By (4.5),
1/v/(k) behaves like 1/v;(k) = sk~ (1 + O(k*)) as k — 0. Hence the
inverse also has the form in the lemma and the proof is complete. 0
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We set Q2 = I’y and Q3 = I's. Then the family {Qj};’:o of projections
has properties similar to those in (6.5). We are now in a position to apply
Proposition 6.1 to the operator

A =Td+ xLR(k* +i0; K, )W : Xy — Wy
with X1 = Y1 = L?(R?) under the situation

(6.7)  B=(k""Qo,k " ¥Q1,k71Q2,Q3) : Xy — X
(6.8)  C="k"QW, k"1 QIW, kT Q3W, Q3) : Y1 — Do,

3 2
Xo=> ®RanQ;, W= > @®RanQ; | ®RanQs.

Jj=0 J=0

By Lemmas 5.7 and 5.10, A has an asymptotic expansion in B(X; — ),
and it follows from Lemmas 6.7 ~ 6.12 that the matrix notation A = CAB :
Xy — Vo associated with A has the inverse of the form

Yo 0O 0 O
-1 O Yl 0 0
A= Y, 0 + Op(o(k”))
0 0 0 Y3

in B(Yy — A&p). It is obvious that B is surjective. We shall show that C' is
injective. Assume that Cu = 0 for v € L?(R?). Since Q3u = 0, u is in M
and hence Qu = u. We further have Q*Wu = (Q§ + Q7 + Q5)Wu = 0. This
implies that

(Wu, GoWu) = (Wu, xpGoWu) = —(Wu,u) = —(Wu,Qu) = 0.

If we set v = GoWu, then v € L2, (R?) and (K,v,v) = 0. We can obtain
v = 0 by the same argument as in the proof of Proposition 5.1, and hence it
follows that u = —xpGoWwu = —x v = 0. Thus C is shown to be injective.
Hence the inverse A~! = BA~!C is expanded as

A7V = QoY QiW + k2 v Qiw
+hT2QaYaQ3W + Q3Y3Q3 + B(Op(o(kY))) O,
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so that R(k? +i0; H) takes the form
(6.9)  xrR(k*+1i0; H)xr
- (k’QaQOYOQS n k*2<1*a>Q1Y1Q>{) W R(K? +i0; Ko) X1

+ (E72Q2Y2Q5W + Q3Y3Q3) XL R(K? +i0; Ko) X1
+B(0p(o(k°))) CxrR(k* +i0; Ko) X1

6.3. Next we consider the case dim& = 1. Let P; : L?(R?) — M, be
again the orthogonal projection on M; and let ¢;, I = 0,1, be defined by
(6.6). Since dim M7 = 1, at least one of ¥y and 1); never vanishes. Assume
that 19 # 0. Then g spans My, and there exists ¢ € C such that

(6.10) 1 = oio.

We normalize ¥y as ng = o/(o,%0) € Mj, so that (ig,m9) = 1 and
hence (¢1,7m0) = o. We further denote by 75 € L?(R?) the basis dual
to nmo such that (no,n5) = 1 and 7§ L Ranl's & RanI';, and we define
the projection Qo = (-,15)mo : L*(R?) — M. If 1o = 0 (and hence
1 # 0), then we take n; and 7} in the same way as above and define
Q1= (-,n)m : L*(R?) — M.

LEMMA 6.13. (1) Assume that g = PiW g # 0. Let o be as above.
Then QEW G1(k)W Qo has the inverse of the form

(QWer (W Q) = (14 0(1))Y(k) : Ran G — RanQo,

where Yy(k) = (Vo(kf) + |U|2’Y1(k?))_1 (+m0)m0-
(2) If vy =0, then

(GIWGMWE) = (Lt o(1)Yi(k) : Ran Qi — Ran .

where Y1 (k) = v1(k)~1(-,n1)m.

Proof. We prove (1) only. (2) is verified in the same way. As in the
proof of Lemma 6.12, we calculate

QoW Zo(k)W Qo f = o (k)(L + o(1))|(vho, m0) 1> (f, 15) 6
QoW Z1(k)W Qo f = 1 (k)(L + o(1))|(vhr,m0) 1> (f, 156

for f € L?(R?). Thus the desired relation is obtained. U
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We discuss the case a = 1/2 in detail. Assume that ¢y # 0. If o = 1/2,
then v = |l —a| = 1/2 for [ = 0,1, and the operator Yy(k) in Lemma 6.13
is represented as

Yo(k) = K711 + o(1))o,
where
(611) Yo =r(-ym)m, &= — (D(3/2)/T(1/2)) (1 + |of2/3) " /2.
We again set Q3 = I'y and QY3 = I's, and apply Proposition 6.1 to
A=T1d+ xLR(K* +i0; Ko )W : X, —
with X1 = Y1 = L?(R?) under the situation

B = (kil/QQ()vk‘ilQ?aQE}) : XO — Xla
C ="kPQEW KT Q3W, Qs) : V1 — Vo,

where
Xy, =RanQo ® Ran Q2 ® RanQ3, )y = Ran Qg @ Ran Q5 @ Ran Q3.

