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Abstract

Childhood obesity represents a significant global health concern and identifying its risk factors
is crucial for developing intervention programs. Many “omics” factors associated with the risk
of developing obesity have been identified, including genomic, microbiomic, and epigenomic
factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord
blood and placenta at birth were associated with weight outcomes (specifically, conditional
weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized
genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip,
and incorporated information on child and maternal health, and various environmental factors
into the analysis. We used regression analysis to identify genes with methylation profiles most
predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in
placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and
PPP1R16B) were associated with all three weight outcomes, which are also associated with
weight outcomes in an independent cohort suggesting a strong relationship with weight
trajectories in the first six months after birth. Additionally, we developed a Methylation Risk
Score (MRS) that could be used to identify children most at risk for developing childhood
obesity. While many of the genes identified by our analysis have been associated with weight-
related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide
association and variant studies, our analysis implicated several others, whose involvement in the
obesity phenotype should be evaluated in future functional investigations.

Introduction

Obesity affects over 40% of Americans,1 including nearly 20% of children.2 Childhood obesity is
associated with various disorders across the life course, including hypertension, hypercholes-
terolemia, and insulin resistance.3–5 To maximize the benefit of preventive interventions,6–8

early identification of children who are most at risk for developing obesity is paramount.
Weight is a complex trait influenced by many factors, including the environment (e.g., diet,

activity level, medications), genetics, epigenetics, the microbiome, and the metabolome of
individuals. Previous studies have indicated that 40-80% of variation in BMI can be explained by
genetic factors.9,10 However, the cumulative effect of single nucleotide polymorphisms (SNPs)
identified so far does not account for all of the variation attributed to genetics. Specifically,
earlier genome-wide association studies (GWASs) have only been able to explain approximately
3% of variation in BMI, and more recent studies11 considering SNPs significant at the genome-
wide level explain up to 6% of such variation. Less stringent studies or meta-analyses raised this
percentage to over 20% (reviewed in Bouchard et al. 2021),10 but still failed to explain the
observed heritability in obesity, which approaches 50%.10 Despite this gap, polygenic risk scores
(PRSs) are being widely developed to combine variants from GWASs to assess an individual’s
risk for disease.12 These scores have been developed for adults13 andmore recently for children.14

In addition to genetic factors, epigenetic modifications could provide important insights into
an individual’s risk for obesity because they can be heritable when located in the germline, and
modifiable by environmental factors.15 Epigenomics, the study of epigenetic modifications on a
genome-wide scale, is a field of research that links genes and disease to provide a complex
picture accounting for changes due to environmental influences across the lifetime. The most
common epigenetic modification of DNA is cytosine methylation at CpG sites. Methylation
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plays a role in repressing gene expression when located in
regulatory regions16 and has been linked to active gene tran-
scription when located within the gene body.17 The proposed
molecular mechanisms of gene body methylation range from
silencing of repetitive elements18 to affecting nucleosome position-
ing19 and histone modifications.20 Analogous to constructing PRSs
with SNP data, methylation risk scores (MRSs) have been recently
developed.21,22 MRSs are linear combinations of methylation states
across multiple CpG sites and may be useful in the clinical setting
as these epigenetic marks can be influenced by environmental
conditions and thus could be used to monitor changes in disease
risk over time.21

In the context of childhood obesity, some studies have shown
differences in peripheral blood methylation profiles between
children with and without overweight.23,24 Other studies have
identified CpG loci whose methylation status in cord blood is
linked to adiposity in children between 3 and 7 years of age,23 as
well as up to 18 years of age.24 Cord blood methylation profiles in
children were shown to be influenced by maternal methylation
profiles and by environmental factors that impact pregnancy.25,26

Additionally, MRSs have been found to be associated with BMI in
adults,27 as well as in children.28 However, the MRSs used in
previous children studies were informed by BMI Epigenome-Wide
Association Studies in adults,28,29 so it is still not known whether
there are specific gene methylation patterns at birth that are linked
to early childhood growth.