Then the matrix notation A = C AB has the inverse of the form

Yo 0 0
At=| 0 Ya 0 |+0p(o(k°))
0 0 Y;

in B()y — &p), and A~! is expanded as
AT = kT QoYoQiW + kT2Q2YaQ3W + Q3Y3Qs + B(Op(o(k?))) C.
Thus we have

(6.12) xpR(k* +i0; H)xr = k™' QoYoQs W R(K® + i0; Ko)x1L
+ (k2Q2Y2Q5W + Q3Y3Q3) XL R(K* +i0; Ko ) X1
+B(0p(o(k®))) CxrR(K* +i0; Ko) XL,

provided that @ = 1/2 and ¢y # 0. If ¥»9 = 0, the operator Yi(k) in
Lemma 6.13 takes the form

Vi(k) =k' (14 0(1)V1, Yi=&(-,m)m
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with & = —(31(3/2)/T(1/2))e™/2. Similarly we obtain

XL R(K* +i0; H)x = k' Q1Y1QiW R(K? + i0; Ko) X1
+ (F72Q2Y2Q3W + Q3Y3Q3) x L R(K* + i0; Ko)x1
+B(0p(o(k°))) CxLR(K* + i0; Ko)xL-

We briefly discuss the case a # 1/2. Let 0 < a < 1/2 and assume that
1o # 0. Then av < 1 — @ and Yj(k) takes the form

Yo(k) = k72%(1 + o(1)) Yoa,
where
(6.13) Yoo = kal-10)70, Ko = — (T(1 4+ a)/2T(1 — a)) 2%@etT,
We repeat the same argument as in the case a = 1/2 to obtain that

XL R(K? +i0; H)xr = k~2*QoYoaQiW R(K? + i0; Ko ) X1
+ (E72Q2Y2Q5W + Q3Y3Q3) xL R(K? +i0; Ko ) x1
+B(0p(o(k°))) CxrR(K* +i0; Ko) XL,

where
B=(k""Qo,k'Q2,Qs), C="(k""Q;W, k™' Q3W,Qs).
If 1) = 0, then
Vi(k) = k2071 4 0o(1) Ve, Yia = Fa(-,m)m
with

o =—(2—a)T(2—a)/2(1 — a)D(a)) 221~ i1=a)m

and we have

(6.14) xpR(k> +i0; H)xp = k720 Q V1o QW R(E? +i0; Ko ) X1
+ (k72Q2Y2Q5W + Q3Y3Qs3) XL R(K* +1i0; Ko ) X1,
+B (Op(o(k:o))) CxrR(k* +i0; Koo)Xz,

where

B=(k"1"9Q,k7'Qs,Q3), C ="'k~ QiW,kTIQ5W, Q3).
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A similar argument applies to the case 1/2 < a < 1. We skip the details.
Finally we consider the case dim & = 0. This is the most simple case.
If we again repeat the same argument as above, we have
(6.15)  xpR(K*+i0; H)xy,
= (k72Q2Y2Q3W + Q3Y3Q3) xL R(K® +10; Ko)x1
+B(0p(o(k°))) Cx L R(K* + i0; Ko ) XL,
where B = (k71Q2,Q3) and C = {(k~1Q3W, Q3).

§7. Behavior at low energy of scattering amplitude

In this section we study the behavior as A — 0 of the scattering am-
plitude f(w — w’;\). The argument is again divided into the three cases
according as dim & = 0,1 or 2. Let Dy = [Hy, Xoom| be defined by (3.6),
M > 2 being fixed. We again take L > 1 so large that xp Dy = Dyxr =
Dyy.

7.1. We first discuss the case dim &) = 2. We set ourselves under the
situation in subsection 6.2 and use the same notations with the meanings

ascribed there. We define
pr=GoWmn, [=0,1.

Since ; € My, it follows from Lemmas 6.2 and 6.3 that p; € &, and
Lemma 5.9 implies that p; takes the form

pr=> UF;UWn =Y UsEoL;UWn +g
JEZ Jj=0,1
for some g € L?(R?). By (5.6), we have
(T;U;Wm)(r) = ((Id = W; Fjo)U; W) (r).