In this work, we capitalized on a cohort of second-born siblings
to participants in the Intervention Nurses Start Infants Growing on
Healthy Trajectories (INSIGHT) Study.6,8 Specifically, these
“SIBSIGHT” study participants were part of an observation-only
longitudinal evaluation of second-born siblings. For this study, we
investigated whether early childhood growth is associated with
methylation in cord blood and placenta samples of 48 children
from the SIBSIGHT cohort. Early childhood growth of children
from the INSIGHT and SIBSIGHT cohorts has been extensively
studied, providing evidence for a successful early-life intervention
aimed at preventing childhood obesity for both siblings.7,8,30 Along
with insights into the effects of dietary intake,31,32 sleep,33,34 and
infant temperament,35 prior findings by our group have identified
associations between early childhood growth and the composition
of the oral microbiome,36 the gut metabolome,37 the stool micro-
transcriptome,38 and the genome.14 Characterizing an association
between gene methylation at birth and weight outcomes in
children complements such studies, providing another avenue for
identifying risk factors, adapting interventions – and thus
preventing early-life obesity and later life comorbidities. Here
we used Illumina methylEpic arrays to establish genome-wide
methylation profiles for placenta and cord blood tissues, and
leveraged a wealth of additional information collected by
SIBSIGHT. We tested a hypothesis that gene body methylation
profiles at birth could be associated with weight outcomes in the
first six months after birth.

Methods

Methylation data collection

We collected 48 matching samples of cord blood and placenta
tissue from children enrolled in the SIBSIGHT study.6,31 This was a
convenience sample of second-born siblings from families enrolled
in and consented for a clinical trial with their firstborns. We were
therefore able to consent them for participation for this study of

second-borns as part of a larger NIH-funded effort evaluating
differences between first- and second-born children. In short, the
families were already familiar with the research protocol and what
this meant for their families, making consent and enrollment
efficient. A list of the covariates employed in our analysis, with
their summary values across the children included in this study can
be found in Table 1.

At the time of birth, cord blood samples were collected in
K2EDTA coated vacutainers (Becton, Dickinson, and Company)
and stored at 4°C until picked up by the research team. Samples
were then stored at −80°C. DNA was isolated using the Qiagen
DNeasy Blood and Tissue kit (Qiagen). Purified genomic DNA
was then bisulfite-converted using EZ Methylation Kit (Zymo
Research).

Placentas were stored at 4°C after delivery before processing.
1 cm3 pieces of the placenta were dissected from the fetal side,
proximal to the area where the umbilical cord attaches. Tissues
were formalin-fixed and paraffin-embedded. DNA from these
tissues was extracted with the ReliaPrep FFPE gDNA Miniprep
System (Promega) and then assessed with the FFPE QC kit
(Illumina) for quality. Samples passing quality thresholds were
then bisulfite-converted with the EZ Methylation Kit (Zymo
Research), and then treated DNA was restored following the
Infinium HD FFPE Restoration protocol (Illumina).

Bisulfite-converted DNA from both tissues was then analyzed
on the Infinium MethylationEPIC chip (Illumina) in the Genome
Sciences Facility at Penn State Hershey College of Medicine.

Table 1. Summary of SIBSIGHT covariates used in the analysis

Covariate Value

Child CWG z-score Average (SD) −8.868 × 10–4 (1.037)

Child BMI Average (SD) 17.7 (1.5)

Child weight/length Average (SD) 11.8 (1.1)

Mother BMI Average (SD) 24.5 (4.5)

Father BMI Average (SD) 28.6 (4.5)

Child sex N= female (%) 27 (56%)

Gestational Duration (weeks) Average (SD) 38.9 (1.1)

Mode of Delivery N= vaginal (%) 34 (70.8%)

Maternal Age (years) Average (SD) 31.8 (4.3)

Gestational Diabetes N= controlled by diet &
exercise (%)

3 (6.25%)

Smoking During Pregnancy N= smoked 1

Maternal Illness during pregnancy
(e.g.: Thyroid disorders) (N= none)

47

Maternal Medications During Pregnancy
N= took medications (%)

33 (68.8%)

Infant Feeding Mode at 4 weeks N ≥ 80%
breast milk (%)

32 (66.7%)

Infant Feeding Mode at 16 weeks N ≥ 80%
breast milk (%)

25 (52.1%)

Infant Feeding Mode at 28 weeks N ≥ 80%
breast milk (%)

19 (39.6%)

SD, standard deviation.
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Weight outcomes data collection

For each child enrolled in this study, weight and length (via
recumbent length board, Shorr Productions) were collected at
birth and six months after birth, and BMI (kg/m2) and weight-for-
length (kg/m) were calculated.39,40 Additionally, conditional
weight gain (CWG) z-scores were calculated for each child using
anthropometrics at birth and six months, adjusted for sex and
age.41 CWG z-scores are the standardized residuals from a linear
regression of the weight-for-age z-score at six months on the
weight-for-age z-score at birth (length-for-age z-score at birth and
six months and exact age at the six-month visit are used as
covariates in the regression). CWG z-scores are normally
distributed and have a mean of 0 and a standard deviation of 1.
Positive z-scores indicate above average weight gain (i.e., rapid
infant weight gain) compared to other infants in the sample, and
have been shown to be a risk factor for obesity later in life.42 We
standardized the BMI and weight-for-length ratio data by sex to
remove the impact of the differences between sexes on the
association with methylation profiles. This standardization is done
by separating the two populations by sex and, for each, subtracting
the mean and dividing by the standard deviation. Tests for
normality were performed in R using the base stats package.

Methylation data preprocessing

Raw signal reads from the chip were converted into Beta signals
(β = intensity of the methylation signal/[intensity of the
methylation signal þ intensity of the unmethylated signalþ 100])
using the Minfi package in R.43 The Minfi package was also used to
screen the data for quality. The first screening removed CpG sites
where the intensities of the methylated signal and the unmethy-
lated signal were both close to background level. 452,567 CpG sites
were removed that way. Further quality control included screening
the data for outliers, excluding sex chromosomes, and excluding
sites with known SNPs that could have caused false positives or
negatives (see Table S1 for a summary of CpGs removed during
this screening). After quality control, one placenta sample was
removed from further analyses due to the low quality of the
methylation data. Next, the array signals were normalized. First, we
normalized within the array, which included background
correction and normalization of signal intensity. Each chip
contains control sites used to normalize between samples.
Second, we utilized the Beta Mixture Quantile (BMIQ) normali-
zation (one of the most popular methods found in the literature for
MethylEpic analyses)44 to normalize the signal from the Infinium I
(InfI) and Infinium II (InfII) probes utilized on the
MethylationEPIC array. BMIQ decomposes density profiles in
three states: unmethylated, hemimethylated, and fully methylated.
It rescales the InfII distribution to the corresponding InfI
distribution. Both normalization steps were performed utilizing
tools within the Minfi package (Figure S2).

After preprocessing we have one Beta signal for each CpG site,
which corresponds to its methylation level. These values range
from 0 (fully unmethylated) to 1 (fully methylated). Using the
default density plot function included in the Minfi package, we
visualize the distribution of individual CpG sites methylation
levels. In a sample containing a single cell type, with identical
methylation states between cells, we expect two peaks near 0 and 1.
Values in between 0 and 1 indicate a mix of unmethylated and
methylated sites in the sample, which can indicate a mix of cell
types or cell states.

Regression analyses

To identify factors that could impact the weight outcomes (BMI)
other than methylation profiles and sex, we performed a LASSO
regression analysis45,46 (a method that performs predictor
selection) on environmental factors, such as feeding mode, and
family history, such as parental BMI and pregnancy duration
(Table 1). We found no significant associations (Figure S2).

After the normalization performed during preprocessing, we
grouped the methylation data by genes. Specifically, we averaged
the Beta signals of CpG sites contained within the genomic
coordinates of a gene to calculate the gene’s methylation level
(Figure S3). We then ran LASSO regressions separately for the two
tissues and, for each tissue, considering the three different weight
outcomes – for a total of six regressions. We used the R package
glmnet (LASSO and Elastic-Net Regularized Generalized Linear
Models). The tuning parameters used for various LASSO runs can
be found in Table S2; they were selected minimizing the cross-
validation Mean Squared Error, as shown in the standard result
plots produced by glmnet. Some of the LASSO fit analyses gave
variable results for correlation with weight-to-length outcome.
When repeating the analyses with the same parameters, the shape
of the LASSO plot was changing, and, while a few genes were
repeatedly selected, some results were not reproducible. To select
the most predictive genes when the LASSO gave very variable
results, we repeated the analysis until we obtained 10 profiles with
the “check mark” shape plot, and selected the best model that
included the most commonly selected genes across the replicate 10
analyses. After running each of the LASSO regressions, in order to
reduce the bias, this technique creates in the estimation of the
regression coefficients, we performed a post-selection fit – i.e. an
OLS fit restricted to the set of predictors selected by the LASSO.We
also ran marginal regressions for each individual predictor selected
by the LASSO; the coefficient estimates from these regression can
be considered alongside those produced by the post-selection OLS
joint fit, as additional quantifications of the effects of each selected
predictor.