Recall that Wi(r) = 0 for r > 2 and the coefficients of the differential
operator W = H — K, also vanishes for » = |z| > 2. Hence we have
(T;UWn)(r) = 0 for r > 2. Let (u;,v;) be the pair of linearly independent
solutions defined in subsection 4.1. If » > 2, then we calculate

(EjT;U;Wm) (r) = (T3U; W, ug) 2y yvs (1)
= (m, WU T} uj) 2 (m2yvs (1)
= (i, Wij)v;(r) = (m,¥j)vi(r) = opjv(r)
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for j = 0,1. Thus p;(x) is represented as

(7.1) pu(x) = (Ufv) () + g = (2m) 272y (r)e™ + g
= (2n(l + ,,))71/2 rel® | g

with another g € L?(R?). Since p; € & satisfies Hp; = 0 as a resonance
function at energy zero and since

H,rfueiw _ Karfueile _ (27T)1/2U1*Klarfu+l/2 -0

for r = || > 2, the remainder term g¢ in (7.1) also satisfies Hg = K9 =0
for |z| > 2.

LEMMA 7.1.  Let p(z;\,w) be the generalized eigenfunction of Hy.

Then
(o1 Darepy (3 A,w)) = —(=1) 2vpsy 2/ (1 + )2 ™2k 1 O(k),
(o Dasp— (-5 A, w)) = =2 (27 /(1 + ) /? e 2k 1+ O(k)

as k= X\/2 =0, where iy =277 /T(1 4+ v), v = |l — a.

Proof. We prove the first relation only. The second one can be verified
in exactly the same way. For notational brevity, we write ¢4 for ¢ (z; A\, w).
Since H, = (—iV — By,)? is rotationally invariant, Dy = [Hy, Xeon] is a
differential operator of variable r only. By definition (3.4) of ¢4, we have

(7.2) Dyrpy = Z (=)t ™2 1O Dpr? + 0p2(k),
1=0,1

where O;2(k7) denotes a L2-valued function of which the L? norm obeys
the bound O(k7) as k — 0. Since K, = H, for |[z|] > M > 2 and
Yoot Har? € = 0, it follows that

DM’I”V — efiIODMeiIOTV — 672'19 [Ha, XooM]einV — efiIOKaeiIGXooMTV'
If g € L?(R?) satisfies Hg = K,g = 0 for |z| > M, then
(gvKaXOoMryeiw) - Oa l= Oa 17

and hence (g, Darp+) = o(k). Thus the scalar product (p;, Dpsp+) under
consideration obeys

(,OlaDM(P—f—) _ (_1)1 (27T(l + V))_1/2 'uleiwr/Zeilw(TfueilG’KaxooMrueiIG)ku
+o(k)
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by (7.1). If we take account of relation Kj,r~"*1/2 = 0 for 7 > 2, then a
simple calculation using integration by parts shows that

(re™, KoXoonr"e™) p2m2y = 27 (r ™2 Kiaxoom™ ™) 2w )

= —4yr.
This proves the desired relation. []

LEMMA 7.2. Let | || denote the L* norm in L*(R?). Then one has:
(1) K~ QW R(? +10: Ko) Dasipe(-: A = O(1),  1=0,1.

(2) [E7'QsWR(K? +i0; Ka) Dy (3 A, w)l| = o(1).

(3) 1QsxLR(K* +i0; Ka) Daros (3 A, w)l| = o(1).

Proof. We again write ¢ for ¢ (z;A\,w). (1) We prove this for [ =0
only. Since Q§W Z;1(k) = 0 by Lemma 6.11, we have by Lemmas 5.7 and 5.10
that

Ik~ “QsW R(K* 4 i0; Ko ) Darp || = |k~ *QsW GoDarg+ || + o(1).
We calculate
QoW GGoDnpr = WGoDnor,m0)15 = (Dare, po)1o-

This, together with Lemma 7.1, implies (1). (2) As is seen from the proof
of Lemma 6.8, Q3W Z;(k) = 0. Hence it follows again from Lemmas 5.7
and 5.10 that

1k Q3W R(k* + i0; Ko) Dot || = |k~ Q5W GoDaro|| + o(1).

Recall that Qa(=I's) : L2(R?) — My is the projection on the finite dimen-
sional space My. If 9 € My, then GoW<v € & C L?*(R?) by Lemma 6.3
and HGoW1 = 0. Hence we can show as in the proof of Lemma 7.1 that

(WGoDmp+,¢) = (Dup+, GoW ) = o(k).

This proves (2). (3) This follows from Lemma 5.7 and (7.2) at once. [

LEMMA 7.3.

(1) IE7"Qf Dymp- (-3 A w)[[ =0(1), 1=0,1
(2) k7' Q5D (-5 X, w)|| = o(1).