Methylation risk scores calculation

Methylation risk scores (MRS) were calculated as described
in.22 Briefly, they are a sum of m gene methylation values c (from
section “Methylation data preprocessing”) with OLS estimated
regression coefficients as weights w (from section “Regression
analyses”):

MRS ¼
X

m
i¼1

wici (1)

MRSs were calculated for each weight outcome separately using the
31 genes for which a significant relationship was determined by the
regression analysis between the weight outcome and methylation
status (Tables S3–S6). The association between MRS and weight
outcomewas determined by linear regression using the lm function
in the basic stats package of R47 using MRS as the predictor and
weight outcome as the response.

Validation datasets

Cord blood methylation data from the PROGRESS cohort48 was
used in validation analyses (dbGaP: phs002754.v1.p1). This cohort
consists of 1,001 individuals from Mexico City who were followed
from birth through 18 years. Methylation data was downloaded
from dbGaP (phs002754.v1.p1) and height and weight data were
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provided by study authors.48 CWG z-scores, six-month BMI,
and six-month weight-for-length were all calculated as
described above.

To validate our results on the PROGRESS cohort, we
preprocessed the data as we did for the SIBSIGHT cohort (see
above), and confirmed the absence of association with the
covariates available for this dataset (mother BMI, smoking, and
disease during pregnancy). We performed linear regressions on the
genes that were selected as predictors in the SIBSIGHT cohort.
These regressions have been run both for each individual gene and
as joint regression using all of the genes. We used the CWG
z-scores to perform the linear regression with the genes associated
with CWG in the SIBSIGHT cohort, and similarly for the BMI and
weight/length ratio.

MRSs were calculated as described above, using the regression
coefficients from SIBSIGHT as weights, w. As with SIBSIGHT, the
association between the MRS and the phenotypes were calculated
using the linear regression (lm) function in the basic stats package
of R.

Results

We collected placenta and cord blood samples at the time of birth
from 48 SIBSIGHT study participants.6,32 For each sample, we used
the Illumina MethylationEPIC array to determine methylation
profiles across 575,132 CpG sites genome-wide. After quality
control and clustering (see Methods for details), we grouped
methylation signals from 293,090 CpGs into 20,108 genes. The
number of CpG sites per gene ranged from 1 to 814, with average
and median counts of 15 and 7, respectively.

We evaluated three weight outcomes of participating children:
the conditional weight gain z-score (CWG, a standardizedmeasure
of change in weight from birth to six months of age, see Methods
for details), BMI (weight/(length)2) at six months, and the ratio of
weight-for-length at six months. All three measures showed
regular, Gaussian-like distributions across our participants
(Figure S1; the Shapiro-Wilk test did not reject normality; CWG
p-value= 0.416, BMI p-value= 0.529, weight-for-length p-value
= 0.269). Weight outcomes at six months were chosen as they are
the first outcomes we measured after collection of samples at
birth.49,50

Impact of covariates on weight outcomes

Prior to evaluating the associations between methylation profiles
and weight outcomes, we assessed whether non-epigenetic
covariates showed significant associations with the latter and
should therefore be taken into account in downstream analyses.
The non-epigenetic covariates we considered (Table 1) were
maternal BMI, age, and health-related variables (presence/absence
of gestational diabetes, gestational weight gain, presence/absence
of illness, and medication usage during pregnancy), gestational
length, sex of the child, and infant feeding mode (i.e. breastfeeding
or formula) at the age of 4, 16, and 28 weeks. Only one participating
mother reported smoking, so this variable was excluded from the
analysis. In order to determine which, if any, of the non-epigenetic
covariates had an association with the infant weight outcomes,
LASSO regressions were performed51 using each of the three
weight outcomes as the response and the above-listed covariates as
predictors. The only significant associations found were those of
the sex of the child with weight-for-length and BMI (Figure S2).
The initial analyses we performed using BMI and weight-for-

length showed associations with only genes differentially expressed
in males and females. To account for this, we standardized these
two weight outcomes by sex (see Methods for details). The CWG
calculation already accounts for sex.We also performed a stratified
analysis for each sex, but the low size of the samples led to a low
confidence in the results (Supplementary Note 1).

Differences in methylation profiles between cord blood
and placenta

The methylation state of a CpG site is determined by calculating
the ratio between the methylated and unmethylated fluorescent
signals from the microarray. This ratio is referred to as the
methylation Beta signal.52 The distribution of the methylation Beta
signals across CpG sites differed between the two tissues analyzed
(shown for each of the 48 children in Fig. 1). The cord blood
samples had the expected bimodal Beta value distribution with a
strong peak at β < 0.2 (hypomethylated CpGs) and a less
pronounced peak at β > 0.7 (hypermethylated CpGs). However,
the placenta samples had a poorly defined peak at β > 0.7, with
more CpGs having values between β = 0.2 and β = 0.7. This
suggests that our placenta samples contained either hemimethy-
lated CpGs or heterogeneous cells with a mix of CpG methylation
profiles. This is consistent with previous work showing that up to
37% of the placental genome is partially methylated.53

Association study to identify differentially methylated genes

To identify genes with methylation patterns associated with
children’s weight outcomes, we again used LASSO regression. In
total, we performed six regressions, one for each tissue type and
weight outcome combination. For each regression, we computed
the average methylation states (Beta signals) across the CpGs for
each gene, and used these averages as predictors. The results are
summarized in Figure 2a. The LASSO regressions for cord blood
and placenta identified, respectively, eight and ten genes whose
methylation levels were significant predictors of CWG.
Additionally, LASSO regressions identified four and 31 genes

Figure 1. Density plots of Beta values describing the methylation state of CpG sites.
Each line corresponds to an individual sample. Smoothing was performed with the
function density plot from the minfi package in R. The distributions for the 48 cord
blood samples are shown in green, and those for the 48 placenta samples are shown in
orange.
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whose methylation levels in cord blood were significant predictors
of BMI and weight-for-length, respectively (Table S4). In contrast,
we did not identify any genes whose methylation in placenta was
significantly associated with these two weight outcomes. Notably,
in cord blood, there were three genes (PLIN4, PPP1R16B, and
UBE2F) whose methylation levels were selected as significant
predictors of all three weight outcomes, with similar coefficient
estimates in the three regressions. There were no “shared
genes” among those selected for cord blood and placenta (Fig. 2b)
and there was no correlation between the methylation levels
of the selected genes in the two tissues (PLIN4 – Pearson’s
correlation=−0.2192, p-value= 0.1388; UBE2F – Pearson’s corre-
lation=−0.0265, p-value= 0.8595; PPP1R16B – Pearson’s correla-
tion= 0.0967, p-value= 0.5179). We report estimated coefficients
from the LASSO regressions in Tables S3-S6; these express
effect strength and sign: a positive regression coefficient can be
interpreted as a higher methylation level being associated with an
increased weight outcome, and a negative regression coefficient as a

higher methylation level being associated with a decreased weight
outcome.

We took a closer look at the CpG sites in the selected genes and
performed a LASSO analysis using these sites.We thenmapped the
CpG sites that were associated with the three weight outcomes in
cord blood, and with CWG in placenta (Supplementary Note 2).
We did not notice any patterns in the location of CpGs within the
genes, but we could see that the same sites were driving the gene
association for genes linked with several weight outcomes. We also
noticed that not all genes showed associated CpG sites, suggesting
that the overall methylation state of the gene is driving the
association instead of specific sites.

We found that several genes selected in SIBSIGHT were also
significantly related to child weight outcomes in an independent
dataset the PROGRESS54 cohort. PROGRESS is a freely accessible
dataset of children from Mexico City, and comprises both cord
bloodDNAmethylation data and longitudinal growth information
for the children. Considering CWG as the weight outcome, and

(a)

(b)

Figure 2. Genes whosemethylation levels in cord blood and placenta are predictive of weight outcomes. The outcomes considered are conditional weight gain (CWG), bodymass
index (BMI), and weight-for-length (weight divided by length). (a) a Venn diagram of the relevant genes, as identified by LASSO regressions. (b) Gene placement along the vertical
axis corresponds to the correlation coefficient between each gene selected by the LASSO fit and the weight outcome. In bold are genes selected across multiple outcomes, and
underlined are genes associated with weight outcomes in previous studies (see discussion). Only CWG was associated with differentially methylated genes in the placenta.
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regressing it on one gene at a time, seven out of the eight genes
selected in SIBSIGHT had a significant p-value also in PROGRESS.
When regressing CWG on all eight genes jointly no genes
remained significantly associated using 0.05 as a significance
threshold; although, PPP1R16B had a p-value of 0.052 (Table S7).
Considering six-month BMI as the weight outcome, two out of
four genes (PLIN4 and UBE2F) selected in SIBSIGHT were
significant in the joint regression in PROGRESS (Table S8).
Finally, considering six-month weight-for-length as the weight
outcome, one (SMIM20) of the 31 genes selected by SIBSIGHT
was significant and one gene (UBE2F) had a p-value of 0.066
(Table S9). It is notable that the genes that were selected using
multiple weight outcomes in SIBSIGHT (PLIN4, PPP1R16B, and
UBE2F) were also significantly associated with phenotypes in the
independent PROGRESS cohort.