(3) 1Q5Dme— (-3 A w)[| = o(1).
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Proof. The lemma is verified in almost the same way as Lemma 7.2.
(1) Since n; € M;, we have

Qi Dyro— = (Dyp—,m)nf = —(Dauro—, XLGoWm)nf = —(Daro—, pr)n; -

Hence (1) follows from Lemma 7.1. (2) If ¢» € My, then ¢ + xGoWv =0
and hence

(DMSO*/QZ)) = _(DMSO*7GOW11Z)) = O(k)
This proves (2). (3) This again follows from (7.2) at once. [

Let go(w — w'; A) be as in Proposition 3.1. We set
I(k) = (R(A +10; H)Darepi (5 X, w), Dpro— (-5 A, ')

Then go(w — W';\) = G/4n)I(k) with k = \1/2. We analyse the behavior
as k — 0 of the scalar product I(k). Let B : Xy — &} and C : Y1 — W
be as in (6.7) and (6.8), respectively. If T'(k) is of class o(k°) as a bounded
operator in B()p — Ap), then we combine Lemmas 7.2 and 7.3 to obtain
that

(BT (K)Cx1R(E* +i0; Ko) Do (-3 A,w), Dargp— (-5 A,0")) = o(1)
and also it follows that
EHQaV2QsWR(K® +10; Ka) Darp (-5 A,w), Darp—(+3A,w)) = o(1),
(Q3Y3QaxrR(K? +10; Ko) Daip+ (-5 A, w), Darp— (-3 2, w')) = o(1).
Thus we use the expansion (6.9) of R(k? +40; H) to obtain that

I(k) = > k™ (QYIQIWR(K® +i0; Ko) Dy (-5 A w), Darp— (3 A,0))
1=0,1

+o(1).

We denote by I;(k), I = 0,1, the two leading terms on the right side. By
Lemmas 5.7, 5.10 and 6.12, I;(k) is calculated as follows:

L(k) = k™ (Darpy (-5 A, w), pr) X (0, Darg— (-5 A,0")) + o(1)
= rk™ (Dpos (3 A, w), pr) X (=GoWm, Dago— (-5 A,w')) + o(1)
= _K’lk_2y(DMSO+( °3 )\,W),pl) S (plu DMSO*( °3 )‘7w,)) + 0(1)7
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where k; is the constant in Lemma 6.12. We further make use of Lemma 7.1
to obtain that

(k) = (_(_1)%1(2””)2 @2r/(I+v))e ™™ + 0(1)) el =)
with y; as in Lemma 7.1. The leading constant on the right side equals

—(~)'mu(2vm)? 27/ (1 + v)) T = 4(=1)!x/ ()DL - v)
4(—1) sinvr.

Hence Proposition 3.1 shows that
flw— W5A) =c(N) (fa(w’ —w) + (i/m)sin om(l — ei(w,_”)) + 0(1))

with ¢(A) = (27/iv/A)Y/2. Thus the asymptotic formula at low energy of
f(w — w'; ) is established, when dim &; = 2.

7.2. We consider the case dim&; = 1. We set ourselves under the
situation in subsection 6.3 and recall the notations there. Let ¢, € My,
1 = 0,1, be defined by (6.6). If 19 # 0, then 1y spans the one dimensional
space My, and vy and v are related through the relation ¥; = o)y for
some o € C (see (6.10)). Set 1o = 1o/ (%o, %0) € M, so that (10,70) = 1
and hence (11,1m0) = 0. We now define pg = GoWrngy € &£. Then py spans

&1, and it takes the form

po(z) = (Ugvo)(x) +7(Uivi)(x) +g
= (2ra) V27 4 T (27(2 — )TV (Um0 g g e L2(R?),

by the same calculation as in subsection 7.1. If 1y = 0 (and hence v # 0),
then &; is spanned by p; = GoWn; behaving like

pi(x) = (Uio)(z) + g = 2n(2 — @) 27079 1 g, g€ L*(R?).
In any case, the resonance space & is spanned by a function of the form
p(x) = cor @ +er e g g e L2(R?),

with some pair (cg, ¢1), where g satisfies Hg = K,g9 = 0 in |z| > 2.

We calculate the scalar product I(k) defined above. We again discuss
the case @ = 1/2 in some detail. Assume that 19 # 0. If &« = 1/2, then

po(x) = a—1/2,-1/2 +7T—1/2(5/\/§)T—1/26i0 s
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and hence

(7.3) c=c1/co=7/V3

for cg # 0. We make use of (6.12) and repeat the same argument as in
subsection 7.1 to obtain that

I(k) = =k~ (Darp+ (-3 A,w), po) X (pos Daro— (30, w")) +o(1)

with £ as in (6.11). The two scalar products on the right side are calculated
as

(b0, Darps (-3 A,0)) = =™ (1= (a/v/3)e ) K2(1 + o(1))

(b0, Darp— (-3 A,w)) = —pe™ ™/ (14 (@/V3)e™ ) K21 + o(1))

in the same way as in the proof of Lemma 7.1, where p = (27)'/2/T'(3/2).
Thus we have
4

= TR (1—2e ™)1+ cei“/) +o(1)

I(k)
by (7.3). Hence Proposition 3.1 implies that

i(1 — e ™@)(1 + ce")
T R O(”> ’

flw— W5 A) =c(N) (fa(w' —w)+

when a = 1/2 and g # 0. Even if 99 = 0 (and hence ¢o = 0), this formula

remains true with ¢ = oo.

We briefly discuss the case o # 1/2. Assume that 0 < a < 1/2. If
Yo # 0, then we have

I(k) = =Kok **(Daros (-3 M w), po) X (po, Darg— (-5 A,w')) 4 o(1)

with ko as in (6.13). Since o < 1 — a, we can calculate the two scalar
products on the right side as follows:

(p0. Daror (1 A,w)) = — (@222 /(1 + a)) 2527672k 1 ok),
(po: Darp—(-: ) = = (/2712 /D(1 4 ) ) 29276072k 1 o(k),
This yields that I(k) = 4sinam + o(1) and hence

flw—= X)) =) (falw —w) + (i/7) sinam 4 0(1)) .
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If 19 = 0, then we have by (6.14) that
flw— W5 A) =c(N) (fa(w' — w) — (i/7) sin are’™@ —) 4 0(1)) .

A similar argument applies to the case 1/2 < o < 1. We mention only the
result in the next subsection.

Finally, if dim & = 0, then we obtain
flw—= X)) =c(N) (falw —w)+o0(1))

by (6.15). If V(z) = 0, then it follows from Proposition 5.1 that dim & = 0
and hence f(w — w'; \) obeys the asymptotic formula above.

7.3. We sum up the results obtained above in the main theorem. As-
sume that b, V € C(R?) : R* — R are real smooth functions with
compact support and that the total flux a = (27)7! [b(z)dz satisfies
0 < a < 1. Then the main theorem is formulated as follows.

THEOREM 7.1.  Assume that the above assumptions are fulfilled. Let
fa(W' —w) be as in Proposition 3.1 and let & denote the resonance space
at zero energy of the Hamiltonian H = H(A,V). Set ¢(\) = (27/iv/A)/?
again. Then the scattering amplitude f(w — w'; X) for scattering from ini-
tial direction w to final one W' at energy \ obeys the following asymptotic
formula as A — 0.

(1) If dim & = 2, then
flw— W5 A) =c(N) (fa(w' —w) + (i/m)sin mr(l - ei(w/_w)> + 0(1)) .
(2) Assume that dim & = 1. Let
p=cor *+ ar 07l 4 g g€ L*(R?),

be a resonance function spanning £1. Then one has:
(i) Assume that 0 < a < 1/2. If ¢g # 0, then

flw—=w'X) =c(N\) (falw —w) + (i/7) sinam 4 o(1))
and if co =0, then

Flw— o\ = c(\) ( Falw —w) — (i/7) sin amel@ =) 4 0(1)) .
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(ii) Assume that o =1/2. Set ¢ = c1/co (¢ =00 if cg =0). Then

i(1 — e ™@)(1 + ce")
(0% [cP) + 0(1)) .

flw— W5 A) =c(N) (fa(w' —w)+

(i) Assume that 1/2 < a < 1. If¢; # 0, then
flw =3 0) = o) (fale' - w) = (i/m) siname’™ =) + o(1))
and if c1 = 0, then
@ =& A) = eA) (fale! —w) + (i/m) sinam +o(1)).
(3) Assume that dim & = 0. Then
@ = W5A) = (V) (falo —w) +o(1)) .

Remark. We make a brief comment on the case a € Z. If o € Z, then
(—DMf(w — W';N), [ ] being the Gauss notation, obeys the asymptotic
formula in the theorem.

68. Scattering by magnetic field with small support

As a simple application of Theorem 7.1, we here study the scattering

by magnetic fields with small support. Let H. be again defined by
H.=H(A.,V.) = (—iV—-A)+V, 0<ex],

where V.(2) = e 2V (x/¢) and A.(z) = e 1A(x/e) with V x A, = b, =
e~ 2b(x/e). We denote by f-(w — w';\) the scattering amplitude for the
pair (H., Hp). The next theorem is obtained as an immediate consequence
of Corollary 3.1 and Theorem 7.1.

THEOREM 8.1.  Let the notations and assumptions be as in Theo-
rem 7.1. Then the scattering amplitude fo(w — w';X), X > 0 being fized,
obeys the following asymptotic formula as € — 0.