Methylation risk score

Using results from the above LASSO regressions for the SIBSIGHT
cohort, we generated a methylation risk score (MRS) for each
growth outcome. These are weighted scores calculated as linear
combinations of gene methylation Beta signals weighted by
regression coefficient estimates obtained from post-LASSO
Ordinary Least Squares fits (see Methods for details). Figure 3
shows the relationship between each MRS and the corresponding
growth outcome. The associations were strong and significant in all
cases, with high in-sample R-squared (cord blood CWG, adjusted
R-squared= 0.874, p-value≤ 2.2 × 10–16, Fig. 3a; placenta CWG,
adjusted R-squared = 0.8088, p-value≤ 2.2 × 10–16, Fig. 3b; cord
blood BMI, adjusted R-squared= 0.992, p-value≤ 2.2 × 10–16,
Fig. 3c; weight-for-length, adjusted R-squared = 0.5966, p-value
7.731 × 10–11, Fig. 3d). Furthermore, there was still a significant
relationship between these scores (calculated with phenotypes
at 6 months) and the corresponding phenotypes at 1 and 2 years
(Table S10). Using the independent PROGRESS cohort, however,
these MRSs did not have a significant relationship with weight
outcomes (Table S11).

Discussion

In this study, we analyzed the methylation profiles of placenta and
cord blood samples collected at birth. Using three outcomes
characterizing early childhood growth, we identified genes whose
methylation levels in these tissues are associated with weight gain
during the first sixmonths after birth. Comparing results of LASSO
regression runs as well as the Ordinary Least Squares (OLS)
regression of selected predictors across weight outcomes and
tissues (Figure S5), we found that CWG and BMI provide more
reliable results in cord blood when reproducing the analysis, with
CWG having a higher adjusted R-squared than BMI (0.87 and 0.64
respectively). The weight-for-length ratio in cord blood had the
highest R-squared (0.97) but the results were more variable.
Indeed, attempts to replicate the correlation analysis with the
weight-for-length ratio led to frequent low quality LASSO plots
(with no associated genes or no clear minimum mean squared
error), and a highly variable list of correlated genes, even after
filtering for p-value (see Methods). For the placenta methylation,
only CWG exhibited correlation with a set of gene methylation
states, whereas BMI and weight-for-length did not.More generally,
we found that, compared with the placenta methylation data, the
cord blood methylation data presented a lower number of mixed
methylation profiles, more genes associated with weight outcomes,
and higher R-squared of the OLS regression on identified
predictors (0.68 for predictors associated with CWG in the
placenta).

Genes whose methylation levels in cord blood are predictive
of weight outcomes

In cord blood, we found three genes whose methylation levels were
significantly associated with all three weight outcomes in
SIBSIGHT and with outcomes in an independent cohort
(PROGRESS). These are discussed below, followed by a discussion
of genes identified as significant predictors for only one of the
outcomes.
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Figure 3. Relationship between MRS and
weight outcomes. (a) Cord blood MRS vs.
conditional weight gain. (b) Placenta MRS
vs. conditional weight gain. (c) Cord blood
MRS vs. weight-for-length ratio. (d) Cord
blood MRS vs. body mass index. Note:
placental methylation does not produce a
methylation risk score for BMI or weight-for-
length as there was no relationship between
gene methylation patterns and either of
these weight outcomes.
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PLIN4

One of the genes significantly associated with all three weight
outcomes, and always with a positive sign (higher methylation
inducing higher weight outcomes), was PLIN4. The protein
encoded by this gene (Perilipin 4) is a member of the PAT family of
lipid storage droplet proteins.55 It is an important regulator of lipid
storage. Low levels of expression of this protein have been
associated with an increase in weight status56 of adults. Changes in
PLIN4 methylation have been observed after weight loss, with
hypermethylation in the promoter region before vs. after gastric
bypass surgery in adults.57 PLIN4 has also been classified as a
putative obesogen in children, and was shown to be differentially
methylated between obese and non-obese children in another
study.58