(1) If dim & = 2, then

felw — W5 N) = c¢(N) (fa(w' —w) + (i/7)sin om(l - ei(“’l—w))> +o(1).
(2) Assume that dim&; = 1. Let

p=cor +ar 1"V’ 1 g ge L*(R?),
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again denote a resonance function spanning £1. Then one has:
(1) Assume that 0 < a < 1/2. If ¢y # 0, then

felw = W5 A) = ¢(A) (fa(w' —w) + (i/7) sinar) + o(1),
and if co = 0, then
felw = W5 X)) =c(N) (fa(w' —w) — (i/m)sin omei(w,_”)) +o(1).

(ii) Assume that « = 1/2. Set ¢ = ¢1/co (¢ =00 if cg =0). Then

i(1 — e ™) (1 + cei”l)> +o(1).

fe(w — UJ/§)\) = C(/\) <foz(w/ - w) + 7T(1 + |c|2)

(i) Assume that 1/2 < a < 1. If¢; # 0, then
felw = '3 2) = () (falw' = w) = (i/m)sinare’™ =) 4 o(1),
and if c1 = 0, then
felw = W) = V) (falw' —w) + (i/7) sin o) + o(1).
(3) Assume that dim &, = 0. Then
felw = Wi 0) = eW) fal —w) +o(1).

If, in particular, & = 1/2, then the theorem above shows the lack of
conservation of angular momentum in the limit ¢ — 0. For example, in-
coming particles with only I = 0 as angular momentum may have angular
momentum [ = 1 after scattering by the field b, with support small enough.

When ¢ — 0, H. is formally convergent to the Hamiltonian
Hoo = (—iV - Ba)Qv D(HOa) = CSO(RQ \ {0})7

defined by (1.4). This has the d-like magnetic field V x B, = 2rad(z) at
the orgin. We discuss the relation between the limits in the above theorem
and the scattering amplitude for the Hamiltonian obtained as a self-adjoint
extension of Hyg.
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We denote by Ho, the closure of Hy,. This is symmetric, but is not
self-adjoint. Let X4 = Ker (F;a Fi). Then X4 is spanned by ¥y, [ = 0,1,
where

erl(-T) _ Tle(e—iﬂ/élr)eilG’ wfl(x) _ Tleiwr/QKy(einT)eilG

with the modified Bessel function K, (z) = (ir/2)e*™/?H,(iz). The con-
stant 7; > 0 is determined by normalization ||¢4[|12(g2) = 1, and the phase
factor ™2 is taken so that Y4y —Y—_; — 0 as r — 0. Thus the closure
Ho,, has its deficiency indices (2,2). By the general theory due to Krein,
Hy,, has a family of self-adjoint extensions parameterized by 2 x 2 unitary
mapping from one deficiency space to the other one. Let

a —b

U=U<n,a,b)=e“7< - ) a* +[b]* =1, n€R, a,beC,

be a 2 X 2 unitary matrix. We denote by the same notation U the mapping
U:¥y — ¥_ defined by

Uy =eop_o+e1p_1, Py =eoPyo+e1thyn,

with ¥(ép,é1) = U'(eg,e1). Then, for given U = U(n,a,b), there exists a
self-adjoint extension HY such that

HYu = Hoqv + ithy — iU,
with domain
D(HY) = {u€ L*(R?) :u=v+¢ + Uy, v € D(Hoa), 4 € 4}

The unitary matrix U(n, a, b) specifies the boundary condition at the origin.
If, for example, U = U(0, —1,0), then the domain D(HY) is given by

D(HY) = {u € L*(R?) : Hoou € L2(R?), lim u(w) = 0} ,
and this extension coincides with H,, defined by (1.3). We denote by f!(w —
w'; \) the scattering amplitude for the pair (HY, Hy). It is defined through

the asymptotic behavior

ulw) = V54 V0 = W NV (1 o(1)), w =, ] - oo,

https://doi.org/10.1017/50027763000007017 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007017

MAGNETIC SCATTERING IN TWO DIMENSIONS 145

of the solution u(x) to equation (Hpo — A)u = 0, where u(z) satisfies the
boundary condition specified by U(n, a,b) at the origin. The scattering am-
plitude fY(w — w'; \) has been calculated in the recent work [2] and it takes
a rather complicated form. We do not copy the explicit form obtained there.
If, in particular, U = U(0,—1,0), then fU(w — w';\) = c¢(A) fa(w' — w). As
previously stated, this is just the scattering amplitude calculated by [1]
(see [11] also). We mention only the results. According to the results in [2],
Theorem 8.1 is now reformulated as follows.