PPP1R16B

Another gene significantly associated with all three weight
outcomes, and always with a negative sign (higher methylation
inducing lower weight outcomes), was PPP1R16B. The protein
encoded by PPP1R16B is phosphatase 1 (PP1) regulatory
inhibitory subunit 16B,59 which is also referred to as TIMAP or
ANKRD4.60 PP1 is involved in many essential cellular mechanisms
and is part of a large interactome with over 200 interactors
identified in vertebrates.61 Studies of PPP1R16B showed its high
levels of expression in endothelial cells and suggested that PP1 is
involved in endothelium stability and permeability.60 The activity
of PPP1R16B has been shown to play a role in several diseases,
including obesity and diabetes mellitus.60

UBE2F

Finally, the third gene significantly associated with all three weight
outcomes, and always with a positive sign (higher gene
methylation inducing higher weight outcomes), was UBE2F. The
protein encoded by UBE2F (Ubiquitin Conjugating Enzyme E2F)
is a ubiquitin-protein ligase involved in post-translational
modifications of proteins through the addition of ubiquitin-like
protein NEDD8.62 Previous studies have shown an association
between the expression of this gene and BMI in children.63 In
animal models, UBE2F has been shown to be expressed at higher
levels in the adipose tissue of obese rats compared to lean rats.64

Other genes

We also identified several genes whose methylation level was
significantly associated with only one weight outcome. Some such
genes were also associated with obesity or an obesity-related trait in
previous studies. One category of genes we identified were genes
linked to nutrient metabolism, e.g. ANKS4B, LAMP3, as well as
PPP1R16B (discussed above). The protein encoded by ANKS4B
(Ankyrin Repeat And Sterile Alpha Motif Domain Containing 4B)
plays a role in the epithelial brush border differentiation,
controlling the microvilli organization and length.65 It is involved
in pancreas development and function,66,67 affecting the secretion
of insulin. This function could explain its link to weight gain. In our
study, we found a negative association between CWG and cord
blood methylation levels of ANKS4B. The protein encoded by
LAMP3 (Lysosomal Associated Membrane Protein 3) is involved
in hepatic lipid metabolism and is overexpressed in patients with
non-alcoholic fatty liver disease as well as in obese mice.68 Our
analysis indicated that LAMP3methylation is positively associated
with CWG. The 33 additional genes implicated by our study but

not already documented in the literature as being linked to obesity
or metabolism (see Tables S3-S5) should be further analyzed in
functional studies aimed at determining how they may influence
weight gain in early childhood.

Genes whose methylation levels in placenta are predictive of
weight outcomes

In placenta, we found ten genes whose methylation levels were
significantly associated with the CWG outcome (see Fig. 3,
Table S6). Four were identified as being involved in body weight
and weight gain in prior studies, two have not been previously
associated with obesity or obesity-related traits in adults, and four
are putative and of unknown function. Among previously studied
genes, TRIM63, encoding for E3 ubiquitin ligase MURF1, has been
linked to skeletal muscle atrophy and is overexpressed in obese rats
compared to lean rats.69,70 Methylation levels of TRIM63 had a
negative association with CWG in our study. ADGRB2 is part of
the adhesion G-protein-coupled receptor genes family, which is
linked to insulin secretion in humans71 and modulation of
adipogenesis and adipocyte function.72 We found that methylation
levels of ADGRB2 had a positive association with CWG. ACTN1
has been shown to be involved in adipogenesis73 and weight regain
after weight loss.74,75 In rats, it is up-regulated in the brain of
animals with a high-fat diet.76 ACTN1 had a negative association
with CWG in our study. Finally, TAS2R38 has been shown to be
involved in the perception of bitter taste,77 and unrelated studies
documented a link between the perception of bitterness and
obesity in adults78,79 and male children.80 Methylation levels of
TAS2R38 had a negative association with CWG in our study. These
links suggest that these genes should be investigated further.

Methylation of genes previously associated with BMI

To evaluate whether the genetic factors of weight gain overlap with
the epigenetic factors, we looked at themethylation states of a set of
genes we previously identified as containing variations associated
with BMI14 (Supplemental Note 3). The absence of correlation
between the methylation state of these genes and the weight
outcomes in our cohort suggests that different genes are involved
in the genetic and epigenetic regulation of obesity.