THEOREM 8.2. Let the notations and assumptions be again as in The-
orem 7.1.
(1) If dim & = 2, then

hH(l) felw =52 = fU(w— W5 N)
e—

with U = U(7/2,exp(i(1/2 — a)m),0).
(2) Assume that dim & = 1. Then one has:
(1) Assume that 0 < a < 1/2. If ¢y # 0, then

hH(l) felw =50 = fU(w— W5 N)

e—

with U =U((1 — o/2)7,exp(—ian/2),0), and if co = 0, then
hH(l) felw =52 = fU(w — W5 N)
E—

with U =U((1/2 4+ o/2)m,exp(i(1 — a)7/2),0).
(ii) Assume that « = 1/2 and set ¢ = c¢1/cy again. Then

lir% folw— 3N = fYw— o5 N)

with U = U(37/4,a,b), where

1 ( 11— |c]2> 2ic
a=—(1—1 5], b=—F4m—s.
V2 1+ |c] V2(1+ |cf?)
(iii) Assume that 1/2 < o < 1. If ¢; # 0, then
lir% felw =50 = fU(w— W5 N)
with U =U((1/2 4 a/2)m,exp(i(l — a)7/2),0), and if c; = 0, then

hH(l) felw =520 = fU(w— W5 N)
e—
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with U =U((1 — o/2)7,exp(—ian/2),0).
(3) Assume that dim & = 0. Then

lim fo(w — o3 A) = fY(w — &3 ))
E—
with U = U(0,—1,0).

§9. Proof of Proposition 4.1

In this section we prove Proposition 4.1 and Lemma 4.4, which remain
unproved.

Proof of Proposition 4.1. As stated in Remark (3) after the proposition,
(2) has been already verified. We prove (1) and (3) for the + case only. The
— case follows by adjoint at once. The proof is rater long and it is divided
into several steps.

(i) Let Ry(r,p;k) be the integral kernel of R(k? + i0;X;), k > 0. The
kernel is given by

Ri(r,p; k) = = fi(r Apy k)gi(r vV pi k) /W (f1, 1),
where
fi(ri k) = Tl/le(kT) 0<r<1
BN enB)r 20, (kr) + co(R)r 20y (k) > 1,

(ri k) = dll(k’)rl/QJl(k?T) + dQl(k)T1/2Nl(kT) 0<r<li
& —\ rV2H, (k) r>1,

Ni(z) being the Neumann function, and the four coefficients are determined
so as to satisfy the connecting conditions at » = 1. Since W (J;, N;)(z) =
2/mz and W (J,,J_,)(z) = —2sinvn/mz, the Wronskian W(f;, g;) is calcu-
lated as

W(fl,gl) = dgl(k)kW(Jl,Nl)(k‘) = ngl(k)/ﬂ'

and the four coeflicients above are determined as follows:

cul(k) = (m/2sinvm)k(J_y (k) J] (k) — J_, (k) Ji(k)),
cai(k) = (m/2sinvm)k(Ji(k) J, (k) - ’(k)Ju(k:D
du(k) = (w/2)k(H, (k)N] (k) — H, (k) Ni()),

doi (k) = (/2)k(Ji(k) H,, (k) = Jj (k) Hy (k))-
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Hence we have
(9.1) Ri(r,p; k) = fi(r Ap;k)hi(r V p; k),

where
hi(r;k) = ei(k)gi(k;r), e(k) = —m/2dy (k).

(ii) We investigate only the case [ = 0 or 1 in some detail. We first look
at the behavior as k — 0 of fi(r; k). Recall the representation for the pair
(ug,v7), L = 0,1, of linearly independent solutions to X;u = 0. If 0 < r <1,
then

filrsk) = U+ v)' 2 (k/2)! (w(r) + O(K?)) .

By the asymptotic formula of Bessel functions, we have

cn(k) = (r/2sinvr) (1 +v)/T(1 —v)) (k/2)"7 (1 + O(k?)),
(k) = —(rn/2sinvn) (1 — v)/T(L+v)) (k/2) (1 + O(k?)) .

Since I'(14+v)I'(1 —v) = v/ sinvm, this implies that fi(r; k) still obeys the
same relation as above for » > 1 and hence we obtain

(9.2) filrsk) = (L+ ) 2 (k/2)! (w(r) + O(k?))

locally uniformly in r > 0.

(iii) Let e;(k) be as above. We study the behavior of e;(k). Recall that
B1(k) in the proposition is defined by

93)  Ailk) =~ (=)D —=v)/(+ )DL +v)) e " (k/2)*

and hence B(k) = (co(k)/cu(k))e ™™ (14 O(k?)). Since H,(z) is repre-
sented by the formula

(9.4) H,(2) = (i/sinvr) (J,(2)e™™ — J_,(2)),
we have dy (k) = i(cy (k)e ™™ + ¢y (k)), so that

doy(k) = icy(k) (1 + Bi(k)) (1 + O(k?)) .
Thus ¢(k), I = 0,1, behaves like

(9.5) ey(k) = isinvm (T(1 - v)/(L+v)) (1+ By(k) " (k/2)" ™ (1 + O(K?)) .
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(iv) We analyse the behavior as & — 0 of hy(7; k) in (9.1). According to
(9.4), we decompose it into the sum of two terms h; = I (r;k) — I_(r; k)
for r > 1, where

L (r k) = (i) sinvm)e e (k) J, (kr)r'/?,
I_(r;k) = (i/sin V”)el(k)c]_,,(kr)rl/?