Methylation risk scores as predictors of weight outcomes

A growing trend in genetics is to generate PRSs for complex
diseases because these types of disorders are often influenced by a
large number of genetic variants, each with a small effect size.81

PRSs, while not deterministic, can indicate which patients have a
higher risk of developing certain conditions, which can aid in the
establishment of intervention and/or treatment plans. MRSs have a
similar advantage, capturing the cumulative effect of many CpG
sites, or in this case the methylation signal of several genes, with
small effect sizes. We developed MRSs for three phenotypes at six
months after birth with cord blood methylation data from the
SIBSIGHT cohort. Importantly, theseMRSs remained significantly
correlated with weight outcomes up to two years later.

Conclusions and future directions

In this study we identified genes whose methylation levels in cord
blood and placenta are significantly associated with three different
weight outcomes; conditional weight gain z-score, BMI, and
weight-for-length. Notably, we identified three genes whose
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methylation in cord blood is predictive of all three weight
outcomes. Two of these genes, PLIN4 and UBE2F, have been
associated with weight in prior studies. Also notably, and
somewhat in contrast, only one outcome (CWG) was associated
with gene methylation in the placenta. This can be explained by a
higher number of cell types in the placenta tissue, making it more
difficult to identify specific methylation patterns across a large
number of methylation profiles. Alternatively, methylation states
in the placenta might only be associated with CWG as birthweight
is considered in the calculation of this outcome. It is possible that
the conditions in the placenta might be more likely to influence
birth weight than postnatal growth.82,83 One limitation of this
study is the small sample size (48) compared to traditional
Epigenome-Wide Association Studies. In order to increase the
power of our analysis, CpG sites were grouped by gene to reduce
the dimensionality of the data, with the drawback that this allows
us to capture only large-scale associations (i.e. over the whole gene
and not individual CpGs). To confirm our findings, our analysis
should be replicated using a larger sample. Additionally, there are
other variables that can influencemethylation levels of the placenta
(e.g. maternal diet)84,85 that were not collected as part of our study
but could be informative to include in future studies.

We used the PROGRESS/ELEMENT DNA Methylation Study
Dataset to test our selected genes and MRSs in an independent
cohort. However, while the SIBSIGHT cohort is largely white and
non-Hispanic/Latino,32 the PROGRESS cohort is composed of
individuals located in the Latin American city of Mexico City,
Mexico.54 It has been shown that in adults there is population-to-
population variation in DNA methylation related to several
diseases and phenotypes (e.g. cancer and diabetes)86 and that
individuals who have similar demographics, life style, etc. have
more similar methylation patterns.87 Interestingly, we found
evidence of between-populations differences in the association
between weight outcomes and methylation patterns emerging as
early as six months after birth. We found that the strongest “gene
signals” from SIBSIGHT (PLIN4, UBE2F, and PPP1R16B) could
also be detected in several of the regressions run on PROGRESS
data. However, our MRSs were not predictive of weight outcomes
in the PROGRESS cohort. We hypothesize that the underlying
genetic, demographic, etc. differences between the two populations
could be the reason why results from SIBSIGHT could not be more
consistently validated in PROGRESS. This is notable because
differences between the two cohorts were expected, however such a
distinct contrast at such an early age was not. This suggests that
external factors influencing the patterning of CpG methylation in
early life should be carefully studied in order to determine factors
potentially affecting future weight outcomes (e.g. maternal pre-
pregnancy BMI24 or environmental exposures).54 It will be
beneficial to identify if there are shared patterns because these
could be used to generate a MRS that could be used universally to
identify the children most at risk for developing obesity and
therefore benefit the most from targeted obesity prevention
programs.

In this study we characterized methylation patterns within the
gene body and not within the promoter regions.88 The relationship
between gene body methylation and gene expression has been
shown to be U-shaped in some studies, with both high and low
expression corresponding to high levels of methylation,89 but in
other studies methylation and transcription have been found to be
positively correlated.20 Additional studies are needed to fully
investigate the expression levels of the gene bodies in both placenta
and cord blood. Such studies could validate our findings and

provide a better understanding of the mechanisms eventually
affecting weight outcomes. To our knowledge, there are no gene
body methylation studies investigating the large-effect obesity
genes, e.g., LEPTIN and FTO, in infants. Notably, methylation of
these two genes was not found to be associated with weight
outcomes in our study.

In a prior study by our group,14 we found that there may be
different genetic components influencing infant weight gain vs.
adult weight gain. Regulatory mechanisms, including methylation
patterns, could therefore differ between adults and infants as well.
This represents an interesting direction for future research; overall,
methylation levels decrease throughout childhood and adoles-
cence90 and it would be of great interest to investigate how the
signatures we found here would persist as an individual ages.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S2040174424000060.
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