Since (k) = 2v(l — v) "1 Bi(k) (1 + Bi(k)) ™1, it follows from (9.5) that
L (rik) = —(+ )7 (L4 Bk) 7 (k/2) ™ (r 412 4 O(k2))

= =+ 0 (L= AR+ AR (R/2) 7 (r 2 O())

= (1 +v) " Nk/2)™! ((1 F(1/2 = 1/20)m (k) Y2 O(k2)>
locally uniformly in r > 1. If we use (9.3), we obtain in a similar way that

L (k) = (1= ) AR+ Bi(R) ™ (/)7 (712 + ()
= (I + )Y (k/2)"! ((1/2 120 (k)2 0(k2)) :

Hence hy(r; k) behaves like

hi(ri k) = (L4 1)~ YV2(k/2) 7 (u(r) + i (B)u(r) + O(k?))
for 7 > 1. This, together with (9.1) and (9.2), implies that
(9.6)  Ri(r,p; k) = w(r Ap)o(rV p) +n(k)u(r)u(p) + O(K)

locally uniformly in (r,p) € [0,00) x [0,00), when rV p > 1.
(v) We represent hy(r; k) as

h(rik) = dy(k)ey(k)Jy (kr)r'/? — (m/2) Ny(ker)r!/?

for 0 < r < 1 and we continue to analyse its behavior as £ — 0. We look
at the behavior of dy;(k)e;(k). For brevity, we consider only the case [ = 0.
The Neumann function Ny(z) behaves like

(9.7)  (7/2)No(2) = (v +1og(2/2))Jo(2) + O(|z*), |2| =0,
where 7 is the Euler constant. Hence dyo(k) obeys

dio(k) = —(2/m) (7 +log(k/2)) dao (k) + H, (k) Jo (k) + O(k~*2).
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By (9.4), we further see that
dio(k) = (7 +log(k/2)) /eo(k) + d(k) + O(k~"+?),

where

d(k) = — (F(I:_V)(k/2)”e_i””—ﬁ(lzﬂ)_”).

sin v

If we make use of (9.3) and (9.5) with [ = 0, then

d(k)eo(k) = (1/v — Bo(k)/v) (14 Bo(k)) ™" + O(k?)
= 1/v+ (k) /v + O(K?)

and hence we have
dio(k)eo(k) = ((v +log(k/2)) + 1/v + (k) /v) + O(k?).
This, together with (9.7), yields that
ho(rs k) = ((1/v — log ) + (10(k)/»)) /2o (kr) + O(K?)
= 712 (vo(r) + 70 (k)uo (r)) + O(K?)
uniformly in 0 < r < 1. Hence it follows from (9.2) and (9.6) that
Ro(r, p; k) = uo(r A p)vo(r V p) + y0(k)uo (r)uo(p) + O(K?)

locally uniformly in (r,p) € [0,00) x [0,00). If we check the argument
through the above steps more carefully, we see that

Ro(r,p; k) = uo(r A p)vo(r V p) + vo(k)uo(r)uo(p) + k> Ega(r, p) + o(k?).

for some function Egz(r, p) bounded locally. Thus (1) is proved for | = 0 and
(3) is immediately obtained. A similar argument applies to the case [ = 1.
We skip the details. The case | # 0,1 is much easier to prove. If [ # 0,1,
then v > 1 and R;(r, p; k) is shown to be expanded as

Ry(r,p; k) = w(r Ap)v(r V p) + k*Ep(r,p) + o(k?)

locally uniformly in (7, p). The proof of the proposition is now completed.

O
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We end the paper by proving Lemma 4.4.

Proof of Lemma 4.4. As is seen from the proof of Proposition 4.1,

(Ri(K? + 10 X)) £)(r) = ex(k)rY/2H, (kr) /0 k) f@)dp, > 1,

for f € L2, (I1). Since fi(r; k) = O(k') locally uniformly in r > 0 and since

com

e1(k) obeys e;(k) = O(k¥~!), it follows that
(Ry(k? +0; X)) f)(r) = O(K")r' 2 Hy (kr), k=0,

uniformly in 7 > 1. This remains true for ¢ with Im+/¢ > 0. Thus the
lemma, is proved. 0
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